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Abstract Membrane Computing has recently proved to

be a suitable framework for addressing the modelling of

dynamical biological systems in general, and ecosystems in

particular. Due to the inherent randomness and uncertainty

in biological systems, when designing a model the relevant

tasks to be addressed are the validation and virtual exper-

imentation processes, rather than the formal verification. It

is therefore crucial to rely on software implementations of

efficient simulation algorithms. This paper presents a

simple (but realistic enough) ecosystem where a carnivore

and several herbivorous species interact. The model of this

ecosystem has been used to compare experimentally the

performance of two different simulation algorithms.

Keywords Ecosystem modelling � Membrane

computing � Probabilistic simulation algorithms

1 Introduction

Designing a model for a biological system is an intrinsi-

cally complicated task, since there are usually a large

number of important factors that need to be considered. It

is therefore advisable to make efforts to minimize the

number of variables (and, of course, the number of inter-

actions between them).

Nowadays ordinary differential equations (ODEs) con-

stitute the most widely used approach for the study of

population dynamics, but this approach has some draw-

backs. On one hand, when the number of species in a model

is greater than two, the equations system proposed is so

complex that it is usually solved using numerical methods.

Besides, slight modifications on the modeled population

imply important variations on the formal model (the whole

modeling process needs to be done again from scratch).

There already exists a quite large literature concerning

several approaches to modeling different phenomena

within the membrane computing framework (see e.g.

Besozzi et al. 2008; Pérez-Jiménez and Romero 2006;

Romero and Pérez-Jiménez 2008 and the chapter devoted

to Probabilistic/stochastic models in the handbook; Păun

et al. 2010). Computing models based on P systems offer

significant advantages: modularity, parallelism, and no

limitation on the number of interrelated variables that

evolve in parallel. These properties make them very

attractive for modeling complex ecosystems.

P systems explicitly represent the discrete character of

the quantity of components of a cellular system by using

rewriting rules on multisets of objects which represent

molecules, and strings which describe the organisation of

genes.

Each ecosystem has its own important peculiarities, but

nevertheless, there are some aspects common to most

ecosystems such as:

– they contain a large number of individuals and a large

number of species.
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– the life cycle includes some basic processes such as:

feeding, growth, reproduction and death.

– these processes are annually repeated.

– the evolution often depends on the environment:

climate, soil, etc.

– the natural dynamics suffer modifications due to human

activities.

These common features yield some requisites for the

model, from a computational point of view: many pro-

cesses take place simultaneously, there is cooperation

between individuals and elements of the ecosystem, partial

synchronization among the dynamic evolution sub-eco-

systems (for example, there could be adverse weather

conditions some year, and this does not affect a single

sub-ecosystem, but has a global influence on the entire

ecosystem), situations need to be restored annually.

These considerations led to the definition of an appro-

priate modeling semantic context for the P system. In par-

ticular, a precise semantics of the multienvironment

functional probabilistic P system with active membranes has

been used to model two real ecosystems: One, dealing

with the scavenger birds in the Catalan Pyrenees (Spain)

(Cardona et al. 2010) and another one focusing on the zebra

mussel in the reservoir of Ribarroja (Spain) (Cardona et al.

2011). In the first case, the purpose of the obtained model is

the study of the evolution of the ecosystem under different

scenarios to make the most appropriate management deci-

sions for the conservation of an endangered species. The

second case study corresponds to a completely different

situation: zebra mussel is an exotic species that has shown

an excellent adaptation after being introduced in the reser-

voir. Its uncontrolled reproduction causes significant eco-

nomic and ecological damage. Hence, the goal in this case is

to learn how to reduce to the limit of the mussel population.

In both cases we have designed a simulator to validate

the models. Actually, two different tools have been handled

to the corresponding managers, enabling them to perform

virtual experiments under different conditions.

This paper introduces a model for an idealized ecosys-

tem that can be used when testing simulators, instead of

running tests on huge instances like the models corre-

sponding to the above mentioned real case studies. The

presented ecosystem contains species belonging to three

trophic levels: in the lower level we have the grass, then we

have 5 herbivore species, and above all of them we have a

carnivore at the third level. Although it does not corre-

spond to any real system, it has been designed under the

guidance of ecologists, and it takes into account some

relevant facts that make it somehow plausible. Some of

these details will be explained later on.

The paper is structured as follows. The next section

describes in general the modeling framework based on P

systems. In Sect. 3 the main contribution of the paper is

detailed, according to the previous framework. Then, two

different simulation algorithms are explained, and simula-

tion results comparing their performance are shown in Sect.

6 The paper ends with some conclusions and final remarks.

2 A P system based modeling framework

In this section, a model with a network of environments,

each of them containing a P system, is presented. All P

systems share the same skeleton, in the sense that they have

the same working alphabet, the same membrane structure

and the same set of rules. However, as it will be explained

in the following definition, the probability to apply a rule

can vary for each environment.

Definition 1 A multienvironment probabilistic P system

of degree (q, m) with q C 1, m C 1, taking T time units, T

C 1, is a tuple ðG;C;R; T ;RE; l;R; ffr;j : r 2 R; 1� j�mg;
fMij : 0� i� q� 1; 1� j�mgÞ where:

– G = (V, S) is a directed graph. Let V ¼ fe1; . . .; emg
whose elements are called environments;

– C is the working alphabet and R$C is an alphabet

representing the objects that can be present in the

environments;

– T is a natural number that represents the simulation

time of the system;

– RE is a finite set of communication rules between

environments of the form

ðxÞej
���!

pðx;j;j1 ;...;jhÞðy1Þej1
. . .ðyhÞejh

where x; y1; . . .; yh 2 R; ðej; ejlÞ 2 Sðl ¼ 1; . . .; hÞ and

pðx;j;j1;...;jhÞðtÞ 2 ½0; 1�, for each t ¼ 1; . . .; T : If

pðx;j;j1;...;jhÞðtÞ ¼ 1, for each t, then we omit the proba-

bilistic function. These rules verify the following:

• For each environment ej and for each object x, the

sum of functions associated with the rules from RE

whose left-hand side is ðxÞej
coincides with the

constant function equal to 1.

– l is a membrane structure consisting of q membranes, with

the membranes injectively labeled by 0; . . .; q� 1: The

skin membrane is labeled by 0. We also associate

electrical charges from the set {0, ?, -} with membranes.

– R is a finite set of evolution rules of the form r :

u½v�ai ! u0½v0�a
0

i where u, v, u0, v0 are multisets over

C; i 2 f0; 1; . . .; q� 1g, and a; a0 2 f0;þ;�g:
– For each r 2 R and for each j, 1 B j B m, fr,j is a

computable function whose domain is f1; . . .; Tg and

its range is contained in [0, 1], verifying the following:
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• For each u; v 2 C�; i 2 f0; . . .; q� 1g and a; a0

2 f0;þ;�g, if r1; . . .; rz are the rules from R whose

left-hand side is u[v]i
a and the right-hand side have

polarization a0, then
Pz

j¼1 frj
ðtÞ ¼ 1; for each t, 1 B

t B T.

• If ðxÞej
is the left-hand side of a rule r 2 RE, then

none of the rules of R has a left-hand side of the

form u [ v ]0
a, for any u; v 2 C� and a 2 f0;þ;�g,

having x 2 u:

– For each jð1� j�mÞ;M0j; . . .;Mq�1;j are strings over

C, describing the multisets of objects initially placed in

the q regions of l, within the environment ej.

In other words, a system as described in the previous

definition can be viewed as a set of m environments

e1; . . .; em linked between them by the arcs from the

directed graph G. Each environment ej contains a P system,

Pj ¼ ðC; l;R;M0j; . . .;Mq�1;jÞ, of degree q, such that

M0j; . . .;Mq�1;j describe the initial multisets for this

environment, and every rule r 2 R has a computable

function fr,j (specific for environment j) associated with it.

The tuple of multisets of objects present at any moment

in the m environments and at each of the regions of each

Pj, together with the polarizations of the membranes in

each P system, constitutes a configuration of the system at

that moment. At the initial configuration of the system we

assume that all environments are empty and all membranes

have a neutral polarization.

We assume that a global clock exists, marking the time

for the whole system, that is, all membranes and the

application of all rules (both from RE and R) are synchro-

nized in all environments.

The P system can pass from one configuration to another

by using the rules from R ¼ RE [
Sm

j¼1 RPj
as follows: at

each transition step, the rules to be applied are selected

according to the probabilities assigned to them, and all

applicable rules are simultaneously applied.

When a communication rule between environments

ðxÞej
���!

pðx;j;j1 ;...;jhÞðy1Þej1
. . .ðyhÞejh

is applied, object x passes from ej to ej1 ; . . .; ejh possibly

modified into objects y1; . . .; yh, respectively. At any

moment t, 1 B t B T, for each object x in environment ej,

if there exist communication rules whose left-hand side is

ðxÞej
, then one of these rules will be applied. If more than

one communication rule can be applied to an object, the

system selects one randomly, according to their probability

which is given by pðx;j;j1;...;jhÞðtÞ:
For each j (1 B j B m) there is just one further restric-

tion, concerning the consistency of charges: in order to

apply several rules of RPj
simultaneously to the same

membrane, all the rules must have the same electrical

charge on their right-hand side.

3 A P system based model of tritrophic interactions

Feeding, reproduction and mortality are basic processes for

all living organisms. These natural processes are those

considered in the model of tritrophic interactions presented

here. The model is a simplification of a real ecosystem and

many details have been skipped. It should be considered as

a simple approximation facilitating a better understanding

of the methodology that allows to model actual ecosystems

by means of P systems (see e.g. Cardona et al. 2010, 2011

where two existing ecosystems of great ecological interest

are modeled).

The model scheme is composed by 5 modules as shown

in Fig. 1. A complete cycle is executed in 14 steps of

computation and it represents one year in the ecosystem.

We will divide the ecosystem into 10 areas with different

weather, orography, and soil conditions, each of them

having an environment associated with it. The system

includes an additional environment with no geographical

meaning, e11, that will be used to control and synchronize

the application of the modules.

The ecosystem is modeled by using a multienvironment

probabilistic P system of degree (11,2) taking T time units:

ðG;C;R; T ;RE; l;R; ffr;j : r 2 R; 1� j� 11g;
fM0j;M1j : 1� j� 11gÞ

where:

– The graph of the system is G = (V, S), where V ¼
fe1; . . .; e11g and S = {(ei, e11), (e11, ei)) :1 B i B 10}.

– C ¼ R [ fX1g [ fVi : 2� i� 7g [ fZi : 0� i� 11g:
R ¼ fGg [ fG0k : 1� k� 10g [ fXi; Yi;Wi : 2� i� 7g
[fX0i;k; Y 0i;k;W 0i;k : 2� i� 7; 1� k� 10g:

Fig. 1 Modules scheme

Simulation algorithms for multienvironment probabilistic P systems 371

123



The symbols Xi; Yi; Vi; Wi; X0i;k and Y 0i;k, with

2 B i B 7 and 1 B k B 10 represent animals of species

i and environment k. X1 is associated with 1 hectare

(He) of pasture. The symbols G and G0 represent 1 kg

of grass and Zi with 0 B i B 11 is an auxiliary

synchronization counter.

– P ¼ ðC; ½½ �1�0;RPÞ is the common skeleton for all

environments.

– RE is the set of rules for communication between

environments, and they will be described later on

(within Module 3 and Module 5).

– ffr;j : r 2 RP; 1� j� 10g is a set of constant functions

whose range is contained in [0, 1].

– fM0j;M1j : 1� j� 10g are strings over C, describing

the multisets of objects initially placed in the two

regions of l for each Pj : 1� i� 10:

• M0j ¼ Z0X
q1;j

1 , for 1 B j B 10.

• M1j ¼ X
q2;j

2 . . . X
q7;j

7 , for 1 B j B 10.

• M0;11 ¼ Z0, and M1;11 ¼ k:

– R ¼ RE [
Sm

j¼1 RPj
is a set of rules composed by the

rules described below:

In order to synchronize the P system we use the object Zi,

the evolution of this object is made according to the rules

r1 � Z0½ �01 ! ½Z0�01
r2 � Z0½ �01 ! ½Z1��1 :
r3 � Z1½ ��1 ! ½Z2�01:
r4 � Zn½ ��1 ! ½Znþ1�01; 1� n� 10; n 6¼ 6; 7:

r5 � Z6½ �01 ! ½Z7��1 :
r6 � Z7½ ��1 ! ½Z8�01:
r7 � Z11½ �01 ! ½Z0�þ1 :
r8 � ½Z0�þ1 ! Z0½ �01:

– Module 1 (Grass production and species reproduction):

• Grass production.

r9 � X1½ �01���!
mj ½X1Ghj �01; 1� j� 3:

The environmental conditions affect the amount of

produced grass per unit of surface (He). For the

sake of simplicity only three scenarios are consid-

ered: low, normal and high production (with

probabilities m1, m2 and m3, respectively).

• Females which reproduce and generate di descen-

dants.

r10 � ½Xi�01���!
ki;1 �0:5 ½V1þdi

i �01; 2� i� 7:

• Females and males which do not reproduce.

r11 � ½Xi�01���!
1�ki;1 �0:5 ½Vi�01; 2� i� 7:

A 1:1 ratio between females and males is assumed.

Moreover, all the females are able to reproduce.

The first of these assumptions is fulfilled by most of

animal species, but not the second one, since

fertility depends on the age.

– Module 2 (Feeding and mortality):

• Animals which feed and survive.

r12 � ½ViG
fi �01���!

1�ki;2 ½Yi��1 ; 2� i� 6:

r13 � ½V7Vf7
i �
þ
1 ���!

1�k7;2 ½Y7��1 ; 2� i� 6:

• Animals which feed and do not survive.

r14 � ½ViG
fi �01���!

ki;2 ½ ��1 ; 2� i� 6:

r15 � ½V7Vf7
i �

0
1���!

k7;2 ½ ��1 ; 2� i� 6:

– Module 3 (Communication between environments):

• All animals should go to the environment e11, so the

first step is to go to the skin membrane.

r16 � ½Vi��1 ! Xi½ �01; 2� i� 7:

r17 � ½Yi��1 ! Wi½ �01; 2� i� 6:

r18 � ½G��1 ! G½ �01:

• The objects associated to the food and animals that

are in the skin membrane should go to the

environment.

r19 � ½Xi�00 ! Xi½ �00; 2� i� 7:

r20 � ½Wi�00 ! Wi½ �00; 2� i� 6:

r21 � ½G�00 ! G½ �00:

• The objects that are in the environments associated

with the geographical areas go to the virtual

environment e11.

r22 � Xið Þek
! X0i;k

� �

e11

; 2� i� 7; 1� k� 10:

r23 � Wið Þek
! W 0i;k

� �

e11

; 2� i� 7; 1� k� 10:

r24 � Gð Þek
! G0k
� �

e11
; 1� k� 10:

• The objects that are in the environment e11 should

enter in the skin membrane.

r25 � X0i;k½ �
0
0 ! ½X0i;k�

0
0; 2� i� 7; 1� k� 10:

r26 � W 0i;k½ �
0
0 ! ½W 0i;k�

0
0; 2� i� 7; 1� k� 10:

r27 � G0k½ �
0
0 ! ½G0i;k�

0
0; 1� k� 10:

• The objects that are in the skin membrane must

enter the membrane 1.

r28 � X0i;k½ �
0
1 ! ½X0i;k�

0
1; 2� i� 7; 1� k� 10:

r29 � W 0i;k½ �
0
1 ! ½W 0i;k�

0
1; 2� i� 7; 1� k� 10:

r30 � G0k½ �
0
1 ! ½G0i;k�

0
1; 1� k� 10:
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– Module 4 (Feeding and mortality module for the ani-

mals that did not have enough food in the previous

steps):

We assume that animals only move from the area

where they reside to another one if they need to look for

resources to survive.

r31 � ½X0i;kG
0fi
j �

0
1 ���!
ð1�ki;2Þ�pk;j;i½Y 0i;j�

�
1 ; 2� i� 6; 1� j; k� 10:

r32 � ½X07;kX
0f7
i;j �

0
1 ���!
ð1�k7;2Þ�pk;j;i½Y 07;j�

�
1 ; 2� i�6; 1� j; k� 10:

r33�½X07;kW
0f7
i;j �

0
1 ���!
ð1�k7;2Þ�pk;j;i½Y 07;2�

�
1 ; 2� i�6; 1� j; k� 10:

r34 � ½X0i;kG
0fi
j �

0
1���!

ki;2 �pk;j;i ½ ��1 ; 2� i� 6; 1� j; k� 10:

r35 � ½X07;kX
0f7
i;j �

0
1���!

k7;2 �pk;j;i ½ ��1 ; 2� i� 6; 1� j; k� 10:

r36 � ½X07;kW
0f7
i;j �

0
1 ���!
ð1�k7;2Þ�pk;j;i½ ��1 ; 2� i� 6; 1� j; k� 10:

– Module 5 (Initial configuration restoration):

• return the objects from e11 to the rest of

environments.

r37 � ½X0i;k�
�
1 ! ½ �

0
1; 2� i� 6; 1� k� 10:

r38 � ½G0k�
�
1 ! ½ �

0
1; 1� k� 10:

r39 � ½W 0i;k�
�
1 ! Y 0i;k½ �

0
1; 2� i� 6; 1� k� 10:

r40 � ½Y 0i;k�
�
1 ! Y 0i;k½ �

0
1; 2� i� 6; 1� k� 10:

r41 � ½Y 0i;k�
0
0 ! Y 0i;k½ �

0
0; 2� i� 6; 1� k� 10:

r42 � Y 0i;k

� �

e11

! Yið Þek
; 2� i� 7; 1� k� 10:

r43 � Yi½ �00 ! ½Yi�00; 2� i� 7:

r44 � Yi½ �01 ! ½Yi�þ1 ; 2� i� 7:

• Restore initial configuration.

r45 � ½X1�þ1 ! X1½ �01:
r46 � ½Yi�þ1 ! ½Xi�01; 2� i� 7:

Following is the list of necessary initial parameters:

– Animal related parameters:

• ki,1, (2 B i B 7): Fertility ratio for species i

(females).

• ki,2, (2 B i B 7): Survival ratio for species i.

• fi, (2 B i B 7): Amount of food units consumed per

year by animal for species i.

• di, (2 B i B 7): Number of descendants per female

and birth for species i.

• qi,j, (2 B i B 7, 1 B j B 10): Initial number of

individuals of species i in area j.

• pk,j,i, (2 B i B 7, 1 B j, k B 10): Probability of

movement of species i from the area k to j.

– Grass related parameters:

• hi, (1 B i B 3): Amount of produced grass per

hectare in different conditions (i = 1, 2, 3 represent

unfavorable, average and favorable conditions,

respectively).

• mi, (1 B i B 3): Probability of the corresponding

condition affecting the production of grass.

• q1,j, (1 B j B 10): Number of land hectares in area j.

– Besides, qi,11 = 0, for 1 B i B 7.

4 Binomial block based simulation algorithm

In this section we describe the first simulation algorithm

developed for multienvironment probabilistic P systems

(Cardona et al. 2011). It follows a strategy based on the bino-

mial distribution and blocks of rules with the same left-hand

side.

In general, each simulation step is divided into two main

stages: selection and execution. In the first one, the algorithm

decides which rules will be applied, and the number of

applications for each one (taking into account their left-hand

sides and the available objects in the current configuration).

In the second stage, the selected rules are applied, consuming

the multisets of the rules’ left-hand sides and adding the

multisets of the rules’ right-hand sides the selected number of

times, and possibly changing the polarization of membranes.

Next we describe the selection stage.

Input: A multienvironment probabilistic functional extended P

system with active membranes of degree (q, m) with q C 1, m C 1,

taking T time units, T C 1.

1: Rules are classified into sets (blocks) so that all the rules belonging

to a block have the same left-hand side. Note that rules from

different blocks may have overlapping left-hand sides.

2: Let Fb(N, p) be a function that returns a discrete random number

within the binomial distribution B(N, p).

3: for each step of simulation do

4: A random order on the family of blocks is considered.

5: for all blocks, according to the considered order do

6: A random order on the rules of the block, fr1; . . .; rtg, is

selected.

7: Let us suppose that the common left-hand side is u½v�ai and their

respective probabilistic constants are cr1
; . . .; crt

:

8: The highest number N is computed so that uN appears in the

parent membrane of i and vN appears in membrane i.

9: let d = 1

10: for all k(1 B k B t - 1), according to the selected order do

11: let crk
be

crk

d
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12: let nrk
be FðN; crk

Þ
13: let N be N � nrk

14: let q be 1� crk

15: let d be d*q

16: end for

17: let nrt
be N

18: The pair hr; nri is added to Rsel, which means that each rule r
is applied nr times.

19: end for

20: end for

Once the list Rsel has been calculated, the implementa-

tion of the second stage is quite straightforward: first

remove all the left-hand sides of the rules, and then add all

the right-hand sides (in both cases taking into account the

number of times each rule is applied).

This simulation algorithm is useful for most of the cases

but it has the next disadvantages:

– It needs to classify the rules by their left-hand side.

– It does not handle rules with intersections on their left-

hand sides.

– It does not check the consistency of charges in the

selection of rules.

– It does not evaluate probabilistic functions related to

rules.

5 Direct non-deterministic distribution algorithm

with probabilities (DNDP)

The following is a more efficient simulation algorithm for

multienvironment probabilistic P systems inspired by

(Nguyen et al. 2009) that overcomes the weak points of

the simulation algorithm described above.

Initialization

1: RP  ordered set of rules of P

2: for j 1 to m do

3: RE;j  ordered set of rules from RE related to the

environment j

4: Aj  ordered set of rules from RE,j whose probability at the

moment t is [ 0

5: LCj  ordered set of pairs hlabel; chargei for all the

membranes from Ct contained in the environment j

6: Bj  ;
7: for each hh; ai 2 LCj (following the considered order) do

8: Bj  Bj[ ordered set of rules u½v�ah ! u0½v0�bh from RP

whose probability at the moment t is greater than 0 for the

environment j

9: end for

10: end for

First selection phase (consistency)

1: for j 1 to m do

2: Rj  the empty multiset

3: Dj  Aj [ Bj with a random order

4: for each r 2 Dj (following the considered order) do

5: M  maximum number of times that r is applicable to C0t

6: if r is consistent with the rules in R1
j ^M [ 0 then

7: N  maximum number of times that r is applicable to Ct

8: n minfM;FbðN; pr;jðtÞÞg
9: C0t  C0t � n � LHSðrÞ
10: Rj  Rj [ f\r; n [ g
11: end if

12: end for

13: end for

Second selection phase (maximality)

1: for j 1 to m do

2: Rj  Rj with an order by the rule probabilities, from highest
to lowest

3: for each \r; n [ 2 Rj (following the selected order) do

4: if n [ 0 _(r is consistent with the rules in R1
j Þ then

5: M  maximum number of times that r is applicable to C0t

6: if M [ 0 then

7: Rj  Rj [ f\r;M [ g
8: C0t  C0t �M � LHSðrÞ
9: end if

10: end if

11: end for

12: end for

Input: A multienvironment functional P system with active

membranes of degree (q, m) with q C 1, m C 1, taking T time

units, T C 1.

1: C0  initial configuration of the system

2: for t 0 to T - 1 do

3: C0t  Ct

4: Initialization

5: First selection phase: generates a multiset of consistent
applicable rules.

6: Second selection phase: generates a multiset of maximal
consistent applicable rules.

7: Execution of selected rules.

8: Ctþ1  C0t
9: end for
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Execution of selected rules

1: for each \r; n [ 2 Rj; n [ 0 do

2: C0t  C0t þ n � RHSðrÞ
3: Update the electrical charges of C0t according to RHS(r)

4: end for

– Note 1. If r : u½v�ai ! u0½v0�a
0

i is a rule of the system,

then u½v�ai is the left-hand side of the rule r (denoted by

LHS(r)), and u0½v0�a
0

i is its right-hand side (denoted by

RHS(r)).

– Note 2. Two rules r and r0 with the same labels and

electrical charges for LHS(r) and LHS(r0) are consistent

if RHS(r) and RHS(r0) have the same electrical charges.

– Note 3. pr,j(t) indicates the probability associated to rule

r for the P system located in the environment j, at the

moment t.

6 Simulation results

The inherent randomness in the dynamics of ecosystems

makes it unfeasible to address the formal validation of

models that attempt to reproduce their behavior. It is

therefore necessary to carry out an experimental validation,

by comparing results generated by simulation tools against

experimental data obtained directly from the real ecosys-

tem. Moreover, once a model is (experimentally) validated,

it is possible to use the software tool to analyze the

dynamics of the real-life process for different virtual sce-

narios that could be interesting for the experts in order to

formulate plausible hypotheses.

We have used the P-Lingua (Garcı́a-Quismondo et al.

2010; http://www.p-lingua.org/) programming language

and the pLinguaCore (Garcı́a-Quismondo et al. 2010;

http://www.p-lingua.org/wiki/index.php/PLinguaCore) library

in order to simulate the model. P-Lingua is a programming

language to define P systems in an easy-to-learn, parametric

and modular way, and pLinguaCore is a Java library under

GNU GPL license (http://www.gnu.org/copyleft/gpl.html)

which implements several simulation algorithms for P sys-

tems. In particular, the current release of pLinguaCore

includes implementations of the two algorithms described in

the previous sections.

A new graphic user interface (GUI) have been devel-

oped over pLinguaCore (Pérez-Hurtado et al. 2010). It

allows the edition of the initial parameters of the ecosystem

and the collection of simulation results. Figures 2, 3, 4, 5,

and 6 show how the parameters are introduced by using the

GUI. This GUI and all the files related to the simulator can

be downloaded from http://www.p-lingua.org/.

In order to compare the two previously described algo-

rithms, we have considered a theoretical ecosystem with

three trophic levels composed by 6 species of animals (5

ungulates and 1 carnivore that predates on them). The

ecosystem is geographically divided into 10 areas. Figure 2

shows the initial number of animals of each species and the

surface of each of the 10 areas (Grass).

The following assumptions have been accepted:

– The base diet of ungulates is the grass.

– The carnivorous species (referred to as ‘‘Species 7’’ in

the table) feeds on ungulates (Species 2–6 in the table

correspond to ungulates).

– Grass production depends on environmental conditions.

– When ungulates do not have enough food in the area

where they reside at the moment, they may move to

another adjacent area.

The ungulates are herbivores, and usually when repro-

ducing, each fertile female has one descendent. However,

carnivores in general (as might be the Wolf) have more

than one descendent, usually 2–3 or more. Ungulates are

supposed to belong to different species having different

weights, and therefore the amount of biomass provided by

an ungulate for the carnivores to eat should depend on the

species. In this hypothetical example and for the sake of

simplicity we have assumed that one carnivore needs ten

ungulates each year for survival. The values taken for the

biological parameters are shown in Fig. 3.

The base diet of ungulates is the grass produced within

the ecosystem. Depending on climatic conditions produc-

tion can vary, and in this example three different situations

are considered. The first situation corresponds to a year

with low grass production, the second represents the

common (average) case, and the third would be a year with

production values higher than usual. Each of these three

situations may occur randomly each year, according to

associated probabilities. Figure 4 shows the values taken in

this case.

Fig. 2 Number of animals of each species and grass surface
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When there is shortage of resources on a given envi-

ronment, the model gives the animals a chance to migrate

to another environment. The carnivorous species are

always supposed to move, and they can hunt ungulates

from any other area. On the contrary, ungulates can only

move to adjacent areas (eventually they may stay where

they are). The adjacency relation of the 10 geographic

zones considered is graphically depicted in Fig. 5.

Rules that take care of this movements for finding

food are listed in Module 4. Figure 6 shows the screen of

the simulator with some of the values of the related

parameters.

We have simulated the evolution of this ecosystem for

50 years, and for each year 50 repetitions were made. The

simulator provides not only graphical output, but also

numerical results. The results from the point of view of

ecology have been the same irrespectively of the imple-

mented algorithm. Figure 7 shows results for the area 1,

where the initial number of individuals was the same for

four of the five ungulates. Moreover, for three of these

ungulates the same biological parameters were introduced,

while in the other case (species 5) the probability of

reproduction was higher. This difference is reflected in the

number of animals to which each species is stabilized.

In Fig. 8 the total number of ungulates and carnivores in

the ecosystem are shown. At first, populations of ungulates

and carnivores grow, but one can notice that there is a

small offset between the years when the maximum of

ungulates and carnivores are reached. At some point the

necessary amount of ungulates required to feed the carni-

vores is larger than the actual number of individuals. Then

the decline of ungulates starts, and shortly after that of the

carnivores, which fails to overcome. Note that carnivores

can migrate between different areas in an arbitrary manner

when they do not have enough resources, but nevertheless

they can go to settings where there is no food and die.

Figure 9 shows that between 19–23 the number of car-

nivores exceeds the maximum number of carnivores that

could survive according to the available biomass on the

ecosystem, and this fact causes their extinction. Obviously,

if the number of carnivores decreases to 0, the ungulates

will increase their population and thus there will be more

biomass on the ecosystem. Consequently the line repre-

senting the maximum number of carnivores increases as

well.

To study whether the new algorithm, DNDP, improves

the previous one, both algorithms were run on two different

scenarios, measuring the time required to simulate 50 years

with 50 repetitions per year. The first scenario consists of 10

environments, but initially there are only animals in area 1.

The second scenario used is discussed in the previous

results. Table 1 shows the values obtained on seven sim-

ulations. On average, DNDP shows a reduction of around

5-6% on the execution time with respect to the Binomial

algorithm.

Fig. 3 Biological parameters

Fig. 4 Parameters related to grass

Fig. 5 Adjacency graph of the ten geographic zones considered
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7 Conclusions

The results presented in the previous section show an

improvement ranging from 25.5% to 27.5% on the

performance of DNDP algorithm with respect to the

Binomial algorithm (as far as the simulation time is con-

cerned). However, the presented tritrophic ecosystem was

not designed specifically to be used in comparative studies.

Fig. 6 p(x, y, i) = 1 means

that the areas x and y are

geographically connected

Fig. 7 Evolution of species
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In order to draw significant conclusions on the speed-up

achieved with DNDP one needs to simulate a more

demanding case study.

For instance, in Martı́nez et al. (2010) a parallel imple-

mentation of the DNDP algorithm is presented, making use

of multi-thread programming in Java. In that paper, the

algorithm is tested on a P system having 16 environments

and 4000 rules, and in this case the obtained improvement

grows up to 84% (again, w.r.t. simulation time).

To summarize, this paper presents a virtual ecosystem

that tries to balance simplicity and biological relevance.

We believe that it was necessary to define a scenario

smaller than real case studies (on the size of the alphabet,

number of rules, number of parameters, etc) but complex

enough to become an illustrative example for the ingredi-

ents of the modeling framework (multienvironment func-

tional probabilistic P system with active membranes) and

for the possible simulation algorithms that could be

implemented.

On one hand, despite its simplicity, it has been tailored

keeping as close as possible to ecological reality. Thus, it

can be very useful as a first case study to introduce

researchers from other areas to the modeling framework in

membrane computing.

On the other hand, this hypothetical ecosystem can be

used as a benchmark case study for algorithms (and pro-

grams) of this kind, as it was illustrated in the paper. As

future work, a particularly interesting experiment is to

study the performance of simulation algorithms running on

parallel architectures (e.g. GPUs) when they receive large

case studies as input.
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