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62P Systems Implementation on GPUs 3

6.1 Introduction 4

The development of P system simulators is usually driven by the importance 5

of certain models. Usually, these simulators are implemented in a flexible way, 6

allowing not only to simulate a wide variety of P systems but also to help 7

construct simulators for other models. An example of this flexibility is P-Lingua 8

framework[13]. However, for certain applications and models, efficient simulation 9

tools are required. For instance, the simulation of population dynamics P systems 10

is crucial for model validation of real ecosystems and for virtual experimentation. 11

In this case, the faster the simulation tool, the shorter the time to construct a 12

valid model. Another interest behind the development of efficient tools is also for 13

analyzing theoretical aspects of P systems (parallelism, non-determinism, etc.) and 14

how to bridge them with today, in-silico technology [48]. 15

There are several ways to accelerate the simulation of P systems: changing the 16

technology where to implement the simulators (e.g., from interpreted languages like 17

Java to compiled ones like C++), increasing the power of the processors where to 18

run the simulations (e.g., increasing the clock frequency, the memory bandwidth and 19

clock, etc.), or using high performance computing (HPC) technologies to implement 20

real parallelism. The main trend when developing efficient simulators has been the 21

last one: taking advantage of the inherent parallelism of the models and mapping it 22

into parallel platforms such as clusters, supercomputers, accelerators, etc. 23

According to [15], we can define high performance computing (HPC) as “the 24

practice of aggregating computing power in a way that delivers much higher 25

performance than one could get out of a typical desktop computer or workstation 26

in order to solve large problem instances in science, engineering, or business”. 27

This is usually accomplished by means of parallelism, since it is the basis for 28

the acceleration of large and complex real-world applications. The maximum 29

exponent of HPC is known as supercomputing, where the computing power of 30

current technology is being continuously pushed. A ranking of the most powerful 31
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supercomputers can be consulted at Top500 website [46]. To the time of writing, 32

most of the top 10 supercomputers are based on nodes extended with accelerators. 33

HPC accelerators are dedicated chips that serve as co-processors, extending in 34

this way the computing power. Examples of accelerators are FPGAs and GPUs. 35

The latter refers to the processors inside the graphics cards, which take over the 36

task of graphics generation in computers. However, with the increasing demand 37

in 3D rendering for gaming and video, and as foreseen by Elster [12] and others, 38

GPUs (Graphics Processing Units) have evolved to a massively parallel processor 39

that is suitable for parallel computing. Today, GPUs are the enabling technology for 40

trending areas such as Deep Learning, Data Science, physics simulation, real-time 41

ray tracing graphics, etc. 42

Concerning P systems and their applications, GPUs have been shown to be an 43

alternative for accelerating simulations. In [4], the double parallelism of P systems 44

were mapped over the double parallelism inside GPUs. This idea has been refined 45

over the time, in such a way that the simulators are now better adapted to GPU 46

parallelism. We can identify three types of simulators: those developed for very 47

specific P systems or family of P systems (specific simulators) and developed for a 48

wide range of P systems inside a variant (generic simulators) and a hybrid simulator 49

that receives high-level information to be better adapted (adaptive simulators). 50

In this chapter, we will introduce all the concepts related with GPU computing 51

and its applications. Later, we will go through some P system simulators depending 52

on their type: specific, generic, or hybrid. Finally, we will provide some guidelines 53

on how to develop new simulators for P systems on GPUs. 54

6.2 GPU Computing 55

In this section, we will introduce the main concepts of GPU computing, including 56

CUDA and modern GPU architecture. This will provide the required background to 57

understand the design of P system simulators on GPUs. 58

6.2.1 The Graphics Processing Unit 59

The first Graphics Processing Units (GPUs) were introduced back in 1999 [11], in 60

order to overcome the bottleneck created by the CPU when generating real-time 61

graphics, such as in videogames and in 3D rendering. Since then, every graphics 62

card has integrated such kind of specific processors. Usually, we refer to GPU and 63

graphics card as synonyms. It is important to remark the place where the GPU is 64

located on a computer. The GPU is connected with the CPU through a data bridge 65

(Northbridge), which is also used to access the main memory (RAM). Currently, 66

modern GPUs are connected through the so called PCI Express bus, which runs at 67

more than 64GB/s (when using 16-lane configuration). 68

GPUs, since they were born, install processor cores that are specialized for 69

graphics (pixel colorization, etc.). Thus, these processors are able to include more 70
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cores than usual CPUs because they are more specific and, so, lightweight. This 71

GPU architecture has evolved over the time, being both more parallel and flexible. 72

The former means that it included more and more computing cores, and the 73

latter means that these cores were more programmable. In fact, since 2002, the 74

graphics pipeline implemented in GPU hardware became programmable through 75

small programs called shaders. Programming languages such as Cg, GLSL, DirectX 76

Shading languages, etc. are employed for shaders. There were two types of shaders 77

(for vertices and fragments), but in 2007 they were unified (e.g., the U of CUDA 78

stands for Unified). 79

The evolution of shaders led to a new area called GPGPU (general purpose 80

computing on the GPU), whose name was coined by Mark Harris in 2002. The 81

target of this research area is to develop parallel methodologies to program GPUs 82

for other purposes rather than graphics, such as scientific computing. Today, this 83

is more known as GPU computing and has been settled as an alternative within 84

HPC. That is, GPUs are nowadays an HPC accelerator that can be found in the most 85

powerful supercomputers. GPUs are good at data parallelism. More specifically, 86

they are based on SPMD programming model (Single Program Multiple Data): the 87

GPU processes many independent elements in parallel using the same program [35]. 88

Currently, GPU computing is also a heterogeneous computing system [17], 89

where the GPU is known as device and the CPU is known as host. The host has 90

a role of a master, which takes over the execution and manages the different devices 91

that can be in the system. Devices are co-processors that help to accelerate the 92

algorithms by executing code in a parallel fashion, reducing in this way the overhead 93

on the host. This trend is being consolidated with OpenCL [31], the first free, 94

open standard for multi-platform, heterogeneous parallel programming of modern 95

processors found in PCs, servers, and embedded devices. OpenCL is being used not 96

only for GPUs but also for FPGAs, multicore CPUs, etc. However, the drivers and 97

compilers developed by each manufacturer of chips (NVIDIA, Intel, AMD. . . ) are 98

not up to date and lack full support. This is why a new standard, called SYCL, is 99

being conceived, but it is still experimental (to date). 100

GPUs can be programmed with both OpenCL and SYCL [44]. Moreover, 101

NVIDIA GPUs can be also programmed with CUDA [32], which is a proprietary 102

technology that is very mature and has lot of functionality. By having a quick look 103

to the literature, it is possible to see that CUDA is the most used platform for 104

GPU computing. On the other side, AMD GPUs can be also programmed with a 105

CUDA-like environment called HIP [34], which is based on RoCm. This allows 106

programmers to translate easily CUDA code to AMD technology. Other standard 107

languages and platforms to program GPUs are based on the graphics pipeline, such 108

as OpenGL, GLSL, and Vulkan [47]. They can also be used for GPU computing in 109

a not very complex way. 110

In short, GPU computing poses a highly parallel architecture with thousands of 111

lightweight processor cores and high-bandwidth memory that can be programmed 112

with several standard languages. The most evolved one is CUDA, but it works 113

only for NVIDIA GPUs. Since the introduction of CUDA in 2007, many scientific 114

applications have used GPU computing. Their low cost compared to the perfor- 115
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mance offered has made GPUs an attractive alternative. In fact, currently they are 116

the enabling technology (i.e., if you want to tackle these problems, you should be 117

using GPUs) for Deep Learning [18], nanopore DNA sequencing, and high-energy 118

particle trajectory reconstruction in LHCb HLT 1 TODO:CITE PAPER DANIEL 119

CAMPORA. 120

6.2.2 CUDA Programming Model 121

In this chapter, we will be focusing on CUDA [32,33], since, as mentioned, it is the 122

most widely technology for GPU computing, and on top of that, the majority of P 123

system simulators have been developed with CUDA. Let us recall that CUDA, as 124

usual in GPU computing, offers a heterogeneous system to the user, where the CPU 125

is known as the host, and the GPU is the device. The execution flow in a CUDA 126

program is like in any common program; it starts with the CPU main function. At 127

some points, the CPU asks the GPU to allocate memory, transfer memory, launch 128

computation, retrieve results, etc. 129

CUDA devices take advantage of data-parallel program sections and accelerate 130

their execution. A CUDA program therefore consists of one or more phases that 131

are executed either in the host or in device. Sequential and control phases are 132

implemented in the host code, while phases which exhibit a large amount of data 133

parallelism are implemented in the device code. A CUDA program is also a unified 134

source code covering both sides. 135

We call kernels to those functions executed by the device (GPU). When they are 136

requested to be executed by the host, they allocate an execution grid on device. A 137

grid typically populates a large number of execution threads that work in SPMD 138

fashion: they execute the same piece of code (the kernel function) to probably 139

different portions of data. Actually, a kernel is written as a usual function in a 140

programming language (so far, only C++, Fortran or Python) but using special 141

keywords given by the CUDA API. These keywords, such as the thread identifier, 142

might take different values at different threads in run time, so that they can have 143

index different data elements, or even take different execution path (although this 144

is not optimal). CUDA threads are much lighter than CPU threads. A CUDA 145

programmer can assume that these threads take a few cycles to be generated and 146

scheduled. This contrasts with the threads of the CPU, which normally require 147

thousands of clock cycles to be managed. 148

Threads within a grid are arranged in a two-level hierarchy. At the higher level, 149

each grid consists of a two-dimensional array of thread blocks. At the lower level, 150

each block is organized as a three-dimensional array of threads. All blocks in a 151

grid have the same number and organization of threads. Moreover, each block is 152

identified by a two-dimensional identifier and each thread within its block by a three- 153

dimensional identifier. To date, a thread block can contain, at most, 1024 threads. 154

Threads within a block can easily cooperate through a special fast memory (see 155

below) and special warp-wide operations (see next section) and be synchronized 156

with a barrier operation. 157
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One kernel is executed by just one grid that, has mentioned, arranges an array 158

of thread blocks, each with the same configuration of threads. It is also possible 159

to launch several kernels at the same time on a GPU with different grids. This is 160

allowed by the so-called CUDA streams. They are concepts similar to lanes, where 161

kernels get executed. As long as there are available resources on the GPU, the 162

kernel executions can be done simultaneously. CUDA streams also allow to overlap 163

execution with memory transfers, designing in this way full computing pipelines. 164

CUDA programmers also have to explicitly manage the memory layout and 165

hierarchy. GPUs offer different memory spaces arranged in a hierarchy where to 166

store the data of a parallel program. In CUDA, the host and the devices have separate 167

memory spaces (as it is in the real hardware). In order to run a kernel on the device, 168

the data has to be there. Hence, enough memory should be first allocated, and 169

later the relevant data has to be transferred from host to device. Similarly, after 170

the execution of the kernels on the device, the resulting data has to be copied from 171

device to host memory, and finally the allocated device memory should be released. 172

From this point of view, we can assume that CUDA uses static memory allocations. 173

Dynamic memory is already supported at the kernels, but there are restrictions, and 174

it drastically downgrades the performance. 175

The memory that serves as communication channel between the host and the 176

device is called global (or device) memory. The host can allocate memory and copy 177

memory, and CUDA threads can access it and make modifications. However, this 178

memory is the slowest in the GPU, but the largest one. The best performance is 179

achieved when contiguous threads (according to their identifiers) access contiguous 180

positions of data, in what is called coalesced memory access. This helps to maximize 181

the utilization of the memory bandwidth. 182

Threads can use a common memory space when they are in the same thread 183

block, which is called shared memory. Accesses to shared memory are very 184

fast when done in a coalesced way. However, it is a small space of up to just 185

kilobytes. On the other side, we can find cached memories. They are memories 186

that automatically speedup the access to repeated data through a cache. Examples 187

of them are constant and texture memories. They are read-only memories for the 188

GPU, and the CPU can just copy data in there, under certain restrictions. Moreover, 189

modern GPUs have two levels of cache memory for accesses to global memory, but 190

this is completely transparent to the code. 191

In summary, algorithms implemented in CUDA are structured as follows [17]: 192

1. The host initializes the program, reading the input data. 193

2. The host allocate enough memory space in global memory for input and auxiliary 194

data. 195

3. The host copies the input and auxiliary data to the device. 196

4. The host launches a kernel to the device, with the following 197

syntax: kernelName <<< numBlocks, numThreads, streamId, 198

sharedMemory >>> (param1, param2,...) 199
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5. When a kernel is executed, at the device side: 200

(a) The threads of each block read its corresponding data portion from global 201

memory to shared memory or to internal variables (also called registers, see 202

next section). 203

(b) Threads work with the data directly on the shared memory or with their 204

registers. 205

(c) Threads copy these data back to global memory. 206

6. The host might call more kernels, copy more data, retrieve data, etc. 207

7. When the algorithm is done, the host copies back the results from global memory 208

of the device. 209

As mentioned before, threads from different blocks cannot cooperate directly, 210

but only through the global memory and using a special set of atomic operations. 211

These operations are implemented by implicit locks, so that accesses to desired data 212

elements can be efficiently synchronized through them. However, this is restricted 213

to the use of a small set of operations. 214

6.2.3 GPU Architecture 215

A modern GPU architecture [19] consists of a processor array which has hundreds 216

(even thousands) of SP (streaming processor) cores organized in SM (streaming 217

multiprocessor). In this sense, every SM contains the following units: SP arithmetic 218

cores, SFU single-precision floating point units (for specific operations such as 219

sine, cosine, reciprocal square root, etc.), double precision units, instruction cache, 220

read only constant cache, read/write shared memory and L1 cache memory, a set 221

of 32-bit registers, and access to the off-chip memory (device/local memory). The 222

arithmetic units are capable to execute several instructions per clock cycle, and they 223

are fully pipelined, running at frequencies around 1 GHz (depending on the GPU). 224

The amount of cores, floating point units, shared memory, etc. depends on the GPU 225

itself. 226

SMs is able to manage and execute thousands of threads in hardware with zero 227

scheduling overhead. Each thread has its own thread execution state and can execute 228

an independent code path. This execution is done in a SIMT (Single-Instruction 229

Multiple-Thread) fashion [19], where threads execute the same instruction on 230

different piece of data. SMs create, manage, schedule, and execute threads in groups 231

of 32 threads (of the same thread block). This set of 32 threads is called warp. Each 232

SM can handle several warps. Individual threads of the same warp must be of the 233

same type and start together at the same program address in order to be scheduled 234

simultaneously, but they are free to branch (e.g., an if then else clause) and 235

execute independently at the cost of serialization. 236

When a grid is created to execute a kernel, the thread blocks are created and 237

assigned to SMs. An SM can handle several thread blocks, but a thread block is 238

assigned only to one SM. Then, the thread block is split into warps and they are 239

scheduled. When a warp is selected, its threads are executed on SPs as long as the 240
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threads are synchronized in the same execution flow of the code. If the threads of a 241

warp diverge, the warp serially executes each taken branch path, disabling threads 242

that are not on that path. When all the paths complete, the threads re-converge to the 243

original execution path. 244

As shown by the CUDA programming model [17], the GPU contains several 245

memory spaces. First of all, both the GPU and the CPU have separated memory 246

spaces. They are connected through a bus that can be PCI Express×16 bus standard. 247

Global memory is the largest (up to several gigabytes) but the slowest one. Although 248

there is a two-level cache memory system to speedup repeated access to same data, 249

an access to global memory is around 400 times slower than accessing on-chip 250

memory spaces (such as shared memory or registers). Moreover, in order to fulfill 251

the memory bandwidth, threads should make coalesced accesses. 252

As mentioned, inside each SM we can find a memory space called shared 253

memory. Its size is measured in kilobytes, but its access is very fast, even close 254

to the accesses to registers. This memory space is also split into shared memory 255

and L1 cache memory. The latter is transparent to CUDA programs, while shared 256

memory is manually managed (one can allocate space and let threads to copy and 257

modify data). There are also many other units for cached memory which is read only 258

for the cores. Finally, SMs incorporate a large amount of registers, whose access is 259

the fastest since they are next to the cores. They are used to allocate the values of 260

single variables declared in the code (e.g., iterators, auxiliary variables, etc.). 261

6.2.4 Good Practices 262

CUDA is supported by a wide range of tools [33], including a compiler (called 263

nvcc), the driver for the GPU, libraries, and examples. They are freely available at 264

their website. There is also a vast amount of documentation, books, and literature 265

in this respect. CUDA is not only the most mature platform for GPU computing but 266

also the one with the largest community and support. It is important to know the 267

compiler options for automatic optimizations (like -O3) and to understand and use 268

the libraries (e.g., CuRAND for random number generation, CuSPARSE for sparse 269

matrix representations and operations, etc.). 270

It is also a good practice to start developing a reference program in sequential 271

C/C++ before starting implementing in CUDA. This is critical in order to first 272

understand the algorithm, secondly to validate the parallel version, and also to run 273

benchmarks and performance analysis. 274

Finally, let us introduce four ways to accelerate the execution of a program on a 275

GPU with CUDA [35]. They will help to understand the designs of GPU-based P 276

system simulators: 277

• Emphasize parallelism: GPUs prefer to run thousands of lightweight threads. 278

Thus, the algorithms should permit dividing the computation into many inde- 279

pendent pieces by decreasing the resources assigned to each thread and avoiding 280

synchronization. 281
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• Minimize branch divergence: if a warp is broken because divergence in the path 282

executed by the threads, then there is no real parallelism. 283

• Maximize arithmetic intensity: computation is relatively cheap for today’s GPUs, 284

but bandwidth is precious. It is better to maximize the computational operations 285

per memory transaction. Shared memory or registers can help for this purpose. 286

• Exploit streaming bandwidth: on the other side, GPUs and their on-board 287

memory have a peak bandwidth much faster than in CPUs. It is achieved 288

by streaming memory access patterns: coalesced access to aligned memory 289

positions. A good way to maximize the bandwidth in an algorithm is by the 290

scatter/gather strategy. 291

6.3 Generic Simulations 292

In this section, we will introduce a type of simulation of P systems, which is 293

called generic simulation [22, 25]. We will describe how to implement this kind 294

of simulators in CUDA and provide two illustrative examples. 295

6.3.1 Definition 296

When implementing a P system simulator, it is important to understand what type of 297

P systems we want to simulate before starting the development. We will say that a 298

generic simulator is a simulator developed for a wide range of P systems belonging 299

to the same variant. If the simulator is able to handle a large variety of P systems 300

(with very distinct rules and alphabets, even designed to solve different problems), 301

then it is generic. Sometimes the types of P systems are restricted somehow for the 302

sake of simplicity, but as long as the simulator accepts P systems from different 303

families (but for the same variant), we will say it is generic and not specific. 304

In this scenario, it is not possible to know what can happen in the computation 305

at a certain transition step. Therefore, it has to be prepared for any situation, so we 306

need to cover worst-case scenarios when developing such kind of simulators. For 307

example, we need to provide an upper bound of existing objects at a certain step, 308

in order to avoid memory overflows. Furthermore, in principle, all rules might be 309

selected for execution at a certain step (until their applicability is checked). The 310

rules must be stored in memory since we do not know them until the P system 311

model is parsed. As mentioned in Chap. 2, simulators are usually defined by three 312

modules: input parser, simulation engine, and output module. Generic simulators 313

can be designed to reproduce either a single computation or all computations of the 314

input P system. 315
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The memory layout is also an essential part of a simulator, since P system 316

simulators have been demonstrated to be memory and memory bandwidth bound. 317

When storing the information of P system configuration, we can use either [25]: 318

• Sparse representation: using a large array to store multiplicities, with a position 319

per each possible object (all objects defined in the alphabet). The access is direct 320

since the object identifier is the index where to access the array. However, if many 321

objects are not present at a certain moment, the array will be full of zeroes. 322

• Dense representation: using a double array with a component for the object 323

identifier and the other for multiplicity. We need to search for the object, unless 324

we track them and we know exactly where they are store at any moment. This 325

can help to drastically reduce the size because objects with multiplicity zero can 326

be discarded. 327

Generic simulators usually use sparse representations, since, in this way, they 328

can identify objects very efficiently, in O(1). The object identifier is employed as 329

the index to access the array where storing the multisets, and by representing the 330

whole alphabet, we make sure of an upper bound for the worst-case scenario. 331

6.3.2 Simulating P Systems with Active Membranes 332

In this section we will depict the very first GPU simulator for P systems ever 333

developed. It was a generic simulator and helped to understand how to better map 334

the parallelism of P systems on the parallelism on GPUs. The simulated models 335

were of the variant P systems with active membranes and elementary division. 336

The original work is published in [4, 21, 22]. The full framework of simulators 337

for P systems with active membranes, including the sequential, fast sequential, and 338

CUDA parallel simulators, is called PCUDA. It is a subproject of the PMCGPU 339

project and can be downloaded from the official website http://sourceforge.net/p/ 340

pmcgpu [45] or the repository https://github.com/RGNC/pcuda. 341

6.3.2.1 Recognizer P Systems with Active Membranes 342

Families of cell-like P systems whose membrane structures does not grow, that 343

is, there is no rules producing new membranes in the system, only can solve in 344

polynomial time and uniform way, problems in class P. Therefore, new ingredients 345

are needed in order to be able to provide efficient solutions of computationally 346

hard problems by making use of an exponential workspace, expressed in terms of 347

number of membranes and number of objects, created in linear time. In [36], a new 348

computing model, called P system with active membranes, was introduced. In these 349

systems, the membranes have associated with electrical charges and make use of 350

division rules, inspired from the mitosis and meiosis processes, as a mechanism to 351

generate in linear time, an exponential workspace. Polynomial time and uniform 352

solutions to NP-complete problems were given by using families of the new 353

computing model. 354

http://sourceforge.net/p/pmcgpu
http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/pcuda
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Next, P systems with active membranes and division rules only for elementary 355

division are formally defined. 356

Definition 6.1. A P system with active membranes of degree q ≥ 1 is a tuple 357

� = (�,H,μ,M1, . . . ,Mq,R, iout ), where: 358

1. � and H are finite alphabets such that � ∩H = ∅; 359

2. μ is a rooted tree with q nodes labeled by elements from H (the root is labeled 360

by is ∈ H ); 361

3. M1, . . . ,Mq belongs to M(�), that is, all of them are multisets over �; 362

4. R is a finite set of rules, of the following forms: 363

(a) [ a → u ]αh , for h ∈ H , α ∈ {+,−, 0}, a ∈ �, u ∈ M(�) (object evolution 364

rules); 365

(b) a [ ]α1
h → [ b ]α2

h , for h ∈ H \ {is}, α1, α2 ∈ {+,−, 0}, a, b ∈ � (send-in 366

rules); 367

(c) [ a ]α1
h → b [ ]α2

h , for h ∈ H , α1, α2 ∈ {+,−, 0}, a, b ∈ � (send-out rules); 368

(d) [ a ]αh → b, for h ∈ H \ {is, iout}, α ∈ {+,−, 0}, a, b ∈ � (dissolution rules); 369

(e) [ a ]α1
h → [ b ]α2

h [ c ]α3
h , for h ∈ H \{is, iout }, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ 370

� (division rules for elementary membranes); 371

5. iout ∈ H ∪ {env}, where env /∈ � ∪H . 372

A P system with active membranes of degree q ≥ 1, � = (�,H,μ,M1, . . . ,Mq, 373

R, iout ), can be viewed as a set of q membranes, injectively labeled by elements 374

of H , arranged in a hierarchical structure μ given by a labeled rooted tree (called 375

membrane structure) whose root is called the skin membrane (labeled by is), such 376

that (a) each membrane has associated with an electrical charge from the set 377

{+,−, 0}; (b) M1, . . . ,Mp represent the finite multisets of objects (symbols of 378

the working alphabet �) initially placed in the q membranes of the system; (c) R 379

is a finite set of rules over � associated with the labels; and (d) iout ∈ H ∪ {env} 380

indicates the output zone. We use the term zone i to refer to membrane i in the case 381

i ∈ H and to refer to the “environment” of the system in the case i = env. The 382

leaves of μ are called elementary membranes. 383

Next, the semantics of the new computing model is described. A configuration 384

(or instantaneous description)Ct at an instant t of a P system with active membranes 385

is described by the following elements: (a) the membrane structure at instant t and 386

(b) all multisets of objects over � associated with all the membranes present in the 387

system at that moment. 388

An object evolution rule [ a → u ]αh is applicable to a configuration Ct at an 389

instant t , if there exists a membrane labeled by h with electrical charge α, in Ct , 390

such that contains object a. When applying such a rule to such a membrane, one 391

object a is consumed and objects from the multiset u is produced in that membrane. 392

A send-in communication rule a [ ]α1
h → [ b ]α2

h is applicable to a configuration 393

Ct at an instant t , if there exists a membrane labeled by h with electrical charge α1, 394

in Ct such that h is not the label of the root of μ and its parent membrane contains 395

object a. When applying such a rule to such a membrane, one object a is consumed 396
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from the parent membrane, and object b is produced in the corresponding membrane 397

labeled by h. Besides, the charge α1 of that membrane h is replaced by α2. 398

A send-out communication rule [ a ]α1
h → b [ ]α2

h is applicable to a configuration 399

Ct at an instant t , if there exists a membrane labeled by h with electrical charge α1, 400

in Ct such that it contains object a. When applying such a rule to such a membrane, 401

one object a is consumed from such membrane h, and object b is produced in the 402

parent of such membrane (in the case that such membrane is the skin, then object 403

b is produced in the environment). Besides, the charge α1 of that membrane h is 404

replaced by α2. 405

A dissolution rule [ a ]αh → b is applicable to a configuration Ct at an instant 406

t , if there exists a membrane labeled by h with electrical charge α, in Ct , different 407

from the skin membrane and the output zone, such that it contains object a. When 408

applying such a rule to such a membrane, one object a is consumed, membrane h is 409

dissolved, and one object b and the remaining objects of the membrane where the 410

rule is applied are sent to its parent (or the first ancestor that has not been dissolved). 411

A division rule for elementary membrane [ a ]α1
h → [ b ]α2

h [ c ]α3
h is applicable to 412

a configuration Ct at an instant t , if there exists an elementary membrane labeled by 413

h with electrical charge α1, in Ct , different from the skin membrane and the output 414

zone, such that it contains object a. When applying such a rule to such a membrane, 415

the membrane with label h is divided into two membranes with the same label; in 416

the first copy, one object a is replaced by one object b; in the second one, one object 417

a is replaced by one object c; all the other objects are replicated and copies of them 418

are placed in the two new membranes. Besides, the charge α1 of the first created 419

membrane h is replaced by α2, and the charge α1 of the second created membrane 420

h is replaced by α3. 421

In P systems with active membranes, the rules are applied according to the 422

following principles: 423

• At one transition step: (i) one object and one membrane can be used by only one 424

rule, selected in a non-deterministic way, and (ii) at most a rule of types (b)–(e), 425

selected in a non-deterministic way, can be applied to a membrane, and then it is 426

applied once. 427

• Object evolution rules can be simultaneously applied to a membrane with one 428

rule of types (b)–(e). If it is the case, object evolution rules will be applied in a 429

maximally parallel manner. 430

• If an object evolution rule and a division rule are applied to a membrane at the 431

same transition step, then we suppose that first the evolution rule is applied, and 432

then the division is produced. Of course, this process takes only one transition 433

step. 434

• The skin membrane and the output membrane, if any, can never get divided nor 435

dissolved. 436

Given a P system with active membranes, � = (�,H,μ,M1, . . . ,Mq,R, iout ), 437

the initial configuration of � is C0 = (M1, · · · ,Mq). A configuration is a halting 438

configuration if no rule of the system is applicable to it. We say that configuration 439
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C1 yields configuration C2 in one transition step, denoted C1 ⇒� C2, if we can 440

pass from C1 to C2 by applying the rules from R following the previous remarks. A 441

computation of � is a (finite or infinite) sequence of configurations such that: 442

1. The first term of the sequence is the initial configuration of the system. 443

2. Each non-initial configuration of the sequence is obtained from the previous 444

configuration in one transition step 445

3. If the sequence is finite (called halting computation), then the last term of the 446

sequence is a halting configuration. 447

All computations start from an initial configuration and proceed as stated above; 448

only halting computations give a result, which is encoded by the objects present in 449

the output zone iout in the halting configuration. 450

Let us notice that these P systems have some important features: (a) They use 451

three electrical charges; (b) the polarization of a membrane can be modified by 452

the application of a rule; (c) the label of a membrane cannot be modified by the 453

application of a rule; and (d) they do not use cooperation neither priorities. 454

Decision problems are associated with languages in such manner that solving a 455

decision problem is defined by recognizing the language associated with it. For that, 456

recognizer membrane systems were introduced in [41] (called decision P systems), 457

and complexity classes associated with these systems were introduced in [40]. 458

Over the last few years, the previous methodology for addressing the P versus NP 459

problem has been applied in the framework of Membrane Computing. 460

A computing model in the paradigm of Membrane Computing (generically called 461

membrane system) is said to be a recognizer system if it has the following syntactic 462

and semantic peculiarities: (a) the working alphabet has two distinguished objects 463

(yes and no); (b) there exist an input alphabet strictly contained in the working 464

alphabet and an input membrane; (c) the initial content of each compartment is a 465

multiset of objects from the working alphabet not belonging to the input alphabet; 466

(d) all computations of the system are halt; and (e) for each computation, either 467

object yes or object no (but not both) must have been released to the environment 468

and only at its last step. Recognizer membrane systems have the ability to accept or 469

reject multisets over the input alphabet. Specifically, given a recognizer membrane 470

system �, for each multiset m over the input alphabet, a new initial configuration 471

is obtained by adding the multiset m to the content of the input compartment at 472

the initial configuration of � (the system � with this new initial configuration 473

associated with m is denoted by � + m). Then, we say that system � accepts 474

(respectively, reject) the input multiset m if and only if all computations of the 475

system �+m answer yes (resp. no). 476

Unlike a Turing machine where there is an infinite tape, all the elements that 477

make up a recognizer membrane system have a finite description. Therefore, while 478

a decision problem (with an infinite set of instances) can be solved by a single Turing 479

machine, an infinite family of recognizer membrane systems is necessary to solve it. 480

Following [40], we say that a family � = {�(n) | n ∈ N} of recognizer 481

membrane systems solves a decision problem X in polynomial time and uniform 482
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way if the following holds: (i) the family � can be generated by a deterministic 483

Turing machine working in polynomial time; and (ii) there exists a pair (cod, s) of 484

polynomial-time computable functions (over the set of instances of X) such that (a) 485

for each instance u ∈ IX, s(u) is a natural number and cod(u) is an input multiset 486

of the system �(s(u)); (b) for each n ∈ N, the set s−1({n}) is a finite set; and (c) the 487

family � is polynomially bounded, sound, and complete with regard to (X, cod, s) 488

(see [40] for details). 489

Given a computing model R of recognizer membrane systems, PMCR denotes 490

the set of decision problems solvable by families from R in polynomial time 491

and uniform way. This complexity class is closed under complement and under 492

polynomial-time reduction [40]. Hence, if X is a complete problem for a complexity 493

class K and X ∈ PMCR, then we deduce that K∪ co-K ⊆ PMCR. 494

P systems with active membranes (without dissolution and using division rules 495

only for elementary membranes) have been successfully used to design polynomial 496

time solutions to (weak and strong) NP-complete problems (e.g., SAT [42], 497

Subset Sum [38], Knapsack [39], Partition [14], etc.). It is important to 498

note that some of these solutions only make use of two polarizations in their design. 499

6.3.2.2 Simulation Algorithm 500

The simulator is based on the sequential simulator for P systems with active 501

membranes provided in pLinguaCore [13]. In this design, the simulation process 502

is a loop divided into two stages: selection stage and execution stage. The selection 503

stage consists in the search for rules to be executed in each membrane of a given 504

configuration. The selected rules are executed at the execution stage, what finalizes 505

the simulation of a computation step (or transition). 506

The input data for the selection stage contains the description of the membranes 507

with their multisets (strings over the working alphabet of objects, labels associated 508

with the membrane, etc.) and the set of defined rules. The output data of this stage 509

are the multisets of selected rules. Only the execution stage changes the information 510

of the configuration. It is the reason why execution stage needs synchronization 511

when accessing to the membrane structure and the multisets. 512

At the end of the execution stage, the simulation process restarts the selection 513

stage in an iterative way until a halting configuration is reached. This stop condition 514

is twofold: a certain number of iterations or a final configuration is reached. On one 515

hand, we define a maximum number of iterations at the beginning of the simulation. 516

On the other hand, a halting configuration is obtained when there are no more rules 517

to select at selection stage. As previously explained, the halting configuration is 518

always reached since it is a simulator for recognizer P systems. 519

Non-determinism affects the selection stage, since it is possible to have more than 520

one selectable rule but only one can be executed. For example, two evolution rules 521

can be executed using the same object, a division rule and a send-in rule that can be 522

selected in the same membrane at the same time. In order to avoid non-determinism 523

somehow, the simulator assumes only confluent P systems. Thus, instead of working 524

with the entire tree of possible computations, the simulator selects and simulates 525

only one computation path, since all paths are guaranteed to give the same answer. 526
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We can take advantage of this property by selecting path using the lowest cost rules. 527

We will measure this cost in number of membranes and synchronization operations. 528

These are the conditions that could damage the simulation performance the most. 529

In this context, we introduce the following priorities among rules in the selection 530

stage: 531

1. Dissolution rules: they decrease the number of membranes (highest priority). 532

2. Evolution rules: they do not need any communication among membranes (which 533

avoids synchronization). 534

3. Send-out rules: they do need communication between the given membrane and 535

its parent (adding one object to its parent). 536

4. Send-in rules: they do need communication between the given membrane and its 537

parent (reserving one object from its parent and adding the object to itself). 538

5. Division rules: they increase the number of membranes (lowest priority). 539

During the execution stage, the information of the system can vary by including 540

new objects inside membranes, dissolving membranes, dividing membranes, etc., 541

obtaining a new configuration. This new configuration will be the input data for the 542

selection stage of the next iteration. 543

Finally, note that this two-staged algorithm allows to keep a coherence in the 544

simulation. If we perform selection and execution of rules, one by one, it would be 545

difficult to ensure the semantic constraints of the system. Moreover, the selected and 546

executed rules in a step of the simulator may not correspond to the rules applied in 547

a computing step of the theoretical model. An alternative solution might be to take 548

two copies of the configuration, one to be updated with the right-hand sides of the 549

rules and another to select rules (subtracting the left-hand sides of rules). As this 550

involves a bigger use of memory, the simulator uses the two stages and a temporary 551

data structure to store information of the selection of rules. 552

6.3.2.3 Sequential Simulator 553

As previously mentioned, CUDA programming model [33] is based on the C/C++ 554

language [16]. Therefore, the first recommended step when developing applications 555

in CUDA is to start from a baseline algorithm written in C++, identifying the parts 556

that can be susceptible to be parallelized on the GPU. In this work, we have based 557

on the simulator for P systems with active membranes developed in pLinguaCore 558

[13]. This sequential (or single-threaded) simulator is programmed in JAVA, so the 559

first step was to translate the code to C++. 560

The first version of the sequential simulator implements the structure of mem- 561

branes by using C++ pointers and dynamic memory allocations. Each membrane 562

stores a pointer to its parent, a pointer to the first of its children, another pointer to 563

one of its brothers (having the same parent membrane), the charge, and the multiset 564

of objects. The multiset of objects is also implemented by a (dynamic) linked list 565

based on pointers. Each object in the multiset stores its multiplicity (if zero, it is 566

deleted to save memory space) and a pointer to the next object. Therefore, memory 567

spaces for membranes and objects are created and deleted “on demand.” The rules of 568
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the system are statically stored, so that we can easily access to the rules associated to 569

each membrane, by using its label and charge. Furthermore, the multiset of selected 570

rules is also implemented using a dynamic linked list. However, we found that this 571

drastically slowdown the simulation, since objects get created and consumed at 572

every step, and hence, we are continually allocating and destroying memory, what 573

is very time consuming. 574

Therefore, a simulator using static structures that get allocated at the beginning 575

of the simulator was developed and shown to be 160 times faster than the first 576

version [21]. These structures are the same also for the parallel simulator, so they 577

are replicated at both sides in order to achieve fair comparisons. In summary, the 578

memory layout to represent the P system is based on the following data structures: 579

• Multisets: an array storing the multisets of the objects using a sparse representa- 580

tion. Since, for simplicity, it is assumed that the simulated P system can contain 581

only two levels in the memory hierarchy (a skin membrane and elementary mem- 582

branes), the representation of the environment, skin, and elementary membranes 583

are separated. The amount of elementary membranes is set initially by the user. 584

• Charges: an array storing the charge of each membrane. 585

• Rule sets: an array storing rules information. It is indexed by using a membrane 586

label, a charge, and finally an object index. Given that it is possible to have more 587

than one rule associated to the same object, and assuming that the P system is 588

confluent, only one rule of each type is stored. 589

One major problem to overcome is the competition for objects between different 590

membranes. In this case, internal membranes applying send-in rules are competing 591

for the objects in the parent. We loop the tree from the top to the bottom, so the top 592

level membranes have more priority using its objects than internal membranes using 593

send-in rules. 594

The input of the simulator (the P system with active membranes to simulate) is 595

given by a binary file. It is a file whose information is encoded in Bytes and bits (not 596

understandable by humans like plain text), which is suitable for compressing data. 597

This binary file contains all the information of the P system (alphabet, labels, rules, 598

etc.) which is the input of the simulator. The format is depicted in [21]. pLinguaCore 599

2.0 [13] is able to translate a P system written in P-Lingua language into a binary file. 600

First, we define the P system into P-Lingua. pLinguaCore translates it to a binary 601

file, which is used as the input of the simulator. The output is a plain text generated 602

with a format similar to the one provided in pLinguaCore. 603

6.3.2.4 Parallel Simulation on CUDA 604

Whenever we design algorithms in the CUDA programming model, the main effort 605

is dividing the required work into processing pieces, which have to be processed 606

by TB thread blocks of T threads each. Using a thread block size of T = 256, it is 607

empirically determined to obtain the overall best performance on the Tesla C1060 608

[43]. Each thread block accesses to one different set of input data and assigns a 609

single or small constant number of input elements to each thread. 610
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Fig. 6.1 Basic design of the parallel simulator on the GPU. From [4, 21]

Each thread block can be considered independent to the other, and it is at this 611

level at which internal communication (among threads) is cheap using explicit 612

barriers to synchronize, and external communication (among blocks) becomes 613

expensive, since global synchronization can only be achieved by the barrier implicit 614

between successive kernel calls. The need of global synchronization in the designs 615

requires successive kernel calls even to the same kernel. 616

Figure 6.1 shows the overall design of the simulator on the GPU [4]. Thread 617

blocks and threads are distributed as follows. Each membrane of the simulated 618

P system is attributed to each thread block. In this way, the parallelism between 619

membranes by using the parallelism between thread blocks is identified. However, 620

this is tricky. Membranes can communicate accordingly to the hierarchical tree 621

structure, while thread blocks are all independent. Communication through send-out 622

and dissolution rules (down-up direction) is controlled by globally synchronizing 623

the selection and execution stages. This is implemented by using different kernels. 624

However, send-in rules (up-down direction in the tree) are more complicated to 625

control. In this case, different membranes can compete for single objects. The 626

sequential simulator controls this issue by looping the tree from the top to the 627

bottom. However, the parallel simulator has to run all the membranes in parallel. 628

Therefore, for the sake of simplicity, the parallel simulator can handle only two 629

levels of membrane hierarchy: the skin (controlled by the host) and the rest of 630

elementary membranes (controlled by the thread blocks in device). This is the 631
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tree structure we can find in the literature for the majority of solutions based on 632

P systems with active membranes (note that division rules enlarge the tree width- 633

wise) [40]. 634

Furthermore, each individual thread is assigned to each object within a membrane 635

(corresponding to its thread block). It is responsible for identifying the rules that can 636

be executed using the corresponding object, that is, rules that have that object in their 637

left-hand sides. Since all blocks must have the same number of threads, and each 638

membrane can contain a different multiset of objects in every time step, we identify 639

as common for all membranes the whole alphabet. Note that threads can work with 640

many objects that do not really exist in the membrane, as all the alphabet of objects 641

is usually not present within a membrane at a given instant. In fact, the simulator 642

assigns multiple objects to the same thread for not restricting the number of objects 643

in the alphabet. However, the number of objects in the alphabet must be divisible by 644

a number smaller than 512 (the maximum number of threads per thread block), in 645

order to equally distribute the objects among the threads. 646

The simulator contains five kernels to implement the selection and execution 647

stages [21]. The first kernel implements the selection stage and also the execution 648

stage for evolution rules. The other four kernels implement the other execution rules 649

(dissolution, division, send-out, and send-in rules). All the kernels follow this basic 650

design. The selection kernel starts with the selection stage. After the selection stage, 651

we also execute in this kernel the evolution rules. These rules are executed inside this 652

kernel for three main reasons: the evolution rules do not imply communication (and 653

therefore, synchronization) among membranes; they are executed in a maximal way, 654

and this decision allows us to use less global memory because it is not necessary to 655

store the selected evolution rules for the execution stage. The rest of the rules to 656

be applied are executed in four different kernels, one kernel per each kind of rule 657

(dissolution, division, send-out, and send-in). 658

Algorithm 2 shows the pseudo-code of the simulator. First of all, the data needed 659

for the computation is moved to the GPU. Then, the code calls the selection kernel 660

which returns the selected rules for the current configuration of the P system. Among 661

the possible selected rules, there will be different kinds of rules to be executed. 662

Therefore, the type of those rules is identified for launching only the required kernels 663

to accomplish the execution stage. As explained before, this process iterates until the 664

maximum number of steps is reached or the system returns an answer. Finally, the 665

result data is copied back to the CPU. 666

6.3.2.5 Performance Comparative Analysis 667

In this section, the performance of the developed simulators is compared. This 668

is done by a very simple example, with the aim of studying the behavior of the 669

CUDA kernels. In order to evaluate the performance of the simulator, a family of 670

P systems was designed, named test P system, where it is easy to vary the number 671

of membranes as well as the number of objects [4]. This test P system also fits the 672

behavior of the GPU since only evolution and division rules are defined (without 673

communication and dissolution rules), and every object in every membrane will 674
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Algorithm 2: Parallel simulator of P systems on the GPU, from [21]
1: configuration← initialConfiguration
2: selectedRules← ∅
3: step← 0
4: isFinalConfiguration← false
5: CopyDataFromCPUtoGPU(configuration)
6: CopyDataFromCPUtoGPU(rules)
7: while step < maxStep ∧ NOT isFinalConfiguration do
8: kernelSelection(rules,configuration,selectedRules)
9: if DISSOLUTION ∈ selectedRules then

10: kernelDissolution(rules,configuration,selectedRules)
11: end if
12: if DIVISION ∈ selectedRules then
13: kernelDivision(rules,configuration,selectedRules)
14: end if
15: if SEND-OUT ∈ selectedRules then
16: kernelSendOut(rules,configuration,selectedRules)
17: end if
18: if SEND-IN ∈ selectedRules then
19: kernelSendIn(rules,configuration,selectedRules)
20: end if
21: step← step + 1
22: isFinalConfiguration← checkFinalConfiguration(configuration)
23: end while
24: CopyDataFromGPUtoCPU(configuration)

evolve according to a given rule. The defined P system is of the following form 675

� = (O,H,μ,ω1, ω2, R), where: 676

• O = {d, oi / 0 ≤ i ≤ n}, 677

• H = 1, 2, 678

• μ = [[]2]2, 679

• ω1 = ∅, ω2 = O , 680

• R = 681

(i) Evolution rules: [oi → oi]02, 0 <= i < n 682

(ii) Division rule: [d]02→ [d]02[d]02 683

Thus, the test P system allows us to take control of the number of objects in the 684

system by modifying the n parameter. Furthermore, the number of rules changes 685

along with the number of objects, and the number of membranes in every step of 686

the computation is equal to 2s , where s is the step number. Lastly, the number of 687

evolution rules selected and executed per membrane in every step is invariable, since 688

they are defined one per object and all the objects of the alphabet are presented in 689

every membrane labeled with 2. 690
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Fig. 6.2 Comparing the execution time for one step of the fast sequential and parallel simulators,
by increasing the number of membranes in the system and using a total of 2560 objects in the
alphabet. From [4, 21]

Fig. 6.3 Comparing the speedup for one step of the fast sequential and parallel simulators, by
increasing the number of membranes in the system and using a total of 2560 objects in the alphabet.
From [4, 21]

Figures 6.2 and 6.3 show the results obtained for the parallel simulator versus 691

the sequential version. Notice that in both graphs the Y-axis is also represented 692

in a logarithmic form. The benchmark covers the parallelism between membranes 693

by exponentially increasing the number of membranes. It can be seen that the 694

CPU simulator also increases its time exponentially from the beginning (with four 695

membranes) until reaching the final configuration (with 32768 membranes). The 696

CUDA simulator, which assigns 256 threads per block (each thread handles 10 697

elements per membrane), also increases its execution time in a near exponential
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way, but the performance difference is about 5.7×, and this difference enlarges with 698

the number of membranes (from 1024), because the resources of the GPU are fully 699

utilized. 700

6.3.3 Simulating Population Dynamics P Systems 701

In this section, a simulator for Population Dynamics P (PDP) systems is revisited. 702

It is a generic simulator implementing the DCBA algorithm for PDP systems. 703

The original work is published in [21, 22, 24, 28]. The framework of generic 704

simulators for PDP systems on GPU is called ABCDGPU. It is a subproject of 705

the PMCGPU project and can be downloaded from the official website http:// 706

sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/abcd- 707

gpu. 708

6.3.3.1 Population Dynamics P Systems 709

Population Dynamics P systems are a variant of multienvironment P systems with 710

active membranes [6–8]. The model consists of a directed graph of environments, 711

each of them containing a P system where electrical charges are associated with 712

membranes. All P systems share the same skeleton, in the sense that they have the 713

same working alphabet, the same membrane structure, and the same set of rules. 714

Nevertheless, in this framework each rule has associated a probability function 715

which can vary for each environment. 716

Definition 6.2. A Population Dynamics P system (PDP) of degree (q,m), q,m ≥ 717

1, taking T ≥ 1 time units, is a tuple 718

� = (G, �,�, T ,RE, μ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mi,j : 1 ≤ i ≤ q, 1 ≤ j ≤ m}) 719

where: 720

• G = (V , S) is a directed graph. Let V = {e1, . . . , em}. 721

• � and � are alphabets such that � � �. 722

• T is a natural number. 723

• RE is a finite set of rules of the form (x)ej

→
pr (y1)ej1

· · · (yh)ejh
, where 724

x, y1, . . . , yh ∈ �, (ej , ejl ) ∈ S, 1 ≤ l ≤ h, and pr : {1, . . . , T } −→ [0, 1] 725

is a computable function such that for each ej ∈ V and x ∈ �, the sum of 726

functions associated with the rules of the type (x)ej

→
pr (y1)ej1

· · · (yh)ejh
is the 727

constant function 1. 728

• μ is a rooted tree labeled by 1 ≤ i ≤ q , and by symbols from the set EC = 729

{0,+,−}. 730

• R is a finite set of rules of the form u[v]αi → u′[v′]α′i , where u, v, u′, v′ ∈ 731

Mf (�), u + v 	= ∅, 1 ≤ i ≤ q and α, α′ ∈ {0,+,−}, such that there is no 732

rules (x)ej

→
pr (y1)ej1

· · · (yh)ejh
and u[v]αi → u′[v′]α′i having x ∈ u. 733

http://sourceforge.net/p/pmcgpu
http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/abcd-gpu
https://github.com/RGNC/abcd-gpu
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• For each r ∈ R and 1 ≤ j ≤ m, fr,j : {1, . . . , T } −→ [0, 1] is a computable 734

function such that for each u, v ∈ Mf (�), 1 ≤ i ≤ q , α, α′ ∈ {0,+,−} and 735

1 ≤ j ≤ m, the sum of functions fr,j with r ≡ u[v]αi → u′[v′]α′i , is the constant 736

function 1. 737

• For each i, j (1 ≤ i ≤ q, 1 ≤ j ≤ m),Mi,j is a finite multiset over �. 738

A Population Dynamics P system defined as above can be viewed as a set of m 739

environments e1, . . . , em interlinked by the edges from the directed graph G. Each 740

environment ej only can contain symbols from the alphabet �, and all of them also 741

contain a P system skeleton, �j = (�,μ,M1,j , . . . ,Mq,j ,R), of degree q , where: 742

(a) � is the working alphabet whose elements are called objects. 743

(b) μ is a rooted tree which describes a membrane structure consisting of q 744

membranes injectively labeled by 1, . . . , q . The skin membrane (the root of the 745

tree) is labeled by 1. We also associate electrical charges from the set {0,+,−} 746

with membranes. 747

(c) M1,j , . . . ,Mq,j are finite multisets over �, describing the objects initially 748

placed in the q regions of μ, within the environment ej . 749

(d) R is the set of evolution rules of each P system. Every rule r ∈ R in �j has a 750

computable function fr,j associated with it. For each environment ej , we denote 751

by R�j the set of rules with probabilities obtained by coupling each r ∈ R with 752

the corresponding function fr,j . 753

Therefore, there is a set RE of communication rules between environments, and 754

the natural number T represents the simulation time of the system. The set of rules 755

of the whole system is
⋃m

j=1 R�j ∪ RE . 756

The semantics of Population Dynamics P systems is defined through a non- 757

deterministic and synchronous model (in the sense that a global clock is assumed). 758

Next, we describe some semantics aspects of these systems. 759

An evolution rule r ∈ R, of the form u[ v ]αi → u′[ v′ ]α′i , is applicable to 760

each membrane labeled by i, whose electrical charge is α, and it contains the 761

multiset v, and its parent contains the multiset u. When such rule is applied, the 762

objects of the multisets v and u are removed from membrane i and from its parent 763

membrane, respectively. Simultaneously, the objects of the multiset u′ are added to 764

the parent membrane i, and objects of multiset v′ are introduced in membrane i. 765

The application also replaces the charge of membrane i to α′. In each environment 766

ej , the rule r has associated a probability function fr,j that provides an index of the 767

applicability when several rules compete for objects. In this model, the cooperation 768

degree is given by |u| + |v|. 769

A rule r ∈ RE , of the form (x)ej

→
pr (y1)ej1

. . . (yh)ejh
, is applicable to the 770

environment ej if it contains object x. When such rule is applied, object x passes 771

from ej to ej1, . . . , ejh possibly modified into objects y1, . . . , yh respectively. At 772

any moment t (1 ≤ t ≤ T ) for each object x in environment ej , if there exist 773

communication rules of the type (x)ej

→
pr (y1)ej1

. . . (yh)ejh
, then one of these rules 774
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will be applied. If more than one such a rule can be applied to an object at a given 775

instant, the system selects one randomly, according to their probability which is 776

given by pr(t). 777

For each j (1 ≤ j ≤ m), there is just one further restriction, concerning the 778

consistency of charges: in order to simultaneously apply several rules of R�j to 779

the same membrane, all the rules must produce the same electrical charge in the 780

membrane in which to be applied. Thus, we will say that the rules of the system, 781

in this computational framework, are applied in a non-deterministic, maximally 782

consistent, and parallel way. 783

An instantaneous description or configuration of the system at any instant t is 784

a tuple of multisets of objects present in the m environments and at each of the 785

regions of each �j , together with the polarizations of the membranes in each P 786

system. We assume that all environments are initially empty and that all membranes 787

initially have a neutral polarization. We assume a global clock exists, synchronizing 788

all membranes and the application of all the rules (from RE and from R�j in all 789

environments). 790

In each time unit, we can transform a given configuration in another configuration 791

by using the rules from the whole system as follows: at each transition step, the rules 792

to be applied are selected in a non-deterministic way according to the probabilities 793

assigned to them, and all applicable rules are simultaneously applied in a maximal 794

way. In this way, we get transitions from one configuration of the system to the next 795

one. 796

A computation is a sequence of configurations such that the first term of the 797

sequence is the initial configuration of the system, and each non-initial configuration 798

of the sequence is obtained from the previous configuration by applying rules of 799

the system in a maximally consistent and parallel manner with the restrictions 800

previously mentioned. 801

6.3.3.2 Simulation Algorithm 802

The simulation algorithms for PDP systems called BBB and DCBA [21, 27] are 803

based on the grouping of rules into blocks. These groups are constructed by 804

looking the left-hand side. Note that rules having the same left-hand side must 805

have associated probabilities summing 1. Specifically, DCBA works using a refined 806

definition of block, called consistent block [21, 27], as shown in Definition 6.3. 807

DNDP [21, 30] does not use the concept of blocks, but it selects rules by a random 808

loop instead. 809

Definition 6.3. Rules from R and RE are classified into consistent blocks by either 810

of the following: 811

(a) The rule block associated with (i, α, α′, u, v) is Bi,α,α′,u,v = {r ∈ R : 812

LHS(r) = (i, α, u, v) ∧ charge(RHS(r)) = α′} 813

(b) The rule block associated with (ej , x) is Bej ,x = {r ∈ RE : LHS(r) = (ej , x)}. 814
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The selection of rules in BBB and DCBA relies always first on selecting blocks, 815

calculating a multinomial random variate, and therefore obtaining a selection of 816

rules within each block. In this sense, we can say that rules within a block will 817

not compete among objects when using BBB and DCBA, because they are selected 818

altogether. This, again, does not hold in DNDP, where rules are selected individually 819

according to the probabilities. Block competition takes place whenever two blocks 820

have distinct but overlapping left-hand sides. 821

DCBA tackles the resource competition issue by performing a proportional 822

distribution of objects among competing blocks. This is done by using the distri- 823

bution table, which is a system-wide time having blocks per columns and pairs 824

(object,region) per rows. Algorithm 3 shows a summary of the algorithm, which 825

can be depicted in [27]. It can be seen that, as usual, each loop iteration is made by 826

two stages: selection and execution. Selection stage consists of three phases: phase 827

1 distributes objects to the blocks in a certain proportional way, phase 2 ensures 828

maximality by checking the maximal number of applications of each block, and 829

phase 3 translates from block to rule applications by calculating random numbers 830

using a multinomial distribution. Finally, execution stage (or phase 4) generates the 831

right-hand side of rules. 832

Algorithm 3: Sketch of DCBA algorithm for PDP systems
1: Initialization of the algorithm: static distribution table (columns: blocks, Rows:

(objects,membrane))
2: for t ← 0 . . . T do
3: Selection stage:
4: Phase 1 (Distribution of objects among rule blocks)
5: Phase 2 (Maximality selection of rule blocks)
6: Phase 3 (Probabilistic distribution, blocks to rules)
7: Execution stage
8: end for

The proportional distribution of objects along the blocks is carried out through 833

a table which implements the relations between blocks (columns) and objects in 834

membranes (rows). We always start with a static (general) table, and depending on 835

the current configuration of the PDP system, the table is dynamically modified by 836

deleting columns related to non-applicable blocks. Note that after phase 1, we have 837

to assure that the maximality condition still holds. This is normally conveyed by a 838

random loop over the remaining blocks. 839

Finally, DCBA also handles the consistency of rules by defining the concept of 840

consistent blocks [21, 27]: rules within a block have the same left-hand side and 841

the same charge in the right-hand side. There is a further restriction within phase 842

1: if two non-consistent blocks (having different associated right-hand charge) can 843

be selected in a configuration, the simulation algorithm will return an error, or 844

optionally non-deterministically choose a subset of consistent blocks. 845
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6.3.3.3 Design of the Parallel Simulator 846

Normally, the end user (i.e., ecological experts and model designers) runs many 847

simulations on each set of parameters to extract statistical information of the 848

probabilistic model. This can be automated by adding an outermost loop for 849

simulations in the main procedure of the DCBA, which is easily parallelized. 850

At first glance, these two levels of parallelism (simulations and environments 851

[23]) could fit the double parallelism of the CUDA architecture (thread blocks and 852

threads). For example, we could assign each simulation to a block of threads and 853

each environment to a thread (since they require synchronization at each time step). 854

However, the number of environments depends inherently on the model. Typically, 855

2 to 20 environments are considered, which is not enough for fulfilling the GPU 856

resources. Number of simulations typically range from 50 to 100, which is sufficient 857

for thread blocks, but still a poor number compared to the several hundred cores 858

available on modern GPUs. 859

Thus, the selection of rule blocks (phase 1) and rules (phase 2 and 3) is further 860

parallelized. Hence, the simulator can utilize a huge number of thread blocks 861

by distributing simulations (parallel simulations, as memory can store them) and 862

environments in each one and process each rule block by each thread. Since there are 863

normally more rule blocks (thousand of them) than threads per thread block (up to 864

512), 256 threads are created, which iterate over the rule blocks in tiles. This design 865

is graphically shown on Fig. 6.4. Each phase of the algorithm has been designed 866

following the general CUDA design explained above and implemented separately 867

as individual kernels. Thus, simulations and environments are synchronized by the 868

successive calls to the kernels. 869

 
 

 

Fig. 6.4 General design of the CUDA-based simulator: 2D grid and 1D thread blocks. Threads
loop the rule blocks in tiles. From [21, 28]
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6.3.3.4 GPU Implementation of the DCBA Phases 870

The main challenge at phase 1 is the expanded static table Tj construction. The 871

size of this table is of order O(|B| · |�| · (q + 1)), where |B| is the number of 872

rule blocks, |�| is the size of the alphabet (total amount of different objects), and 873

q + 1 corresponds to the number of membranes plus the space for the environment. 874

A full implementation of Tj can be expensive for large systems and very sparse: 875

competitions for one object appears for a relatively small number of blocks. Thus 876

the expanded static table is implemented by a virtual table, which is similar but 877

based on the information of the rules: 878

• Operations over columns: they can be transformed to operations for each rule 879

block and their left-hand sides. 880

• Operations over rows: they can be transformed to operations over the left-hand 881

sides of rule blocks and storing the partial results into a global array (one position 882

per row). 883

Further auxiliary data structures are used to virtually simulate the table [23]: 884

• activationV ector: the information of filtered blocks is stored here as Boolean 885

values. 886

• addition: the total sums of the rows are stored using this global vector, one per 887

each pair object and region. 888

• MinN : the minimum numbers per column are stored here. 889

• BlockSel: the total number of applications for each block is stored here. 890

• RuleSel: the total number of applications for each rule is stored here. 891

The implementation of phase 1 is actually done by means of three kernels, 892

executing one after the other and using the same grid configuration as mentioned 893

in Fig. 6.4. The second and third kernels are executed several times according to 894

parameter A (accuracy) of DCBA [28]: 895

1. Kernel for Filters: FILTERS 1 and 2 are implemented here. 896

2. Kernel for Normalization: the two parts (row additions and minimum calcula- 897

tions) of the normalization step is implemented in a kernel. The two parts are 898

synchronized by synchtreads CUDA instruction. The work assigned to threads is 899

divergent, that is, each thread works with one rule block, but writes information 900

for each object appearing in the LHS. Therefore, the writes to addition are 901

carried out by atomic operations. 902

3. Kernel for Updating and FILTER 2. As before, the work of each thread is 903

divergent. Thus, the update of the configuration is also implemented with atomic 904

operations. Moreover, the BlockSel gets updated with the new distribution of 905

selection. 906
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Phase 2 is the most challenging part when parallelizing by blocks. The selection 907

of blocks is performed in an inherently sequential way: we need to know how much 908

a block can consume before checking the next one. At least, phase 2 can be run 909

simultaneously to each environment and simulation. For this phase, a special version 910

of this kernel was designed. This kernel dynamically calculates the competition of 911

blocks, so that the dependencies of blocks are pre-calculated in order to know which 912

blocks can be selected independently of each other, and everything is done in shared 913

memory. BlockSel gets updated with the last selections, and the configuration is 914

also updated to prevent other blocks from being selected. 915

Phase 3 requires a random number generation system for multinomial distri- 916

butions that was not existing for CUDA. A dedicated implementation was done, 917

called CURAND_BINOMIAL, and it is based on the accelerated uniform and normal 918

random variate generation in CUDA with CuRAND and the BINV algorithm. This 919

is therefore used to calculate multinomial distributions per rule block and write to 920

RuleSel. 921

Finally, for phase 4, the rule selection RuleSel is used to generate the right-hand 922

side, by using atomic operations over the configuration. The parallelization is done 923

by using a similar grid configuration as shown in Fig. 6.4, but looping over rules 924

instead of rule blocks. 925

6.3.3.5 Performance Results of the Simulator 926

In order to test the performance of the simulators, a random generator of PDP 927

systems was designed (designated pdps-rand). These randomly created PDP sys- 928

tems have no biological meaning. The purpose is to stress the simulator in 929

order to analyze the implemented designs with different topologies. pdps-rand is 930

parametrized in such a way that it can create PDP systems of a desired size. 931

The parallel simulator on the GPU (pdp-gpu-sim) and a parallel simulator on 932

multicore CPUs (pdp-omp-sim, for 1 (sequential), 2 and 4 cores) are compared. All 933

experiments were run on a GPU server: Linux 64-bit server, with a 4-core (2 GHz) 934

dual socket Intel i5 Xeon Nehalem processor, 12 GBytes of DDR3 RAM, and two 935

NVIDIA Tesla C1060 graphics cards (240 cores at 1.30 GHz, 4 GBytes of memory). 936

GPU cores are typically slower than CPU cores. 937

The test analyses the performance when increasing the parallelism level of the 938

CUDA threads within thread blocks, that is, the number of rule blocks. The speedup 939

achieved by pdp-gpu-sim versus pdp-omp-sim is shown in Fig. 6.5. The number of 940

simulations is fixed to 50 and the environments to 20 (hence, a total of 1000 thread 941

blocks). The number of objects is proportionally increased together with the number 942

of rule blocks, in such a way that the ratio for number of rule blocks and number of 943

objects is always 2. The mean LHS length is 1.5 (this is normal value for many real 944

ecosystem models, as seen in the literature). The speedup gets stable to around 7× 945

on the number of rule blocks for the GPU versus CPU. For the multicore versions 946

with 2 and 4 CPUs, the speedups are maintained to 4.3× and 3×, respectively. In 947

the experiments, this number is also achieved when running with 106 rule blocks. 948

As stated in [23], parallelizing by simulations yields the largest speedups 949

on multicore platforms. In order to test the efficiency of the simulator when 950
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Fig. 6.5 Scalability of the simulators when increasing the number of rule blocks, from [21, 28]
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Fig. 6.6 Scalability of the simulators when increasing the number of simulations, from [21, 28]

increasing the number of simulations, rule blocks are fixed to 50000, environments 951

to 20, objects to 5000, and mean LHS length to 1.5. As shown in Fig. 6.6, the 952

GPU achieves better runtime than the multicore implementations. The speedup is 953

maintained to 4.5× using one core, 3.5× for 2 cores, and 2.7× for 4 cores. 954

6.4 Specific Simulations 955

In this section, we will introduce a type of simulation of P systems, which is called 956

specific simulation [25]. We will describe how to implement this kind of simulators 957

in CUDA and provide two major examples. 958
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6.4.1 Definition 959

When implementing a P system simulator, it is important to understand what type 960

of P systems we want to simulate before starting the development. We will say that 961

a specific simulator is any simulator developed for just a certain P system or family 962

of P systems. In other words, if we focus on just one P system or a parametrized 963

definition of P systems forming a family, then we need a specific simulator. On the 964

one hand, this is a restricted version of a simulator, since it can handle a reduced 965

variety of P systems, but it also helps to adjust better the simulator to parallel 966

architectures. 967

Basically, restricting the P systems to be simulated helps us to take a better 968

control of the algorithm by predicting when certain things will happen. On the one 969

hand, by just focusing on a P system variant, we will know which kind of rules 970

and what semantics apply. On the other hand, by knowing exactly the P systems to 971

simulate, we can develop tailored code to certain parts of the model. For example, 972

we can see in the literature that when developing solutions to certain problems, it 973

is very useful to design it by making a scheme of the computation. This means 974

that the computation tree of the designed P system is usually bound and can be 975

divided into stages. For example, in SAT solutions, there is usually a stage where an 976

exponential amount of membranes is generated by applying division rules, and it is 977

known at which moment the stage starts and ends, because it is part of the design of 978

the solution. By making an exhaustive analysis, it would be even possible to predict 979

which objects can appear in which membranes and when. 980

Therefore, specific simulators can take advantage of that information in order to 981

adapt the code and the data structures. Specific functions and kernels can be written 982

for each stage, and the memory layout to store the P system information can be 983

drastically reduced. In fact, the information of rules (left and right-hand sides) can 984

be encoded in the source code, instead of storing them in memory, because we know 985

the rules. 986

The memory layout is also an essential part of a simulator, since P system 987

simulators have been demonstrated to be memory and memory bandwidth bound. 988

When storing the information of P system configuration, we can use either of the 989

following[25]: 990

• Sparse representation: using a large array to store multiplicities, with a position 991

per each possible object (all objects defined in the alphabet). The access is direct 992

since the object identifier is the index where to access the array. However, if many 993

objects are not present at a certain moment, the array will be full of zeroes. 994

• Dense representation: using a double array with a component for the object 995

identifier and the other for multiplicity. We need to search for the object, unless 996

we track them and we know exactly where they are store at any moment. This 997

can help to drastically reduce the size because objects with multiplicity zero can 998

be discarded. 999
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Specific simulators can use dense representation, if we can know where each 1000

object is at every transition step, so that the rules can access them directly. Moreover, 1001

there are many objects that work as counters, for example oi, 0 ≤ i ≤ n. They are 1002

distinct objects but at the end they are related. If we know that oi and oj , with i 	= j 1003

will not be present at the same time, then we can use just one position, or even use 1004

a variable (register) to store the subindex. 1005

Finally, it is important to remark that specific simulators must keep being full 1006

simulators; that is, if the simulator goes beyond the P system model and skips 1007

representing the P system features, then we are simulating something else. In other 1008

words, we will say that a program is simulating a P system if we can ask the 1009

program, at any transition step, any piece of information of the state of the P system 1010

(configuration, rules applied, etc.). Thus, a specific simulator should be developed 1011

in such a way that we could extract from it the configuration of the P system or the 1012

rules that have been applied. 1013

6.4.2 Simulating a SAT Solution with Active Membrane P Systems 1014

The first specific simulator implemented in CUDA was a family of recognizer 1015

P systems with active membranes designed to solve the SAT problem in linear time 1016

(but with exponential workspace). In this section, we will discuss the design of this 1017

simulator and its performance achieved with CUDA. 1018

The original work is published in [3, 5, 21, 22]. The framework of all these 1019

simulators is named PCUDASAT, and it can be downloaded from the official website 1020

http://sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/ 1021

pcudasat. 1022

6.4.2.1 SAT Solution with Active Membranes 1023

Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in CNF such that the set of 1024

variables of the formula is V ar(ϕ) = {x1, . . . , xn}, consisting of m clauses Ci = 1025

yi,1∨· · ·∨yi,ki , 1 ≤ i ≤ m, where yi,i′ ∈ {xj ,¬xj : 1 ≤ j ≤ n} are the literals of ϕ. 1026

We can assume that the formula is in simplified expression, i.e., no clause contains 1027

two occurrences of the same literal, and no clause can contain, simultaneously, a 1028

literal and its negation. The SAT problem is defined as follows: given a Boolean 1029

formula in conjunctive normal form (CNF), to determine whether or not there exists 1030

a truth assignment to its variables on which the formula evaluates true. 1031

The solution to SAT based on recognizer P system with active membranes is 1032

defined as �am−SAT (〈m,n〉) = (�,�,μ,M1,M2,R, 2) of degree 2, for each pair 1033

of natural numbers m,n ∈ N. Specifically: 1034

• The input alphabet is � = {xi,j , xi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n}. 1035

• The working alphabet is 1036

� = � ∪ {ck|1 ≤ k ≤ m+ 2} ∪ {dk|1 ≤ k ≤ 3n+ 2m+ 3} ∪
∪ {ri,k |0 ≤ i ≤ m, 1 ≤ k ≤ 2n} ∪ {e, t} ∪ n{Yes,No} 1037

http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/pcudasat
https://github.com/RGNC/pcudasat
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• The set of labels is {1, 2}. 1038

• The initial structure of membranes is μ = [ [ ]2 ]1. 1039

• The initial multisets associated with the membranes areM1 = ∅ yM2 = {d1}. 1040

• The input membrane is the one labeled by 2. 1041

• The set R consists of the following rules: 1042

(a) [dk]02→ [dk]+2 [dk]−2 , for 1 ≤ k ≤ n. 1043

(b) [xi,1 → ri,1]+2 , [ xi,1 → ri,1]−2 , for 1 ≤ i ≤ m. 1044

[xi,1 → λ]−2 , [xi,1 → λ]+2 , for 1 ≤ i ≤ m. 1045

(c) [xi,j → xi,j−1]+2 , [xi,j → xi,j−1]−2 , for 1 ≤ i ≤ m, 2 ≤ j ≤ n. [ xi,j → 1046

xi,j−1]+2 , [ xi,j → xi,j−1]−2 , for 1 ≤ i ≤ m, 2 ≤ j ≤ n. 1047

(d) [dk]+2 → [ ]02dk, , [dk]−2 → [ ]02dk, for 1 ≤ k ≤ n. 1048

dk[ ]02→ [dk+1]02, for 1 ≤ k ≤ n− 1}. 1049

(e) [ri,k → ri,k+1]02, for 1 ≤ i ≤ m, 1 ≤ k ≤ 2n− 1. 1050

(f) [dk → dk+1]01, for n ≤ k ≤ 3n− 3; [d3n−2→ d3n−1e]01. 1051

(g) e[ ]02→ [c1]+2 ; [d3n−1→ d3n]01. 1052

(h) [dk → dk+1]01, for 3n ≤ k ≤ 3n+ 2m+ 2. 1053

(i) [r1,2n]+2 → [ ]−2 r1,2n. 1054

(j) [ri,2n → ri−1,2n]−2 , for 1 ≤ i ≤ m. 1055

(k) r1,2n[ ]−2 → [r0,2n]+2 . 1056

(l) [ck → ck+1]−2 , for 1 ≤ k ≤ m. 1057

(m) [cm+1]+2 → [ ]+2 cm+1. 1058

(n) [cm+1 → cm+2t]01. 1059

(o) [t ]01→ [ ]+1 t . 1060

(p) [cm+2]+1 → [ ]−1 Yes. 1061

(q) [d3n+2m+3]01→ [ ]+1 No. 1062

We also consider a polynomial encoding (cod, s) of the SAT problem in the 1063

family �am−SAT = {�am−SAT (t) | t ∈ N}. The function cod associates to the 1064

previously described propositional formula ϕ (an instance of SAT with n variables 1065

and m clauses), the following multiset of objects 1066

cod(ϕ) =
m⋃

i=1

{xi,j |xj ∈ Ci} ∪ {xi,j |¬xj ∈ Ci} 1067

In this case, object xi,j represents that variable xj in clause Ci . 1068

The size function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)
2 +m. 1069

Then, cod(ϕ) is an input multiset of the system �am−SAT (s(ϕ)) and the pair 1070

(cod, s) is therefore a polynomial encoding of the SAT problem in the family 1071

�am−SAT. Thus, the system of the family �am−SAT processing the instance ϕ will 1072

be the P system with active membranes �am−SAT (s(ϕ)) with input multiset cod(ϕ). 1073
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The system �am−SAT (s(ϕ)) with input cod(ϕ) is confluent, and its computation 1074

is structured in four phases as follows: 1075

• Generation phase: all possible relevant truth assignment is generated for the set 1076

of variables of the formula {x1, . . . , xn}. It is achieved by using division rules 1077

in the internal membranes (labeled by 2). This will allow the generation of 2n
1078

membranes that will encode all possible assignments. Nevertheless, in this phase, 1079

while the valuations are being generated, the clauses that are true by the encoded 1080

valuation in each internal membrane are checked. This idea is implemented 1081

through a very sophisticated process by which only the truth values 1 and 0 are 1082

given to the variable 1. This variable 1 corresponds to the variable x1 in the first 1083

loop step, but by a set of indices, the variable 1 corresponds to the variable x2 in 1084

the second loop step, and so on. This phase is executed in 3n − 1 computation 1085

steps, and only the rules (a), (b), (c), (d) and (e) are applied. 1086

• Synchronization phase: it prepares the system for the checking phase synchroniz- 1087

ing the execution of the system by unifying certain sub-indices of some objects. 1088

The execution of this phase consumes 2n computation steps, and only rules 1089

(e), (f ) and (g) are executed. 1090

• Check-out phase: in this phase, it is determined how many clauses are true for 1091

each truth assignment encoded by the internal membranes. This is done using the 1092

objects ck (k > 1), whose appearance in a membrane means that exactly k − 1 1093

clauses are made true by the encoded valuation in that membrane. This phase is 1094

executed in 2m steps, and rules (h), (i), (j), (k) and (l) are applied. 1095

• Output phase: in this phase the system provides the corresponding output 1096

depending on the analysis of the check-out phase. That is, this step performs 1097

a search of the internal membranes encoding a solution (i.e., containing object 1098

cm+1). If a membrane satisfies the above condition, the object Yes is sent to 1099

the environment, and the system stops. Otherwise, the object No is sent to the 1100

environment and the system stops. The execution of this phase is done in 4 steps 1101

and the used rules are (m), (n), (o), (p) and (q). 1102

6.4.2.2 Sequential Simulator and Data Structures 1103

The sequential simulator design is based on the four main phases of a P system 1104

computation from �am−SAT: generation, synchronization, check-out, and output. 1105

Thus, the computation of the P system to simulate (from the family �am−SAT) is 1106

reproduced by sequentially executing these phases. Firstly, the generation phase 1107

is executed, generating 2n membranes by dividing each one in n steps, where n 1108

is the number of variables of the input CNF formula. Since we know the value 1109

of n, the simulator knows the amount of membranes to generate before starting 1110

the simulation. After that, the simulator executes the synchronization phase which 1111

evolves the objects following the rules previously explained. The check-out phase 1112

determines the membranes that codify a solution of the SAT instance, and finally 1113

the output phase sends out the correct answer to the environment. 1114

It is important to remark that the semantics of the P system is reproduced by 1115

the simulation algorithm, so the simulator is specific for this solution. Thus, the 1116
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only input for the simulator is the CNF formula provided in DIMACS CNF format. 1117

We can assume therefore that the simulator behaves as a SAT solver, receiving a 1118

propositional formula and giving the corresponding answer. However, this solver is 1119

implemented following a solution by means of P systems. 1120

The first challenge is to decrease the sparsity of the data structures storing the 1121

configuration of the P system. After an exhaustive analysis of the computation, the 1122

upper bound of number of distinct objects appearing in a membrane can be fixed 1123

to the size of the input multiset (the number of literals in the input propositional 1124

formula). Indeed, one can observe that the size of the right-hand side of evolution 1125

rules is always 1. Thus, every object in the input multiset always evolves to either 1126

another or disappears. By definition, send-in, send-out, and division rules do not 1127

generate more than one object in the right-hand side. 1128

Hence, the representation of the P system is made by an array storing the 1129

multisets of objects for every membrane labeled by 2. The amount of elements 1130

per membrane equals to, as mentioned above, the size of the input multiset (total 1131

number of literals in the formula, |cod(ϕ)|). This array is initially allocated for the 1132

maximum amount of membranes 2 that the P system will create, which is 2n (note 1133

that n is defined in the input file). Only the first one is initialized by storing the full 1134

input multiset. Division rules will initialize each membrane later on. 1135

The encoding of objects for the input multiset can be made at a bit-level within 1136

integers of 32 bits. Each integer stores the following (8 bits for each field): 1137

1. The name of the object (x or x) 1138

2. Reserved space. 1139

3. Variable (subindex i). 1140

4. Clause (subindex j ). 1141

It is noteworthy that the membrane charges are not stored, since we can observe 1142

from the computation that a partition of membranes having positive and negative 1143

charges can be done over the array. In other words, the first half of membranes 1144

are positive, and the other half (new ones) negative. The skin membrane is not 1145

represented, since its purpose is to store objects sent out from membranes, those 1146

which are sent in to the same membranes in the next step. This process is therefore 1147

simulated within each membrane, avoiding to store the information for the skin 1148

membrane. Other objects, such as yes, no, and c counter, are also placed as variables 1149

encoded directly in source code. 1150

6.4.2.3 Design of the GPU Simulator 1151

The parallel simulator on the GPU was designed to take over the most demanding 1152

phases on the computation of �am−SAT, which are the first three phases. The last 1153

one (output phase) is developed on the CPU. In order to map the parallelism into the 1154

GPU, the simulator assigns a thread block to each membrane, as shown in Fig. 6.7. 1155

In this way, the parallelism among membranes is represented. Moreover, each thread 1156

is assigned to each object of the input multiset, which is a literal of the input formula 1157

(with the exception of object d1). This mapping is common to all the defined kernels. 1158
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Fig. 6.7 Design of the parallel simulator for �am−SAT. Each generated membrane is assigned to
a thread block, and each object (initially, the input multiset) is assigned to a thread. From [3, 21]

Algorithm 4 shows the pseudocode for the host side the simulator. The generation 1159

phase is simulated by using three kernels which execute the rules in this phase. This 1160

is an iterative process of n steps where the kernels are called n times. A tailored 1161

kernel for division is designed to make copies of all membranes executing division 1162

rules, whose behavior is shown in Fig. 6.8. There is a double parallelism in the 1163

division, as shown in the figure; threads within a block are in charge of making 1164

the copies for the new membrane and changing just the corresponding object. But 1165

this is also repeated for each thread block. In each iteration, the simulator adjusts 1166

the number of thread blocks before calling the kernel, since new membranes are 1167

created. That is, the membranes are distributed along the two-dimensional grid of 1168

thread blocks. 1169

When the exponential amount of membranes is created, synchronization and 1170

check-out phases are executed. This is simulated within just one kernel for both 1171

phases, in parallel for each membrane. Global synchronization is not necessary 1172

because there is no communication among the internal membranes at these phases. 1173

Finally, the output phase is developed on the CPU, checking the conditions and 1174

launching the result of the computation. 1175
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Fig. 6.8 Parallel division on GPU at generation phase in �am−SAT. Each membrane is divided
by a thread block, which copies the objects also in parallel by using several threads. If the number
of objects is larger than 256, the thread block repeats the process until covering all the objects.
From [5]

Algorithm 4: Parallel Simulator of �am−SAT, at host side. From [3, 21]
1: {Initialization}
2: T hreads ← |cod(ϕ)| {The number of literals in the CNF formula}
3: Blocks ← (1, 1) {One block in the 2-dimensional grid}
4: d ← 0 {A counter}
5: numMembranes ← 1 {Number of membranes}
6: psystem← allocateGPUMemory(2n) {Allocate enough memory to represent the P

system}

7: {Generation phase}
8: repeat
9: Division_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

10: numMembranes ← numMembranes × 2
11: Blocks ← AdjustBlocks(psystem, numMembranes) {Distribute membranes among

blocks}
12: Send_out_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

13: Send_in_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

14: d ← d + 1
15: until d < n {Repeat n times (number of variables)}

16: {Synchronization and Check-out phases}
17: Syn_Check_kernel <<< Blocks, T hreads >>> (psystem, numMembranes)

18: {Output phase (executed on the CPU)}
19: Output (psystem, numMembranes)
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Fig. 6.9 Simulation performance for am-sat-gpu vs am-sat-seq when increasing the number of
membranes (x-axis). From [3, 21]

6.4.2.4 Performance Analysis 1176

Next, we analyze the performance of the simulators above described for �am−SAT: 1177

the sequential simulator developed in C++ (from now, am-sat-seq) and the GPU 1178

parallel simulator on CUDA (am-sat-gpu). The experimental results were obtained 1179

using a Tesla C1060 GPU. 1180

Figure 6.9 shows the experimental performance of the cell-like simulators (in a 1181

log scale) when increasing the number of membranes in the P system (and hence, 1182

the number of blocks in the GPU and also the variables in the CNF formula) until 1183

reaching 212 membranes. The number of simulated membranes is restricted by the 1184

available memory of the system. The number of literals in the formula is fixed to 1185

256, which means 256 threads per block. 1186

It can be seen that once the GPU resources have been fully occupied, the 1187

execution time increases linearly with the number of blocks. In this case, we report 1188

up to 94× of speedup between am-sat-seq and am-sat-gpu. However, Fig. 6.9 shows 1189

the speedup becomes a constant number of 100×when the number of membranes is 1190

greater than 128 K.1 This is the number of blocks launched in the grid of the GPU. 1191

We finalize the performance analysis by also considering the data management 1192

(allocation and transfer) time of the GPU. This is also very important, because it 1193

is part of the solution. Figure 6.10 shows the speedup achieved by comparing am- 1194

sat-gpu (with data management) and am-sat-seq. We can see that for small amounts 1195

of membranes, the speedup is below 1, what means a worst performance. However, 1196

after 32 K membranes, the speedup is 1.23×, and it is increased along with the 1197

number of membranes until 64× for 4 M membranes. This is caused by the decrease 1198

in the kernels time, and the time of handling the data is almost constant for any 1199

1Note that we use here “K” and “M” for binary prefixes “kilo” and “mega”, respectively. Therefore,
128 K = 217 = 131072.
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Fig. 6.10 Achieved speedup of am-sat-gpu against am-sat-seq considering also the GPU data
management, when increasing the number of membranes (x-axis). From [3, 21]

size. Note that the data management performed by am-sat-gpu is the following: data 1200

allocation, initial configuration (only 1 membrane) transfer, and answer (object yes 1201

or not) transfer. The information of the P system during the computation is always 1202

kept on the GPU memory. 1203

6.4.3 Simulating a SAT Solution with Tissue P Systems 1204

In this section, we depict a specific simulator for the family of recognizer tissue P 1205

systems with cell division. We first explain the data structures and the phases that 1206

compound the simulation algorithm, then the sequential version, and after that the 1207

parallel one based on CUDA, describing the different optimizations taken for each 1208

phase of the simulator. 1209

The original work is published in [21, 22, 26]. This simulation framework 1210

is named TSPCUDASAT, and it can be downloaded from the official website 1211

http://sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/ 1212

tspcudasat. 1213

6.4.3.1 Recognizer Tissue P System with Cell Division 1214

In the paradigm of membrane computing, a new computing model (tissue P system 1215

with cell division) is introduced by using the biological membranes placed in the 1216

nodes of a directed graph, inspired from the cell inter-communication in tissues 1217

[20]. Besides, cell division is an elegant process that enables organisms to grow 1218

and reproduce. Mitosis is a process of cell division which results in the production 1219

of two daughter cells from a single parent cell. Daughter cells are identical to one 1220

another and to the original parent cell. Through a sequence of steps, the replicated 1221

genetic material in a parent cell is equally distributed to two daughter cells. While 1222

there are some subtle differences, mitosis is remarkably similar across organisms. 1223

http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/tspcudasat
https://github.com/RGNC/tspcudasat
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Definition 6.4. A tissue P system with cell division of degree q ≥ 1, is a tuple 1224

� = (�,E,M1, . . . ,Mq,R, iout ), where: 1225

1. � is a finite alphabet: 1226

2. E � �; 1227

3. M1, . . . ,Mq are finite multisets over �; 1228

4. R is a finite set of communication rules of the following forms: 1229

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 	= j , u, v ∈ 1230

M(�), |u| + |v| > 0; 1231

(b) Division rules: [ a ]i → [ b ]i [ c ]i , where i ∈ {1, 2, . . . , q}, i 	= iout and 1232

a, b, c ∈ �. 1233

5. iout ∈ {0, 1, . . . , q}. 1234

A tissue P system with cell division � = (�,E,M1, . . . ,Mq ,R, iout ) of degree q ≥ 1235

1, can be viewed as a set of q cells, labeled by 1, . . . , q , with an environment labeled 1236

by 0 such that (a)M1, . . . ,Mq represent the finite multisets of objects (symbols of 1237

the working alphabet �) initially placed in the q cells of the system; (b) E is the set 1238

of objects initially located in the environment of the system, all of them available in 1239

an arbitrary number of copies; (c) R is a finite set of rules over � associated with 1240

the cells and the environment; and (d) iout ∈ {0, 1, . . . , q} indicates the output zone. 1241

We use the term zone i to refer to cell i, in the case 1 ≤ i ≤ q and to refer the 1242

environment in the case i = 0. 1243

A communication rule (i, u/v, j) is called a symport rule if u = λ or v = 1244

λ. A symport rule (i, u/λ, j) provides a virtual arc from zone i to zone j . A 1245

communication rule (i, u/v, j) is called an antiport rule if u 	= λ and v 	= λ. An 1246

antiport rule (i, u/v, j) provides two arcs: one from zone i to zone j and another one 1247

from zone j to zone i. Therefore, every tissue P system has an underlying directed 1248

graph whose nodes are the zones (cells and the environment) of the system and the 1249

arcs are obtained from communication rules. 1250

A configuration (or instantaneous description) Ct at an instant t of a tissue P 1251

system � is a tuple whose components are the multisets over � associated with 1252

each cell present in the system at moment t and the multiset over � \ E associated 1253

with the environment at moment t . 1254

A communication rule (i, u/v, j) is applicable to zones i, j to a configuration 1255

Ct at instant t , if in that configuration the multiset u is contained in one zone i and 1256

multiset v is contained in one zone j . When applying such a communication rule to 1257

such zones, the objects of the multiset represented by u are sent from zone i to zone 1258

j , and simultaneously, the objects of multiset v are sent from zone j to zone i. The 1259

length of communication rule (i, u/v, j) is defined as |u| + |v|. 1260

A division rule [a]i → [b]i[c]i is applicable to a configuration at an instant 1261

t , if one cell i belongs to that configuration containing object a. When applying a 1262

division rule [a]i → [b]i[c]i to such a cell i, under the influence of object a, that cell 1263

is divided into two cells with the same label i; in the first copy, object a is replaced 1264

by object b, in the second one, object a is replaced by object c; all the other objects



200 6 P Systems Implementation on GPUs

residing in such a cell i are replicated, and copies of them are placed in the two new 1265

cells. The output cell iout and any cell with input degree equal to zero cannot be 1266

divided. 1267

The rules of a tissue P system with cell division are applied as follows: 1268

communication rules will be applied in a non-deterministic maximally parallel 1269

manner as it is customary in membrane computing but with the following important 1270

remark: if a cell divides, then the division rule is the only one which is applied 1271

for that cell at that step; the objects inside that cell do not evolve by means 1272

of communication rules. In other words, before division a cell interrupts all its 1273

communication channels with the other cells and with the environment. The new 1274

cells resulting from division will interact with other cells or with the environment 1275

only at the next step—providing that they do not divide once again. The label of a 1276

cell precisely identifies the rules which can be applied to it. 1277

Given a tissue P system with cell division, � = (�,E,M1, . . . ,Mq ,R, iout ), the 1278

initial configuration of � is C0 = (M1, · · · ,Mq; ∅). A configuration is a halting 1279

configuration if no rule of the system is applicable to it. We say that configuration 1280

C1 yields configuration C2 in one transition step, denoted C1 ⇒� C2, if we can 1281

pass from C1 to C2 by applying the rules from R following the previous remarks. In 1282

tissue P systems with cell division, the concepts of computation, recognizer system, 1283

and polynomial time and uniform solution to a decision problem are introduced in a 1284

similar way than in P systems with active membranes. 1285

6.4.3.2 SAT Solution with Tissue P Systems 1286

This section presents an efficient solution to SAT problem by means of family 1287

of recognizer tissue P systems with cell division. Let ϕ = C1 ∧ · · · ∧ Cm be 1288

a propositional formula in CNF such that the set of variables of the formula is 1289

V ar(ϕ) = {x1, . . . , xn} and consists of m clauses Cj = yj,1∨· · ·∨yj,kj , 1 ≤ i ≤ m, 1290

where yj,j ′ ∈ {xi,¬xi : 1 ≤ i ≤ n} are the literals of ϕ. Without loss of generality, 1291

we can assume that the formula is in simplified expression. 1292

For each pair of natural numbers m,n ∈ N, we will consider the recognizer 1293

tissue P system with cell division �tsp−SAT (〈m,n〉) = (�,�,μ,M1,M2, R, 2) of 1294

degree 2, defined as follows: 1295

• The input alphabet is � = {xi,j , xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m} 1296

• The working alphabet is 1297

� = � ∪ {ai, ti , fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m} ∪
∪ {Ti, Fi | 1 ≤ i ≤ n} ∪ {Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1}∪
∪ {bi | 1 ≤ i ≤ 2n+m+ 1} ∪ {ci | 1 ≤ i ≤ n+ 1} ∪
∪ {di | 1 ≤ i ≤ 2n+ 2m+ nm+ 1}∪
∪ {ei | 1 ≤ i ≤ 2n+ 2m+ nm+ 3} ∪ {f, g,yes, no}

1298

• The environment alphabet is E = � − {yes,no}. 1299

• The set of labels is {1, 2}. 1300
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• The initial multisets associated with the cells areM1 = {yes,no, b1, c1, d1, e1} 1301

andM2 = {f, g, a1, a2, . . . , an}. 1302

• The input cell is the one labeled by 2, and the output region is the environment. 1303

• The set R is formed by the following rules: 1304

1. Division rule: 1305

(a) [ai]2 → [Ti]2 [Fi ]2, for i = 1, 2, . . . , n. 1306

2. Communication rules: 1307

(b) (1, bi/b
2
i+1, 0), for i = 1, . . . , n. 1308

(c) (1, ci/c
2
i+1, 0), for i = 1, . . . , n. 1309

(d) (1, di/d
2
i+1, 0), for i = 1, . . . , n. 1310

(e) (1, ei/ei+1, 0), for i = 1, . . . , 2n+ 2m+ nm+ 2. 1311

(f) (1, bn+1cn+1/f, 2). 1312

(g) (1, dn+1/g, 2). 1313

(h∗) (1, f 2/f, 0). 1314

(h) (2, cn+1Ti/cn+1 Ti,1, 0), for i = 1, . . . , n. 1315

(i) (2, cn+1Fi/cn+1 Fi,1, 0), for i = 1, . . . , n. 1316

(j) (2, Ti,j /ti Ti,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m. 1317

(k) (2, Fi,j /fi Fi,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m. 1318

(l) (2, bi/bi+1, 0). 1319

(m) (2, di/di+1, 0), for i = n+ 1, . . . , 2n+m. 1320

(n) (2, b2n+m+1 ti xi,j /b2n+m+1 rj , 0). 1321

(o) (2, b2n+m+1 fi xi,j /b2n+m+1 rj , 0), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. 1322

(p) (2, di/di+1, 0), for i = 2n+m+ 1, . . . , 2n+m+ nm. 1323

(q) (2, d2n+m+nm+j rj /d2n+m+nm+j+1, 0), for j = 1, . . . ,m. 1324

(r) (2, d2n+2m+nm+1/f yes, 1). 1325

(s) (2,yes/λ, 0). 1326

(t) (1, e2n+2m+nm+3 f no/λ, 0). 1327

Next, we consider a polynomial encoding (cod, s) of the SAT problem in the 1328

family �tsp−SAT = {�tsp−SAT (t) | t ∈ N}. The function cod associates to 1329

the previously described propositional formula ϕ that is an instance of SAT with 1330

parameters n (number of variables) and m (number of clauses), with the following 1331

multiset of objects 1332

cod(ϕ) =
m⋃

i=1

{xi,j |xi ∈ Cj } ∪ {xi,j |¬xi ∈ Cj } 1333

In this case, object xi,j represents that variable xi belongs to clause Cj . The size 1334

function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)
2 + m. The 1335

system of the family �tsp−SAT to process the instance ϕ will be the tissue P system 1336

�tsp−SAT (s(ϕ)) with input multiset cod(ϕ). 1337
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The execution of the system �tsp−SAT (s(ϕ)) with input cod(ϕ) is structured in 1338

six phases: 1339

• Valuations generation phase: in this phase all the possible relevant truth valua- 1340

tions are generated for the set of variables of the formula {x1, . . . , xn}. This is 1341

accomplished by using division rules (a), whereby each object xi produces two 1342

new cells, one having the object Ti that codifies the true value of the variable xi , 1343

y and the other having the object Ti that codifies the false value of the variable 1344

xi . Thus, 2n cells are obtained in n computation steps. These cells are labeled 1345

by 2, and each one codifies each possible truth valuation of the set of variables 1346

{x1, . . . , xn}. Meanwhile, the objects f, g are replicated in each created cell. This 1347

phase spends n computation steps. 1348

• Counter generation phase: simultaneously, and using the rules (b), (c), (d), and 1349

(e), the counters bi, ci, di , ei of the cell labeled by 1 are evolving such that in 1350

each computation step the number of objects in each one is doubling. Thereby, 1351

through this process and after n steps, we get 2n copies of the objects bn+1, cn+1, 1352

and dn+1. Objects b′s will be used to check which clauses are satisfied for each 1353

truth valuation. Objects c′s are used to obtain a sufficient number of copies of 1354

ti , fi (namely, m). Objects d ′s will be used to check if there is at least one 1355

valuation satisfying all clauses. Finally, objects e′s will be used to produced, 1356

in its case, the object no at the end of the computation. 1357

• Checking preparation phase: this phase aims at preparing the system for check- 1358

ing clauses. For this, at step n + 1 of the computation, and by the application of 1359

the rules (f ) and (g), the counters bn+1, cn+1, dn+1 of the cell 1 are exchanged 1360

for the objects f and g of the 2n cell 2. Thus, after this step, each cell labeled by 1361

two has a copy of the objects bn+1, cn+1, dn+1, while cell 1 has 2 copies of the 1362

objects f and g. 1363

Subsequently, the presence of an object cn+1 in each one of the 2n cells labeled 1364

by 2 allows to generate the objects Ti,1 and Fi,1. By the application of rules (j) 1365

and (k), these objects allow the emergence of m copies of ti and m copies of 1366

fi , according to the values of truth or falsity that a cell 2 assigns to a variable 1367

xi . This process spends n + m steps since there is only one object cn+1 in each 1368

cell 2, and moreover, for each i = 1, . . . , n, the rules (j) and (k) are applied 1369

exactly m consecutively times. Simultaneously, in the first steps of this process, 1370

the application of the rule (h∗) makes the cell labeled by 1 to appear only one 1371

copy of the object yes. Simultaneously in this phase, the counters bi, di and ei 1372

are evolving by the applications of the corresponding rules. 1373

• Checking clauses phase: in this phase it is determined which clauses are true 1374

for every truth valuation encoded by a cell labeled by 2. This phase starts at 1375

the computation step (n + 1) + (n + m) + 1 = 2n + m + 2. Using the rules 1376

(n) and (o), the true clauses are checked for each valuation encoded by a cell, 1377

so that the appearance of an object rj in a cell 2 means that the corresponding 1378

valuation makes true the clause Cj . Bearing in mind that a single copy of the 1379

object b2n+m+1 is in each cell, the phase takes nm computation steps. 1380
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Thus, the configuration C2n+m+nm+1 is characterized by the following: 1381

– It contains exactly 2n cells labeled by 2. Each one contains the object 1382

d2n+m+nm+1, and copies of objects rj for each clause Cj are made true by 1383

the encoded valuation in the cell. 1384

– It contains a unique cell labeled by 1, containing a copy of objects 1385

yes, no, f, g and the counter e2n+m+nm+2. 1386

This phase consumes m computation steps. 1387

• Formula checking phase: in this phase it is determined if there exists any 1388

valuation making true the m clauses of the formula. For this, the rules of 1389

type (q) are used, analyzing in an ordered way (first the clause C1, after that 1390

clause C2, and so on) if the clauses of the formula are being satisfied by the 1391

represented valuation in the corresponding cell labeled by 2. For example, from 1392

counter d2n+m+nm+1 appearing in every cell 2, the appearance of the object r1 1393

(the valuation makes true clause C1) permits to generate in that cell the object 1394

d2n+m+nm+2. This object, in turn, permits to evolve object d2n+m+nm+3 if in that 1395

cell appears the object r2. In this manner, a valuation represented by a cell labeled 1396

by 2 makes true the formula ϕ if and only if the object d2n+m+nm+m+1 appears 1397

in the content of that cell in the configuration C2n+m+nm+m+1. 1398

• Output phase: in this phase, the system will provide the corresponding output, 1399

depending on the analysis in the formula checking phase. 1400

If the formula ϕ is satisfiable, then there is some cell in the configuration 1401

C2n+m+nm+m+1 that contains an object d2n+m+nm+m+1. In this case, the applica- 1402

tion of rule (r) sends an object f and the object yes to the cell 1. The object yes 1403

therefore disappears from cell 1, and consequently, rule (t) cannot be applied. In 1404

the next computation step, the application of the rule (s) produces an object yes 1405

in the environment (for the first time during the whole computation) and the 1406

process ends. 1407

If the formula ϕ is not satisfiable, then there no exist any cell in the 1408

configuration C2n+m+nm+m+1 containing an object d2n+m+nm+m+1. In this case, 1409

the rule (r) is not applicable, and in the next computation step, the counter ei 1410

evolves, providing an object e2n+m+nm+m+3 in cell 1. This object permits the 1411

application of rule (t), since the objects no and f remain in cell 1. In this way, 1412

the object no is sent in the next computation step, and the computation finalizes. 1413

6.4.3.3 Sequential Simulation and Data Structure 1414

For an easier implementation, the simulation algorithm has been divided into five 1415

(simulation) phases, instead of the six phases in �tsp−SAT since we merge some 1416

of them. Each of these simulation phases are implemented in code as separated 1417

functions whenever is possible. They corresponds to the application of certain rules, 1418

as explained below: 1419

• Generation phase: it performs the application of rules from (a) to (e) of systems 1420

from �tsp−SAT. Therefore, it comprises the two first phases of the theoretical 1421

model: valuations generation phase and counters generation phase. 1422
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• Exchange phase: it simulates the application of rules (f ) and (g). It comprises 1423

the first part of the checking preparation phase. 1424

• Synchronization phase: it applies the rules from (h) to (m), so comprising the 1425

second part of the checking preparation phase. 1426

• Checking phase: it performs the application of rules from (n) to (p). Thus, it is 1427

the checking clauses phase we identified in the theoretical model. 1428

• Output phase: it applies rules from (q) to (t). It then performs both the formula 1429

checking phase and the output phase identified in the theoretical model. 1430

The sequential simulator implements these five simulation phases directly in 1431

code. The input of the simulator is the same than the one used in the simulator for 1432

the cell-like solution �am−SAT. A DIMACS CNF file is provided, and the simulator 1433

outputs the response of the computation. Therefore, it acts merely as a SAT solver, 1434

but the implementation follows the computation of the systems from the family 1435

�tsp−SAT. 1436

Furthermore, we have adopted a set of optimizations to improve the performance 1437

of the sequential simulator. After several tests, we show that the best optimizations 1438

are as follows [21]: 1439

• As the exchange phase is very simple, it is then implemented after the generation 1440

phase loop, within the same function. 1441

• The full synchronization phase is applied to one cell before going to the next one. 1442

This allows to exploit data locality in cache memories. 1443

• In the checking phase, the objects rj , for 1 ≤ j ≤ m, are inserted in order in 1444

the corresponding array whenever they are created. Thus, the output phase can 1445

be easily performed, in such a way that it is not necessary to loop all the objects 1446

coming from the input multiset (literals). Now it is enough to check if there exists 1447

the m objects rj . 1448

For this solution, the memory layout for the representation of the tissue P 1449

system differentiates between cells labeled 1 and 2, having a different data structure 1450

representing each type of cell in the system. 1451

First, cell 1 is represented as an array having a maximum dimension of five 1452

elements. That is, the multiset for cell 1 has the maximum amount of five objects. 1453

These five objects are the three counters, b, c, and d (which are initially in this cell), 1454

and the two objects yes and no (that will final answer to the problem). Note that 1455

the size of the array for cell 1 is always constant, as it is independent of the input 1456

parameters of the simulator. 1457

Second, the cells labeled by 2 are also represented by a one-dimensional array. 1458

All of them are stored inside this large array, since it is initially allocated to store 1459

the maximum amount of cells (2n). By studying a computation of the systems
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�tsp−SAT, we conclude that the maximum number of objects appearing in a cell 1460

2 is (2n)+ 4+ |cod(ϕ)|, where: 1461

• |cod(ϕ)| elements for the initial multiset, 1462

• n elements for objects Ti,j and Fi,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Note that an 1463

object Ti,j and an object Fi,j , for any i, cannot be simultaneously placed within 1464

a cell 2. Moreover, the index j is used sequentially in the computation steps of 1465

the system, i.e., replacing objects in the evolution process of incrementing the 1466

second index. For all of this, n elements are enough to store those objects. 1467

• n elements for objects ti and fi , for 1 ≤ i ≤ n. Note that objects fi and tj , for 1468

i = j , cannot be simultaneously placed within a cell 2, so n elements are enough 1469

to store those objects. 1470

• 4 elements for counter objects a, b, c, and d . They will be replaced for counter 1471

objects f and g. 1472

The objects are represented similarly to the simulator for �am−SAT. In this 1473

case, we recover the reserved space utilized to store the multiplicity of the object, 1474

inasmuch as it exceeds 1. In summary, they are encoded at bit-level within integers 1475

of 32 bits that store the following (8 bits for each field): 1476

1. The name of the object (x or x) 1477

2. Multiplicity of the object. As there are objects whose multiplicity can exceed 28, 1478

this field can eventually be joined to the next one (variable). 1479

3. Variable (subindex i). 1480

4. Clause (subindex j ). 1481

6.4.3.4 Design of the Parallel Simulator 1482

The design of this parallel simulator is driven by the same structure of phases we 1483

have used for the sequential one. Separated CUDA kernels are utilized to speedup 1484

the execution of each phase. 1485

The general assignment of work for threads and thread blocks is summarized in 1486

Fig. 6.11. Each thread block corresponds to each cell labeled by 2 created in the 1487

system. However, unlike the previous simulator for the cell-like solution, we do not 1488

assign a thread per literal. The assignment of each thread, this time, is different for 1489

each simulation phase. The work mapping per phase is therefore as follows: 1490

• Generation phase: the number of thread blocks is iteratively increased together 1491

with the amount of cells created in each computation step. We distribute cells 1492

along the two-dimensional grid through successive kernel calls. Each thread 1493

block contains (2n) + 4 + |cod(ϕ)| threads. That is, the amount of elements 1494

assigned to each cell in the global array storing multisets. Threads are then used 1495

to copy each individual elements of the corresponding cell when it is divided. 1496

• Exchange phase: it is executed at the kernel for generation phase, using the 1497

same amount of thread blocks, but only the corresponding threads perform the 1498

exchange. 1499
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Fig. 6.11 General design of the parallel simulator for �tsp−SAT. From [21, 26]

• Synchronization phase: the thread blocks are assigned to the cells labeled by 1500

2, like in the last step of the generation phase. For this phase, the number of 1501

threads is n (number of variables). If we use the same amount of threads than 1502

in generation phase, most of them will be idle. So it is preferred to launch less 1503

threads, but performing effective work. We have experimentally corroborated this 1504

fact. 1505

• Checking phase: the number of thread blocks is again assigned to be the number 1506

of cells labeled by 2. However, for this phase we use a block size of |cod(ϕ)|. 1507

That is, each thread is used to execute, in parallel, rules of type (n) and 1508

(o). The result at the SAT problem resolution level, each thread checks if the 1509

corresponding literal makes true its clause, depending on the truth assignment 1510

encoded by the cell assigned to the thread block. 1511

• Output phase: rules of type (q) are sequentially executed in a separate kernel, 1512

again using |cod(ϕ)| threads per block and 2n thread blocks (2n is the number of 1513

cells labeled by 2). 1514

For this solution, we have applied a small set of optimizations, focused on 1515

the GPU implementation, to improve the performance of the parallel simulator. 1516

We identify that the simulator runs twice faster than the simulator without these 1517
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optimizations. We will use the optimized version of the parallel simulator to perform 1518

the comparisons. These optimizations are oriented to improve two performance 1519

aspects of GPU computing, what leads us to consider two kind of optimizations. 1520

The first one is to emphasize the parallelism. This optimization aims to increase 1521

the number of threads per block (to the recommended amount from 64 to 256), 1522

so it allows to fulfill warps and hide latency. The second is to exploit streaming 1523

bandwidth. To do this, the data is loaded first to the shared memory, and operated 1524

there, avoiding global memory (expensive) accesses. Next, we show the specific 1525

optimizations we have carried out for each phase: 1526

• Generation phase: no optimizations were implemented here, since the implemen- 1527

tation already satisfies the first optimization type. The second type will require a 1528

more sophisticated implementation, like the one presented in Sect. 6.4.2. 1529

• Exchange phase: this phase, as it is joined with the generation phase, has no 1530

optimizations. 1531

• Synchronization phase: the two optimization types are implemented here. The 1532

second optimization type is carried out by using shared memory to avoid global 1533

memory accesses. The first type is performed by increasing the number of threads 1534

per block. For the simulator, we can assume that n (number of variables, and the 1535

number of threads per block) is a small number, since the number of cells grows 1536

exponentially with respect to it. For example, let n = 32. Then, 232 cells will be 1537

created, what require 232(68+ |cod(ϕ)|) bytes (in gigabytes: 272+ 4|cod(ϕ)|). 1538

This number obviously exceeds the amount of available device memory. We 1539

therefore need to increase the number of threads per block, since n < 32 means 1540

to not fulfil a CUDA warp. A solution here is to assign more than one cell to 1541

each thread block. This amount is 256
n

, being 256 the optimum number of threads 1542

per block. It allows us to reach a number of threads close to the optimum one. 1543

However, we have to take care also of having enough shared memory to load the 1544

data of every assigned cell. 1545

• Checking phase: since |cod(ϕ)| can be greater than 32, we then keep this number 1546

as the number of threads per block. However, we use shared memory to speedup 1547

the accesses to the elements of the array. 1548

• Output phase: as in the previous phase, we also use shared memory, and the 1549

number of threads per block is kept to |cod(ϕ)|. 1550

6.4.3.5 Performance Analysis 1551

In this subsection, we analyze the performance of the two simulators developed for 1552

the family of tissue-like P systems �tsp−SAT: the sequential simulator developed in 1553

C++ (from now, tsp-sat-seq) and the parallel simulator on the GPU (tsp-sat-gpu). 1554

Figure 6.12 shows the results for both simulators when increasing the number of 1555

cells (by increasing the number of variables in the input CNF formulas), considering 1556

only kernel runtime for tsp-sat-gpu. For this case, we can observe that again the 1557

kernels of tsp-sat-gpu run faster than tsp-sat-seq. However, the performance gain is 1558

increased with the amount of cell 2 created by the system. For 64 membranes, the 1559

speedup is of 2×, but for 2 M cells it is of 8.3×. 1560
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Fig. 6.12 Simulation performance for tsp-sat-seq and tsp-sat-gpu when increasing the number of
membranes (x-axis). From [21, 26]

Fig. 6.13 Speedup achieved running Test 2 (256 Objects/Cell) for tsp-sat-gpu and tsp-sat-seq
considering also the GPU data management, when increasing the number of membranes (x-axis).
From [21, 26]

Finally, we show the speedup achieved by the simulator tsp-sat-gpu, taking into 1561

account also the amount of time consumed by the data management (allocation and 1562

transfer). It is observed that, since the data management time is fixed for all the sizes 1563

(copy the initial multiset and retrieve the final answer), the speedup exceeds 1 only 1564

after 128 K membranes. Systems with smaller number of cells are executed slower 1565

than in the CPU, because of the data management. However, for very large systems, 1566

the speedup is as large as with only kernels. The maximum speedup we report for 1567

this simulator is given for 4 M cells, up to 10× (Fig. 6.13).AQ1 1568
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6.5 Adaptive Simulations 1569

In this section, we will introduce a third type of simulation of P systems, which is 1570

called adaptive simulation. 1571

6.5.1 Definition 1572

We have discussed the difference between generic and specific simulators. In 1573

this section, we will discuss a hybrid type, which is called adaptative, or simply 1574

adaptive, simulation. A simulator of this kind is initially a generic simulator, which 1575

is designed to simulate a wide range of P systems within a variant. However, the 1576

simulator is provided with high-level information that can be either discarded (then 1577

remaining as generic) or used to adapt the simulation to improve its efficiency. 1578

In this sense, an adaptative simulator has the goal of getting closer to specific 1579

simulators without losing generality; that is, they are generic simulators with 1580

improved performance by taking advantage of extra information provided directly 1581

by designers (e.g., modules). For example, if the algorithm scheme of the computa- 1582

tion is known by the designer (as it is, as discussed for the specific simulators), then 1583

it can be given to the simulator in order to be able to discard rules at selection stage 1584

(because the algorithm scheme is known). 1585

Next, we will overview the first adaptive simulator for P systems implemented 1586

so far, which is published in [29]. This simulation framework is implemented 1587

within ABCD-GPU, and it can be downloaded from the official website http:// 1588

sourceforge.net/p/pmcgpu [45] or the repository https://github.com/RGNC/abcd- 1589

gpu/tree/adaptative. 1590

6.5.2 Simulating Population Dynamics P Systems 1591

The idea of adaptative simulators was introduced and analyzed in [29]. It is inspired 1592

in the way directives work in common programming languages. They are special 1593

syntactic elements that tell extra information to the compiler, allowing to better 1594

adapt the code for some purposes if the compiler accepts it (e.g., in OpenMP, one 1595

call can easily ask to parallelize the iterations of a loop). This way, a P system model 1596

designer can also provide very useful information to the simulator, rather than just 1597

the syntactic and/or semantic elements of the P system to simulate, such as the 1598

algorithmic scheme of the computation. 1599

Specifically in PDP systems, ecosystem modelers often use algorithmic schemes 1600

for their models [6]. This is given as cycle that is repeated (per year, per season, etc.). 1601

A cycle in the model is a fixed amount of transition steps where a sequence of mod- 1602

ules take place. These modules reproduce certain processes such as reproduction of 1603

species, feeding, migration, etc. Moreover, these modules consist of certain rules 1604

that are carefully designed to model the corresponding process. Therefore, we can 1605

http://sourceforge.net/p/pmcgpu
http://sourceforge.net/p/pmcgpu
https://github.com/RGNC/abcd-gpu/tree/adaptative
https://github.com/RGNC/abcd-gpu/tree/adaptative
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say that somehow the model designer already knows which rules can be executed in 1606

each time step. Thus, if they are able to provide that information, the simulator can 1607

take advantage of this to dismiss rules automatically at each step. 1608

The PDP system simulator was turned into adaptative. First, the model designer is 1609

able to provide the information of the modules they are defining by using the new P- 1610

Lingua 5 software [37]. This new version now includes new syntax elements called 1611

features. They are written as @featureName = featureValue and can be 1612

defined globally (for the whole system) or locally (for individual rules). ABCD- 1613

GPU takes this information to organize the rules by modules. If the simulator does 1614

not recognize the information provided by the features, it can proceed and simulate 1615

the system without problems. 1616

In summary, there are two main pieces of information that has to be declared in 1617

order to define modules: 1618

1. Information about the modular structure of the model. This includes module 1619

names and their temporal relation. The latter indicates when a module starts 1620

inside a cycle and which modules will follow a given one. 1621

2. Information about distribution of rules in modules. That is, which module each 1622

rule belongs to. 1623

The simulator precomputes which modules are active in each step within the 1624

cycle before starting the simulation. In this way, this information can be used to 1625

easily identify the rules that might be applicable at each transition step. For this 1626

purpose, the rule blocks and the rules are sorted in order to compact them into 1627

modules; rules belonging to the same module are put one after the other. The kernels 1628

of ABCD-GPU are expanded to accept extra indexes indicating the modules and 1629

where the rules of the modules are. In this way, the threads as distributed in Fig. 6.4 1630

will have a shorter loop, because the rule blocks (and rules) are just those from 1631

the module being active. Furthermore, if the solution has parallel modules in a 1632

cycle, then they can also run in parallel thanks to CUDA streams. We can launch 1633

the kernels for phase 1 also in parallel at different streams, one per module. As for 1634

environments and simulations, the behavior remains as before. 1635

6.5.2.1 Analysis of Performance Results 1636

Next, the behavior and performance of the adaptative PDP system simulators for 1637

GPU and OpenMP are analyzed. The model employed as benchmark is based on 1638

the tritrophic interactions presented in [9, 10]. This is a virtual ecosystem that 1639

was defined to illustrate PDP systems as a modeling framework. In this model, 1640

three trophic levels are represented: grass, herbivores, and carnivores. These species 1641

interact with each other, reproduce, and move along the 10 environments when no 1642

food is encountered. Rule block competitions take place. For instance, all herbivores 1643

compete for grass that is represented by a single object, G. 1644

For benchmarking purposes, the model has been generalized so that the number 1645

of species can be changed. The corresponding parameters (probabilities, amount of 1646

copies eaten per species, etc.) are generated randomly. This was possible thanks to 1647
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the ability of P-Lingua 5 to incorporate calls from the model to random number 1648

generation functions. Moreover, the modules of the model are identified by P- 1649

Lingua 5 features. 1650

In this section, the benchmark carried out to the adaptative PDP systems 1651

simulator is analyzed. The two versions of the simulator are compared: generic and 1652

adaptive versions of ABCD-GPU. The extended tritrophic model is used as input. In 1653

all experiments, 20 years of the virtual ecosystem are simulated (corresponding to 1654

180 transition steps of the PDP systems). The A parameter of DCBA is set to 2. No 1655

output was asked, so only the simulation runtimes were measured. The scalability 1656

of the simulators is analyzed by increasing the number of species. Specifically, 7 1657

will be used to denote the base model, which has in fact 7 species. In order to 1658

have an idea of the dimensions of the model, the ratio of rule blocks per species is 1659

approximately 22: 21985 rule blocks are generated for 1000 species, being 9990 1660

communication rule blocks and 11,995 skeleton rule blocks. Another parameter 1661

affecting scalability is the amount of simulations running in parallel. For this reason, 1662

50 simulations were launched for the tests. The following two configurations of CPU 1663

and GPU hardware were used to run the simulations (short names are provided in 1664

bold): 1665

• (i7) Intel i7-8700 CPU at 3.20 GHz, having 12 logical cores (6 physical) 1666

• (P100) Tesla P100 GPU, having 3584 cores at 1.33 GHz 1667

A cross comparison of runtimes and speedups achieved by GPU compared to 1668

CPU is shown in Fig. 6.14, which corresponds to the speedups reached by the above 1669

simulation times. The GPU is faster, in both adaptive and generic versions, than 1670

the multicore counterparts when handling middle and large models. Only for the 1671

Fig. 6.14 Comparison of P100 versus i7 with 8 threads, for both generic and adaptive versions of
abcd-gpu tested for different number of species in the model. It shows the corresponding speedups
of P100 against i7 for both version. 50 simulations were run. Bar plots use logarithmic scale for
y-axis. From [29]
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small base model, the GPU is a bit slower (above 0.9×). Speedups are higher with 1672

larger models, being around 30× and 50× for adaptive and generic simulators, 1673

respectively, and for 2000 species. When simulating hundreds of species, 6× and 1674

10× accelerations were obtained for adaptive and generic versions. Finally, the 1675

speedup of the GPU is lower when using the adaptive version, given that the impact 1676

of the modular scheme is better for the CPU than for the GPU. 1677

We can conclude that this design helped to improve the performance by 2.5× 1678

extra when using a P100 GPU [29]. 1679

6.6 Conclusions 1680

GPUs have been established as a massively parallel processor and an enabling 1681

technology where programmers currently accelerate scientific applications. They 1682

provide a good parallel platform to simulate P systems due to the double parallel 1683

nature that both GPUs and P systems present. Their shared memory system also 1684

helps to efficiently synchronize the simulation of the models. Moreover, they are a 1685

cheap and scalable parallel architecture that can be seen in current HPC solutions. 1686

However, the results in the literature [22, 48] show that P systems simulations 1687

are memory bandwidth bound: they spend more time accessing and updating data 1688

(multisets) than executing computation. The main cause is that simulating P systems 1689

requires a high synchronization degree (e.g., the global clock of the models, rule 1690

cooperation, rules competition, etc.), and the number of operations to execute per 1691

memory access is very small (P systems execute rewriting rules). This restricts the 1692

design of parallel simulators. A parallel simulator designer has to be careful with 1693

the representation and management of each P system ingredient. A bad step taken 1694

on GPU programming can easily break parallelism and, so, performance. 1695

We can identify a taxonomy of simulators developed so far. Generic parallel 1696

simulators are intended to be flexible enough to simulate a wide range of P systems 1697

within a variant. They also take advantage of P systems parallelism to speedup the 1698

simulation. However, when working with highly flexible simulators, the P systems 1699

design has to be reconsidered to achieve performance, in such a way that they 1700

execute as many rules as possible in each computation step. Some variants simulated 1701

by generic simulators are P systems with active membranes and elementary division 1702

and Population Dynamic P systems. Other related works also include spiking neural 1703

P systems variants [1, 2]. 1704

On the other hand, specific simulators are designed for just certain P systems 1705

within a solution or family. This way, the simulator can be designed adapting 1706

all parts to the P systems, since their scheme is known at developing time. The 1707

performance achieved in these simulators are much higher, but it comes at restricting 1708

the P systems to simulate. For example, one cannot define new rules to simulate, 1709

since they are already predetermined. In the middle term, we have a new type of 1710

simulation called adaptive. Basically, it is a generic simulator but that includes high 1711

level information that can be either discarded by the simulator (going generic) or 1712

used to adapt the simulation and achieve better performance (adaptive). 1713
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We can identify some challenges for the future. For example, concerning the 1714

memory bandwidth limit, one challenge is to design P system variants where the 1715

model contains a higher computational intensity. Moreover, memory accesses can 1716

be partially reduced by improving data structures using a compacted, dense, and 1717

well-ordered memory representation of P systems. A challenge is to use a dense 1718

representation in an effective way in generic simulators. Finally, a P system model 1719

with cooperation in the LHS usually leads to this issue, making it more difficult 1720

when the cooperation is larger. 1721
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