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Framework 4

2.1 Introduction 5

As previously mentioned, from the early days of the discipline, different approaches 6

have been followed to provide software tools assisting the P systems designers in 7

their design and verification tasks for a number of membrane system types and 8

variants. However, at the beginning, the most common case was the development 9

of specific-purpose tools devoted to the solution of a particular model based on 10

a P system or P systems family. While these early initiatives constituted relevant 11

achievements for membrane computing, their usefulness for the general community 12

was significant mostly in the context of the specific paper or scientific result they 13

were developed around. Surveys on the first generation of software tools related to 14

membrane computing can be found in [5, 49]. 15

In order to move a step forward in this sense, aiming to provide some solution 16

for the P systems community in the form of a set of general tools for the software 17

implementation of P systems, P-Lingua framework emerged more than a decade 18

ago. As a first crucial element in the framework, a specification language, the so- 19

called P-Lingua language, was defined, aiming to be a standard for the community 20

to speak the same language when defining P systems. One of the advantages of 21

having such a standard is to avoid ambiguities, and moreover to foster collaboration, 22

facilitating that researchers share their designs, even if they use different simulation 23

software—similarly as the Systems Biology Markup Language (SBML) format 24

works for the systems biology community. 25

The language started with some very general elements common to most P system 26

types, such as the membrane structure, objects, membrane labels, or rewriting rules. 27

Along with such general elements, each P system type or variant would admit 28

specific rules, and the framework would provide parsing tools to detect syntactic 29

or semantic errors. Along with the specification language, P-Lingua framework 30

provided from the beginning a number of built-in simulators, capturing the semantic 31

and dynamic aspects of each P system type. Such simulators were included for the 32
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sake of completeness of the tool, but they were not intended to compete against 33

existing software. Actually, the framework included the functionality to compile P- 34

Lingua code into something else so that one could provide such compiled result as 35

an input for an external simulator. Software implementation of P systems is further 36

explored in Chap. 3. 37

The chapter elaborates on some of the main capabilities of the framework and 38

is structured as follows. The main elements involved in P-Lingua language will be 39

introduced in Sect. 2.2, along with a classification of the main types and variants of 40

P systems supported by the framework, including the main references related with 41

them. Then, several simulation algorithms will be presented in Sect. 2.3, capturing 42

the dynamics of some especially relevant types of P systems used in the solution 43

of real-life problems. Finally, in Sect. 2.4, a higher-level tool will be presented, 44

MeCoSim, as a step forward to provide a visual virtual research environment. 45

2.2 P-Lingua Language 46

P-Lingua is a domain-specific language started in 2008 [4] that has been continu- 47

ously evolving since then (technical details on the foundations can be found in [36] 48

and a survey together with some recent developments in [40]). The approach is to 49

keep the definitions as simple as possible, being a sort of “LaTeX-like” pseudocode, 50

in such a way that P systems designers can use similar notation to the one used in 51

the literature. A P system can thus be defined in a (plain text) .pli file, where the 52

designer indicates the model, structure, initial multisets, variables (if any), etc. The 53

elements of the definition will be further explained in what follows. 54

2.2.1 P System Models 55

When designing a membrane system in P-Lingua, the instruction @model must 56

be present at the beginning of the .pli file, followed by a keyword identifying 57

the model used. Through the development of P-Lingua, several classes of P 58

systems have been included within the framework, while others have been discarded 59

due to the lack of their use. The latest stable version, pLinguaCore 4.0, was 60

released in 2013, covering only 10 model types. The P-Lingua framework has been 61

continuously expanding since then although the development efforts have been 62

focusing in the core distributed within MeCoSim. The following tables illustrate 63

the diversity of variants considered in the current version, with the corresponding 64

keywords and a reference introducing the model. For more details about the exact 65

pLinguaCore release where some models were included or discarded, we refer the 66

reader to [39]. 67

In the case of neural-like P systems, the model keyword spiking_psystems 68

is slightly overloaded since it covers multiple subclasses. Each time the model has 69

been extended, special symbols and tokens were used so that the parser and the 70



2.2 P-Lingua Language 13

simulator are capable to identify which type of rules are being used and how they 71

should be interpreted. 72

2.2.2 Membrane Structure 73

The topology of the membrane system to be simulated will depend on the model 74

selected in the file. If an invalid structure with respect to the model is defined, the 75

parser will show a message notifying it. The instruction @mu1 is used to define the 76

architecture of the system. The syntax is similar to the one used in the literature. For 77

example, for cell-like membrane systems, the definition 78

@mu = [[[]′4]′2[]′3]′1 79

would lead to a P system with a skin membrane labelled by 1 and 2 internal 80

membranes: an elementary membrane labelled by 3, and a membrane labelled by 81

2 which contains an elementary membrane labelled by 4 inside. 82

In the case of tissue P systems, membranes (called cells) are not hierarchically 83

arranged, but they can be connected by means of an arbitrary graph, which is not 84

required to be explicitly given in the definition. Typically, the set of directed arcs 85

connecting cells can be reconstructed from the implicit information provided by 86

the set of rules. However, in P-Lingua format, it is necessary to indicate the initial 87

cells in the system, formally considering them as elementary membranes located 88

within an external compartment labelled by 0, that will act as the environment of 89

the system. 90

Spiking neural P systems need both the initial neurons and the synapses defined 91

in order to work. The former is defined as previously with the @mu instruction and 92

the later with @marcs indicating with pairs of labels which arcs will be present in 93

the underlying graph of the SNP system. 94

Note that not all the definitions of @mu must be in the same line, but instead 95

of the = symbol, it is possible to add more compartments to a specific region. For 96

instance, in cell-like membrane systems, it is possible to use 97

@mu = [[]′2]′1; @mu(1)+ = []′3; 98

in order to generate a structure identical to the one defined above. Note that a 99

semicolon indicates the end of an instruction. 100

1The usual notation for the structure of P systems is the Greek letter μ.
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2.2.3 Initial Multisets 101

In order to describe the initial multisets of the different compartments, the command 102

@ms is used in a similar way to the literature, with braces {} as the delimiters of 103

the multisets. Like before, the + = symbols can be used to add new objects to a 104

predefined multiset. The multiplicity of a symbol is indicated by the * symbol as in 105

a multiplication (e.g., c*5 indicates 5 copies of object c). 106

2.2.4 P System Rules 107

Rules, like the structure of the P system, depend on the model of membrane system 108

being simulated. The P-Lingua parser was defined in such a way that P systems 109

researchers can use a very close language to the one used in literature, putting special 110

emphasis in the definition of rules. Therefore, brackets [] are used in P-Lingua 111

files as in the definition of rules in research papers. An evolution rule is defined 112

in the following way: +[ a1 - -> b,c ]’1. Note the differences between the 113

P-Lingua and the formal definitions: The subscripts are between braces, the arrow 114

is replaced by an ASCII version of an arrow, the label is preceded by a ’ symbol 115

instead of being a subscript, and the polarization precedes the rule instead of being 116

a superscript. For tissue P systems, instead of using parentheses, a similar brackets 117

notation is used with a double arrow as follows: [a]’1 <- -> [b]’2 to denote 118

the rule (1, a/b, 2). 119

Usually, several rules with the same structure but with different subindexes 120

are defined in P systems, and it can be translated into a P-Lingua file with the 121

colon: symbol, followed by the corresponding limits. Let r ≡ [ai → ai+1]1 122

for 0 ≤ i ≤ n be a set of rules of a P system with active membranes 123

that can be defined in a P-Lingua file as follows: [ a{i} - -> a{i+1} 124

]’1 : 0 <= i <= n. If two or more variables have to be defined, they will 125

be declared from the right to the left; that is, if a variable j is limited by 126

i, then the range of i must be written “before” (to the right), for example, 127

[ a{i,j} - -> a{i,j+1}]’1 : 0 <= j < i, 0 <= i <= n. 128

The user must define all these parameters (except the model type) in a main 129

function. A function in the P-Lingua language is defined with the keyword def 130

followed by the name of the function. A function can have parameters whose names 131

will be indicated between parentheses and separated by commas. More than one 132

function can be defined in a single P-Lingua file, and they are widely used, for 133

instance, to construct the membrane system in a modular way. An example of this 134

would be the following code: 135

136

@model<membrane_division> 137

138

n = 3 /* A parameter n is defined to be used later */ 139

m = 1000 /* A parameter m is defined to be used later */ 140

141
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def main() { 142

define_structure(); 143

define_initial_multisets(m); 144

define_rules(n); 145

} 146

def define_structure() { 147

@mu = []’1; 148

} 149

define_initial_multisets(number_objects) { 150

@ms(1) += a{0}*{number_objects}; 151

} 152

define_rules(number_steps) { 153

[a{i} - -> a{i+1}]’1 : 0 <= i < {number_steps}; 154

} 155

Note that it is allowed to insert comments in P-Lingua files, surrounded by the 156

symbols /* and */. As indicated above, several examples of the different types of 157

P systems implemented in P-Lingua can be found in the websites of the P-Lingua 158

project [43] and MeCoSim [24]. 159

2.3 Simulation Algorithms 160

P systems are bioinspired devices that work in a massively parallel and nondeter- 161

ministic way. While there are preliminary studies analyzing the problems related to 162

implementations in biological means, there is still a long way to reach this ultimate 163

goal. That is why developing hardware/software implementations of P systems 164

becomes a vital necessity for the advancement of scientific activities in membrane 165

computing. 166

The P-Lingua framework includes a Java library called pLinguaCore that 167

provides at least one simulation algorithm for each P system variant. A simulation 168

algorithm for membrane computing can be described as an algorithm which 169

is able to reproduce P system computations on conventional software/hardware 170

architectures. Usually, only one branch of computation is considered, and it is 171

expected to display the sequence of configurations, including information on the 172

executed rules for each step of computation. Concerning the hardware used, the 173

simulation algorithms can be designed to run on sequential machines (single- 174

thread CPU) or parallel architectures (multi-thread CPU, GPU, FPGA, etc.). The 175

simulation algorithms in pLinguaCore are designed for single-thread CPU, but it 176

is possible to parse a P-Lingua file and compile it into an appropriate input for an 177

external simulator. 178

All simulation algorithms in pLinguaCore share the same underlying imple- 179

mentation of a computation step as a loop divided into two stages: selection stage 180

and execution stage. The selection stage consists in searching for applicable rules 181

and selecting which ones will actually be executed in each membrane of a given 182

configuration, taking into account the restrictions dictated by the system semantics. 183



16 2 P Systems Implementation on P-Lingua Framework

Then, the execution stage actually implements the changes on the configuration 184

caused by the execution of the selected rules, and this completes the simulation of 185

the computation step. The input data for the selection stage contains the description 186

of the membranes with their multisets (strings over the working alphabet of objects, 187

labels associated with the membrane, etc.) and the set of defined rules. The output 188

data of this stage are the multisets of selected rules. Only the execution stage 189

changes the information of the configuration. It is the reason why execution stage 190

needs synchronization when accessing to the membrane structure and the multisets. 191

At the end of the execution stage, the simulation process restarts the selection stage 192

in an iterative way until a halting configuration is reached (i.e., none of the rules 193

is applicable). Alternatively, a maximum number of iterations can be set at the 194

beginning of the simulation to avoid getting stuck on too long (or even infinite) 195

computations. 196

With the general design explained above, the pLinguaCore library includes 197

simulation algorithms for the cell-like, tissue-like, and neural-like P systems 198

enumerated in Sect. 2.2. For more information, see the corresponding references 199

in Tables 2.1, 2.2, and 2.3, respectively. There exist in the literature other P system 200

variants whose computations are not synchronized by a global clock in a step-by- 201

step fashion (e.g., asynchronous, time-free, or stochastic models). Such variants 202

are not currently supported under the P-Lingua framework, but there exist fully 203

functional alternative implementations available (see Chaps. 4 and 5). 204

Other variants are also contemplated [2, 8, 10, 11]. A special mention should 205

be given to the simulation algorithms for population dynamics P systems (PDP 206

systems) which is a variant widely used for simulation of ecosystem dynamics 207

(see Chap. 6) in which each rule has a probability associated. The first description 208

of probabilistic semantics was quite ambiguous: “Rules should be applied in a 209

maximally parallel way, according to their probabilities.” There are many ways of 210

interpreting this sentence, and each one could lead to different behaviors. While all 211

of them might be “correct” from a formal point of view, not all simulation algorithms 212

are acceptable when the goal is to reproduce the behavior of a complex system. 213

Since P-Lingua is a general-purpose framework, indicating which is the appropriate 214

choice should be a decision of the model designer (Table 2.4).AQ1 215

Three simulation algorithms have been designed for PDP systems and imple- 216

mented in pLinguaCore [19]: 217

• DNDP algorithm [21]. 218

• BBB algorithm [19]. 219

• DCBA algorithm [22]. 220

In the algorithm DNDP, the rules are selected individually according to its 221

probabilities. On the other hand, algorithms BBB and DCBA work by grouping 222

rules in blocks by analyzing the left-hand side, each block has the same left-hand 223

side, and all the rule probabilities must sum 1. DCBA uses a refined definition of 224

block in which the charges of the right-hand side must be consistent. More about 225

simulation algorithms for PDP systems will be explained in Chap. 6 since this kind 226
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Table 2.1 Cell-like membrane systems implemented in P-Lingua

t5.1Variant of membrane systems Model specification keyword Ref.

t5.2P systems with active membranes and
membrane creation

membrane_creation [25]

t5.3P systems with active membranes and
membrane division

membrane_division / dam [33]

t5.4P systems with symport/antiport rules symport_antiport /
infEnv_symport_antiport

[18]

t5.5Polarizationless P systems with active
membranes with minimal cooperation and
membrane division

dam_wp [48]

t5.6Polarizationless P systems with active
membranes with minimal cooperation,
membrane division, and without dissolution

dam_wp_wd [48]

t5.7Polarizationless P systems with active
membranes with minimal cooperation and
membrane division only for elementary
membranes and without dissolution

dam_wp_wd_wn [48]

t5.8P systems with active membranes with
minimal cooperation and membrane
separation

sam [47]

t5.9Polarizationless P systems with active
membranes with minimal cooperation and
membrane separation

sam_wp [47]

t5.10Polarizationless P systems with active
membranes with minimal cooperation and
membrane separation and without dissolution

sam_wp_wd [47]

t5.11Polarizationless P systems with active
membranes with minimal cooperation and
membrane separation only for elementary
membranes and without dissolution

sam_wp_wd_wn [47]

t5.12Transition P systems transition / rewriting [32]

Table 2.2 Tissue-like membrane systems implemented in P-Lingua

t8.1Variant of membrane systems Model specification keyword Ref.

t8.2Tissue P systems with cell division tissue_psystems / tpdc [20, 34]

t8.3Tissue P systems with cell division and
antiport rules

tpda [34]

t8.4Tissue P systems with cell division and
symport rules

tpds [34]

t8.5Tissue P systems with cell separation TSCS [27, 38]

t8.6Tissue P systems with evolutional
communication rules with cell division

evolution_communication /
ev_symport_antiport

[31]

t8.7Tissue P systems with evolutional
communication rules with cell separation

tsec [31]

t8.8Tissue P systems with promoters tpdc / tpda / tpds [45]
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Table 2.3 Neural-like membrane systems implemented in P-Lingua

t11.1Variant of membrane systems Model specification keyword Ref.

t11.2Asynchronous SN P systems spiking_psystems [3]

t11.3Asynchronous SN P systems with local
synchronization

spiking_psystems [41]

t11.4Cell-like spiking neural P systems cell_like_snp [46, 50]

t11.5Dendrite P systems dendrite [26]

t11.6Fuzzy reasoning spiking neural P systems fuzzy_psystems [13, 17]

t11.7Limited asynchronous SN P systems spiking_psystems [29]

t11.8Spiking neural P systems spiking_psystems [13, 15, 16]

t11.9Spiking neural P systems with anti-spikes spiking_psystems [28]

t11.10Spiking neural P systems with hybrid
astrocytes

spiking_psystems [30]

t11.11Spiking neural P systems with structural
plasticity

spiking_psystems [1]

Table 2.4 Other variants of membrane systems implemented in P-Lingua

t14.1Variant of membrane systems Model specification keyword Ref.

t14.2Enzymatic numerical P systems enps [35]

t14.3Population dynamics P systems probabilistic [2]

t14.4Probabilistic guarded P systems probabilistic_guarded_ [8, 10]

t14.5_psystems

t14.6Regenerative P systems regenerative_psystems [11]

t14.7Simple kernel P systems simple_kernel_psystems [12, 14]

t14.8Simple regenerative P systems simple_regenerative_ [11]

t14.9_psystems

t14.10Stochastic P systems∗ stochastic [42]

t14.11∗(discontinued)

of algorithms requires a large amount of computational power being suitable for 227

high-performance computing platforms such as CUDA. 228

As it was mentioned before, there are various approaches in the literature 229

where the standard semantics of P systems (namely, nondeterministic behavior 230

and maximally parallel application of the rules) is modified by adding different 231

regulation elements, which need to be carefully described in order to explain how the 232

system evolves. In particular, it is worth highlighting that the concept of “simulation 233

algorithm” is used in this section in a theoretical sense, that is, a formalization that 234

translates the specification of the semantics into a pseudocode capturing precisely 235

the routine that the system follows when deciding what rules to apply. It should not 236

be confused with an implementation of such algorithm in a programming language. 237

Some attempts trying to bring semantic elements explicitly into the description 238

of a P system in P-Lingua language have been already initiated, and it is being 239

considered for upcoming release of P-Lingua 5.0. 240
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2.4 Membrane Computing Simulator (MeCoSim) 241

The previous sections have presented the essential elements of P-Lingua framework: 242

the standard specification language and the simulation engines to run the computa- 243

tions of the given P systems. These elements constitute the core features, the chassis 244

of our car. However, in order for this vehicle to move smoothly, several additional 245

pieces (as the external body but also others as the steering wheel, the pedals, or the 246

dashboard icons, among others) are needed to provide the users with the desired 247

driving experience, in order for them to sit down and enjoy while conducting their 248

virtual experiments with models based on P systems. 249

With the metaphor introduced, we aim to present the main idea behind MeCoSim 250

(membrane computing simulator) [24, 37], conceived in a search for the gener- 251

alization of certain high-level visual applications to manage population dynamics 252

models, known as EcoSim product family [36, 44]. Built on top of P-Lingua core, 253

this visual environment provides a higher level of abstraction, transforming the 254

solid set of tools of our internal chassis and engine given by P-Lingua core into 255

a whole car, complementing the previous elements with an external layer allowing 256

the drivers conduct their experiments through the proper sensors and actuators. 257

Thus, MeCoSim was devised with a manifold purpose, assisting in the design 258

of the heart of the cars (P system-based models), delivering the final cars (custom 259

apps based on the models), and helping users drive their vehicles (through the 260

tools coming with the apps). Firstly, the visual interface provides the expert users 261

(P system designers) with an interface where they can specify, debug, and run 262

(step-by-step or entire) computations of their P systems in a smoother way; this 263

is made easier with the tools provided by a friendly environment, aiding in the 264

task of designing and verifying the core part of our cars: the P systems modelling 265

certain case studies. Secondly, the environment provides certain tools to make the 266

technical pieces constituting the model become a final product, that is, bridging 267

the gaps to convert the engine, car axles, controls, or wheels into the final car. To 268

this purpose, MeCoSim provides some tools to define, through configuration files, a 269

final visual application using the core elements of the framework, plus the P system 270

(or P system family) specified, and the inputs and outputs to control and monitor, 271

respectively, each trip made with the car (i.e., each computation of the system, each 272

virtual experiment conducted). Finally, end users receive their car: the customized 273

application satisfying their needs. Probably, they will have no idea about the internal 274

specifications of the car, they are not car mechanics/technicians, but they will be 275

able to drive their specific car. In such car, the custom app, they will be able to sit, 276

introduce the details about each particular trip (experiment) they want to make (run), 277

decide about the speed, and control the steering wheel and pedals, enjoying the drive 278

and finally getting to their destiny (the end of the computation) while obtaining all 279

the desired additional information through the monitoring system provided by the 280

dashboard. 281

In this context, everything starts with the identification of a certain need, such 282

as solving a certain NP-complete problem or modelling a real-life system in 283
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economy, ecology, medicine, or any other field. In this context, a P system (or P 284

system family) must be defined to satisfy such need. Thus, the definition of the 285

system requires the translation of the P system into a file using P-Lingua standard 286

specification language. Then, an iterative process of design, debug, and verification 287

starts, progressing with the problem until the model has been properly validated 288

according to the experts in the problem domain. 289

Then, the central problem has been solved, but only the technicians could use the 290

tools to run computations of the system. Then, a new effort can be made by such 291

P system designers to set in a spreadsheet configuration file the specific elements 292

of the final car and the application where the end users (ecologists, economists, 293

etc.) will be able to conduct their visual experiments. The custom elements will 294

include the hierarchical structure arranging all the visual blocks of the final app, 295

the tables allowing the introduction of specific input data by the end user, and the 296

outputs to monitor the activity and the final results of the trip. Now, everything 297

is ready for the end user to drive, to analyze each particular scenario of interest 298

(each trip), introducing in the tables the specific parameter values and input data 299

for each scenario of interest and run each virtual experiments, getting the desired 300

results in their dashboard given by the custom output tables and charts defined in 301

the configuration file set by the P system designers during the building of the car 302

(the custom app). 303

The description above has been probably illustrative at a general level, but people 304

not familiarized with MeCoSim might find it difficult to figure out how this approach 305

look like at a deeper level. The following subsections will try to clarify those aspects 306

only outlined before, detailing the main goals achieved (Sect. 2.4.1) and the software 307

components involved (Sect. 2.4.2). In Ref. [44], a methodology is proposed based 308

for the solution of a problem through membrane-based systems making use of 309

P-Lingua framework and MeCoSim, where the corresponding tools described are 310

employed in a systematic way. 311

2.4.1 Primary goals 312

As it has just been depicted, MeCoSim’s main intent is the provision of a high-level 313

visual interface to handle P system-based models. This is right, but what should we 314

exactly expect from this environment? Let us try to clarify this by analyzing the 315

origin and initial view of the tools involved. 316

To start with this overview, it is worth recalling that we are studying a paradigm, 317

membrane computing, where many computing models have been defined along 318

the years. As specifically addressed by this book, the implementation of these 319

computational devices is crucial in order to take advantage of all the theoretical 320

properties, the strengths, of such machines. However, our biologically inspired 321

models present certain features that are not easy to implement in certain biological 322

or artificial substrate, and even if it can be done, it implies major efforts to apply 323

these machines to each particular problem. Nevertheless, there is a faster convenient 324

approach that can be applied in order to make this process more manageable in 325
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(a) the study of theoretical aspects of the different types of devices (such as their 326

computational power, efficiency, etc.) or the practical use of models based on these 327

devices (its tasks such as the design, verification, or validation of properties and 328

virtual experimentation) and (b) the simulation of the computations for the given 329

models. 330

This volume is devoted to implementations of membrane computing models. 331

Consequently, we actually expect real devices that can capture all the features of the 332

theoretical machines. Some of the solutions provided by later chapters will succeed, 333

addressing aspects such as capturing the inherent parallelism of such ideal machines. 334

However, those real machines will need to take many things into account at a very 335

technical level, it will be a very tough process, and this will make it very challenging 336

to validate the proper functioning of these devices according to all the properties of 337

the types of P systems used, along with all the properties of the models built for a 338

particular problem, based on such types of P systems. 339

In order to avoid attacking all the problems at once, a different approach can 340

be followed: first facing the “soft” implementation of the theoretical devices, the 341

intended type of P systems, through sequential software simulators, not addressing 342

all the technical aspects required by the actual implementations but properly 343

simulating the computations of the theoretical systems, conducting to the very 344

same results. This allows us to validate a simpler implementation at a functional 345

level, in terms of the results of the computations, permitting a first step toward 346

more complex high-performance hardware, hybrid, or biological implementations. 347

These initial simulators could handle any solution or model solving a certain 348

problem (from SAT, 3-COL, or HAM-CYCLE to the population dynamics of an 349

ecosystem or an economy system, among others) by means of the types of P systems 350

implemented in the corresponding simulators. Such handling will involve helping 351

in the design, debug, and verification tasks, but of course also the computation of 352

the given model or solution according to the semantic and dynamic rules of the 353

theoretical devices. Naturally, for any problem of certain size, analyzing a manual 354

trace of the computation in a paper would be too tedious or practically unfeasible 355

for significantly big instances. Therefore, even if a real implementation with the 356

desirable parallelism is not available, it would be necessary to have at disposal a 357

machine where one could simulate computations to validate the model or analyze 358

the evolution of the system under certain scenarios. That would be the approach 359

followed by P-Lingua framework and MeCoSim so that we can focus on aspects 360

such as reliability or feasibility (to preserve the same evolution and results of the 361

theoretical systems), along with user-friendliness, over the efficiency of other later 362

implementations. 363

We have clarified the first goal of MeCoSim approach: providing an environment 364

for the design, verification, and simulation of the models based on P systems in 365

a reliable and user-friendly way, albeit not prioritizing efficiency. However, there 366

are more aspects to analyze in our approach. A major one is the search for the 367

generalization, that is, a definite purpose of providing general-purpose tools to be 368

applied to each particular membrane system type and each particular solution for a 369

problem based on them. Thus, the development of ad hoc simulators (for a specific 370
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solution for a problem, a single instance/scenario, or different instances of that 371

problem) is definitely different from the development of a general-purpose simulator 372

for certain types of P systems, capturing the ingredients of the theoretical model of 373

computation so that this machine allows the provision of any P system and scenario 374

and performs its corresponding intended computations. 375

Many software developments in scientific research are focused on the first 376

approach, providing simulators for certain problems or even specific instances of 377

the problem only. Other studies address the development of tools for the analysis 378

or verification of a specific type or variant of membrane system, such that they can 379

handle any P system of the type. However, the approach of P-Lingua framework 380

and MeCoSim has been more ambitious from its origin: providing tools being as 381

general as possible, for as many types of P systems as possible (including many 382

variants of cell-like, tissue-like, and neuron-like P systems, among others), while 383

preserving the strict deep analysis of the syntactic, semantic, and dynamic aspects 384

of each P system variant, in order to control that the corresponding constraints are 385

met. The wide range of variants covered include computing models with different 386

global structures (hierarchical, plain graph, or graph with nodes containing trees— 387

as in multienvironment, PDP systems), a variety of ingredients in terms of rules or 388

other elements (dissolution, division, charges, stopping objects, etc.), and different 389

handling of semantic aspects (related with sequentiality, nondeterminism, priorities, 390

maximality, probabilistic or stochastic behaviors, among others). 391

As described above and in Sects. 2.2 and 2.3, many types and variants of 392

P systems have been covered by the tools developed within the framework. 393

Moreover, as detailed in Sect. 2.2, along with the specification language and its 394

corresponding parsers for each computing models, many simulators were developed 395

inside P-Lingua project. This infrastructure provided from the beginning [36] 396

a complete programming environment for membrane computing and has kept 397

incorporating new elements along the years, staying as an alive project, including a 398

living version inside MeCoSim. 399

In Sect. 3.4, the basic steps of the approach followed with these tools are 400

depicted, illustrating their use for real applications. 401

2.4.2 Main Functional Components 402

As previously mentioned, a clear separation of the roles involved in modeling and 403

simulation process is stated (apart from the software developers in charge of P- 404

Lingua and MeCoSim development): (a) P systems designer and (b) end users of a 405

simulation app. What does MeCoSim provide within this scope? 406

As shown in Fig. 2.1, the software developer releases different versions of 407

MeCoSim (and certain plug-ins) available for any potential users. In contrast, 408

P systems designer, possibly unrelated with software development, defines a 409

simulation app based on MeCoSim, customized for its particular problem. Then, 410

he can debug its solution and analyze the underlying P system. Finally, the end user 411
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Fig. 2.2 Model debugging

employs the custom simulation app to study different scenarios of interest involving 412

specific instances of the problem. 413

In summary, the main functionalities of MeCoSim are the following: 414

• General environment to simulate computations of P systems 415

With the default custom application, any P-Lingua file not requiring additional 416

inputs can be edited, while detecting aspects to modify; parsed and debugged (see 417

Fig. 2.2), to find possible warnings or errors, both at a syntactic and a semantic 418

level, alerting the P systems designer if some rules of the intended model type 419

are violated; and simulated (through the algorithm selected in the interface, as 420

shown in Fig. 2.3), generating the initial structure and multisets of the system 421

and then running the computation either step-by-step or until its end (after a fixed 422

number of steps or when a halting configuration is reached, where no rules can 423

be applied). Besides, the default output is given in the form of a flat table (with a 424

row for each object symbol present in each computation step inside each region, 425

with a certain multiplicity), and also some of the main internal elements of the 426

P system can be visualized at any moment (membrane structure, multisets, and 427

alphabet). 428

• Mechanism for the definition of custom simulation apps 429

Any custom app consists of: 430

– A hierarchical structure for the visual arrangement of the information (inputs 431

and outputs) in the app for the end user, according to the setting introduced 432

by the designer in an .xls spreadsheet file, as illustrated by the first table in 433

Fig. 2.4. 434

– A definition of input tables, and output tables and charts, to respectively 435

introduce data and visualize results. More details about the definition of such 436
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Fig. 2.3 Available simulators for a loaded P systems variant

Fig. 2.4 Custom app definition—input

components can be found at Refs. [24, 37, 44], and a basic example of tables 437

(header and columns) configuration is given by the second and third tables 438

present in Fig. 2.4. 439

– The configuration of parameters, establishing which parameters and input data 440

for the model, should be generated from the input tables, either directly taking 441

the value from the table at the beginning of the simulation or applying some 442

processing from the input data to generate calculated derived values. To this 443

purpose, a specific parameters generation language was defined, as described 444

in detail in [37, 44]. The generation of a basic parameter n from the first row 445



26 2 P Systems Implementation on P-Lingua Framework

and column of a table with id = 5 is illustrated in the last table of Fig. 2.4. 446

Much more complex parameters can be generated, as described in [37, 44]. 447

– Results: In order for the output tables and charts to show some information 448

about the simulation, the custom configuration must define which elements 449

from the computation should be taken into account when extracting informa- 450

tion from all the computation trace data. An additional language is used in the 451

.xls spreadsheet file to provide a flexible mechanism to express the retrieval of 452

information from the computation. Internally, for every simulation performed, 453

from the previous definition, a database query is generated, being executed 454

against the given on-memory database containing the flat structure with the 455

computation. 456

Apart from this core functionalities, additional features and abilities are provided 457

in the form of MeCoSim plug-ins following a certain architecture proposed [24, 37, 458

44]. These add-ons can be given either as Java-based packages (as a graph viewer 459

[see Fig. 2.5], a window for the introduction and encoding of logical formulas or a 460

tool to define and detect invariants in the models based on Daikon [7]) or as external 461

programs being called from MeCoSim and properly connected (using the so-called 462

processes plug-in). A detailed description of the underlying mechanisms and the 463

plug-ins developed is given in [44]. 464

Additionally to the features of MeCoSim software and its plug-ins, a system of 465

repositories was made available, manageable from MeCoSim environment, having 466

access to repositories of four types: apps (.xls), models (.pli), scenarios (.ec2), and 467

plug-ins (.jar). Besides the official repositories, any user can provide additional 468

ones (through the definition of the corresponding .xml file for the desired type of 469

repository), providing the corresponding URL to the resource. 470

Fig. 2.5 GraphsPlugin—trees of graphs
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2.5 Conclusion 471

This chapter presented the very representative and widely used P-Lingua language 472

for a variety of P systems such as cell-like P systems, tissue-like P systems, spiking 473

neural P systems, and kernel P systems. The description of P-Lingua language with 474

pLinguaCore consists of P systems models, membrane structure, initial multisets, 475

and P system rules. The simulation algorithms in P-Lingua and MeCoSim on top 476

of pLinguaCore with primary goals and main functional components were also 477

discussed. 478
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G. Rozenberg, A. Salomaa (Oxford University, Oxford, 2009), pp. 437–454. Chapter 17 496

6. D. Díaz-Pernil, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, A P-Lingua program- 497

ming environment for Membrane Computing, in Membrane Computing (WMC 2008), ed. by 498
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