
1

42Infobiotics Workbench: An In Silico Software 3

Suite for Computational Systems Biology 4

4.1 Introduction 5

The modelling and analysis of biological systems using computational approaches 6

alternative to mathematical methods have been the focus of many recent studies 7

since these approaches can reveal more information about system behavior. Var- 8

ious computational formalisms have been introduced and studied in this context, 9

including state transition systems [32], rule-based systems [33], Petri nets [68], and 10

process algebra [59]. 11

Membrane computing is a popular subfield of rule-based systems. Due to its 12

affinity with the functioning and structure of living cells, it has been utilized in 13

modelling and analysis of a number of biological systems [12, 44, 49, 50, 65]. 14

In membrane computing, where models are called P systems, computations 15

represent biological processes that take place within compartments of a living cell. 16

Membrane structures mimic cell structures of living organisms, where compart- 17

ments contain multisets of objects that evolve by the execution of a set of rules. 18

Stochastic P systems [64] are a probabilistic variant of P systems, where reaction 19

rates are obtained from elementary rate constants according to the law of mass action 20

kinetics. Stochastic P systems offer a suitable, intuitive, and amenable modeling 21

framework for biological and chemical systems, where the inherent noise that exists 22

in stochastic dynamics of small copy number of systems cannot be properly captured 23

by more traditional mathematical methods. The reaction rules with associated rate 24

constants translate directly and without additional input into probabilistic transitions 25

of the continuous time Markov process that defines the stochastic model. 26

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
G. Zhang et al., Membrane Computing Models: Implementations,
https://doi.org/10.1007/978-981-16-1566-5_4

71

https://doi.org/10.1007/978-981-16-1566-5_4


72 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

The Infobiotics Workbench (IBW) is an integrated software suite built upon 27

stochastic P systems models. The platform utilizes computer-aided modelling and 28

analysis of biological systems through a number of important features: 29

Modelling Language IBW features a domain-specific language, where individual 30

cells are represented by stochastic P systems. The language also allows specifica- 31

tions of multicellular populations distributed over various geometric surfaces, such 32

as lattices. 33

Simulation IBW implements a native stochastic simulator that enables molecular 34

populations to be visualized over cellular populations in space and time. The results 35

can be viewed in different formats, including time series, histograms, and 3D surface 36

plots. 37

Verification IBW has a verification component used for validating biological 38

properties. Using powerful probabilistic model checking tools, the platform enables 39

inferring novel system information through formal probabilistic queries and exhaus- 40

tive analysis of all possible system behaviors. 41

Optimization The optimization engine permits optimization parameters by esti- 42

mating the rate constants in order to converge model dynamics toward laboratory 43

observations. It also optimizes model structures by changing the composition of 44

rule sets managing potential state transitions in compartments to generate alternative 45

reaction networks recreating target dynamics more accurately. 46

IBW allows modelling and analysis of not only cell-level behavior but also multi- 47

compartmental population dynamics. This enables comparing between macroscopic 48

and mesoscopic interpretations of molecular interaction networks and investigating 49

temporospatial phenomena in multicellular systems. 50

This chapter is divided into the following sections: a presentation of the 51

stochastic P systems, a description of IBW’s key features, two case studies where 52

we illustrate using the IBW features, a short description of a related tool used for 53

qualitative analysis, and finally, a presentation of the next-generation infobiotics for 54

synthetic biology. 55

4.2 Stochastic P Systems 56

In IBW, each cell is represented by a stochastic P system (Definition 4.1). The 57

definitions given in this section are borrowed from [12]. 58

Definition 4.1. A stochastic P system (SP system) is a probabilistic variant of P 59

systems, whose semantics is given by a tuple: 60

SP = (O,L,μ,M1, . . . ,Mn,R1, . . . , Rn) (4.1)



4.2 Stochastic P Systems 73

where: 61

• O is a finite set of objects that specify the entities that are part of the system 62

(such as genes, RNAs, proteins, etc.); 63

• L = {l1, . . . , ln} is a finite set of labels that name compartments (such as cells, 64

nucleus, cytoplasm, etc.); 65

• μ is a membrane structure containing n ≥ 1 membranes that define the regions 66

or compartments; 67

• Mi = (li, wi, si ), for each 1 ≤ i ≤ n, is the initial configuration of the membrane 68

i (defining a compartment or a region), where li ∈ L is the membrane label, 69

wi ∈ O∗ is a finite multiset of objects, and si is a finite set of strings over O; 70

• Rlk = {rlk
1 , . . . , r

lk
mlk
}, for each 1 ≤ k ≤ n, are a set of multiset rewriting rules 71

that describe molecular interactions, for example, complex formation and gene 72

regulation. Here, each set of rewriting rules Rlk are linked to the corresponding 73

compartment identified by the label lk . The multiset rewriting rules are defined 74

as: 75

r
lk
i : o1 [ o2 ]l

c
lk
i→ o′1 [ o′2 ]l (4.2)

where o1, o2 and o′1, o′2 are multisets of objects (that might be empty), over 76

O , representing molecular species that are consumed/produced in corresponding 77

molecular reactions. The label l (linked to the square brackets) specifies the 78

compartment where the interaction takes place. When such a rule is applied, the 79

contents of the membrane with label l change by replacing the objects o2 with 80

o′2. The contents of the outside membrane also change by replacing the objects o1 81

with o′1. The stochastic constant c
lk
i is used to compute the rule propensity (i.e., 82

probability and time required to apply the rule [23]). 83

Definition 4.1 provides the formal specification for an individual cell. Many 84

biological systems are multicompartmental in nature, that is, they have spatial 85

characteristics in that molecule exchanges between adjacent cells determine overall 86

phenotypes. However, this type of structures cannot be defined by stochastic P 87

systems as these systems have only hierarchical (nested) membrane structures 88

that do not capture multicompartments. Therefore, stochastic P systems should 89

be complemented with a spatial framework. Here, we define such a framework 90

as a two-dimensional geometric lattice, which consists of a population of cells 91

represented by SP systems. Rules moving objects from one cell to another on the 92

lattice are associated with a vector describing where to place these molecules. This 93

geometric extension of stochastic P systems is called lattice population P systems 94

(LPP systems for short) [64]. 95

To capture the spatial distribution of cells forming colonies and tissues, we define 96

a finite point lattice or grid with regularly distributed points [56] that can describe 97

possible spatial geometries in Fig. 4.1. The spatial distribution of cells is defined by 98

a finite point lattice, Definition 4.2. 99



74 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

n1

n2n3

n4

b1

b2

Fig. 4.1 A square lattice

Definition 4.2. Given B = {v1, . . . , vn} a list of linearly independent basis vectors, 100

o ∈ Rn a point referred to as origin, and a list of integer bounds (αmin
1 , αmax

1 , 101

. . . , αmin
n , αmax

n ), a finite point lattice generated by: 102

Lat = (B, o, (αmin
1 , αmax

1 , . . . , αmin
n , αmax

n )) (4.3)

is a collection of regularly distributed points, P(Lat), defined as: 103

P(Lat) = {o+
n∑

i=1

αivi : ∀i = 1, . . . , n (αi ∈ Z∧αmin
i ≤ αi ≤ αmax

i )} (4.4)



4.2 Stochastic P Systems 75

Given a finite point lattice, generated by Lat, where the coefficients {αi : i = 104

1, . . . , n} uniquely identify each point x = o+∑n
i=1 αivi ∈ P(Lat), hence denoted 105

as x = (α1, . . . , αn). 106

LPP systems allow the distribution of instances of stochastic P systems repre- 107

senting cells on a lattice according to Definition 4.3. 108

Definition 4.3. A lattice population P (LPP) system is a formal specification of a 109

set of geometrically organized cells, denoted by the following tuple: 110

LPP = (Lat, {SP1, . . . , SPp}, Pos, {T1, . . . , Tp}) (4.5)

where 111

• Lat defines a finite point lattice in Rn (typically n = 2) as in Definition 4.2 112

describing the geometry of cellular population. 113

• SP1, . . . , SPp are SP systems as in Definition 4.1 representing different cell 114

types in the population. 115

• Pos : P(Lat) → {SP1, . . . , SPp} is a function that distributes different 116

instances of SP systems SP1, . . . , SPp over the lattice points. 117

• Tk = {rk
1 , . . . , rk

nk
} for each 1 ≤ k ≤ p is a finite set of translocation rules 118

included in the skin membrane of the corresponding SP system SPk , allowing 119

the interchange of objects between different SP systems located in different 120

geometrical locations. The translocation rules are specified as follows: 121

rk
i : [ obj ]k

v
�� [ ]k′

ck
i→ [ ]k

v
�� [ obj ]k′ (4.6)

where obj is a multiset of objects, v is a vector in Rn, and ck
i is the stochastic 122

constant. When a translocation rule is applied in the skin membrane of an SP system 123

SPk located at the point p (Pos(p) = SPk), the objects obj are removed from this 124

membrane and placed in the skin membrane of SPk′ located at the point p + v, 125

Pos(p+ v) = SPk′ . 126

In system biology, there are cases where molecular reaction networks can be 127

divided into modules, each of which performs a specific task [27]. It has been shown 128

some modules, called motifs, appear recurrently in transcriptional networks. Motifs 129

carry out particular functions like response acceleration and noise filtering [2]. 130

In order to capture the modularity in LPP systems, hence to be able to model 131

motifs, we have introduced P system modules [12], defined as follows: 132

Definition 4.4. A P system module, Mod , is defined using three finite ordered 133

sets of variables O = {O1, . . . ,Ox}, C = {C1, . . . , Cy}, and Lab = {L1, . . . , Lz} 134

(where O,C and Lab represent objects, stochastic kinetic constants, and



76 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

compartment labels, respectively). Modules contain a finite set of rewriting rules 135

that have the same form in Eq. (4.2): 136

Mod(O,C,Lab) = {r1, . . . , rm} (4.7)

O , C, and Lab can be instantiated with specific values o = {o1, . . . , ox}, c = 137

{c1, . . . , cy}, and lab = {l1, . . . , lz} for O , C, and Lab, respectively, as in: 138

Mod({o1, . . . , ox}, {c1, . . . , cy}, {l1, . . . , lz}) (4.8)

The rules are generated according to the corresponding substitutions O1 = o1, . . . , 139

Ox = ox , C1 = c1, . . . , Cy = cy and L1 = l1, . . . , Lz = lz. 140

The use of modularity allows us to define libraries or collections of modules: 141

Lib = {Mod1(O1, C1, Lab1), . . . ,Modp(Op,Cp,Labp)} (4.9)

In order to specify and manipulate LPP system models, we have introduced LPP 142

XML [12], a set of machine-readable data formats closely mirroring our formal 143

definitions. LPP XML allows us to define LPP system models which consist of 144

stochastic P system modules with initial multisets and instantiations of rules and a 145

geometric lattice and distribution of stochastic P systems over the lattice. 146

The LPP XML formats are very convenient for software implementation, but 147

writing, reading, and manipulating models in XML by hand is a very cumbersome 148

task with syntax obscuring information. Hence, to utilize this process, we have 149

defined a user-friendly DSL (domain-specific language), called LPP DSL. IBW 150

implements a parser that directly reads LPP DSL files and automatically converts 151

them into XML. 152

The LPP formalism permits the reuse of some components: 153

• Inter-model reuse: Modules (in libraries), stochastic P systems, and lattices are 154

put into different files that can be used and referred from multiple LPP system 155

models. 156

• Intra-model reuse: Multiple SP systems can reside within each LPP system, 157

utilizing the model construction of homogeneous or heterogeneous bacterial 158

colonies or tissues. 159

• Intra-submodel reuse: Modules of rules can be parameterized and instantiated 160

multiple times within an SP system using different instantiations. 161

P systems modules can be made more or less abstract by parameterizing different 162

elements, such as species and stochastic rate constants. Motifs, corresponding to the 163

topology of the underlying biological network, can be specified by modules that are 164

made fully abstract by representing all components as parameters. In this scenario, 165

parameter names should point out what role their values will play in the module. 166



4.3 Software Description 77

4.3 Software Description 167

The Infobiotics Workbench (IBW) [30] is an integrated in silico platform built upon 168

lattice population P (LPP) systems models [11,12]. IBW has several functionalities. 169

It allows simulating LPP models using a custom-built stochastic simulator, MCSS, 170

and provides a user-friendly dashboard to visualize the simulation experiments in 171

various formats. The dashboard uses adjustable editor views, allowing to edit and 172

run model files easily. 173

The platform features a model checking component, PMODELCHECKER, that 174

permits users verify temporospatial dynamic system properties using probabilistic 175

or statistical model checking. IBW also offers parameter and model structure 176

optimization using evolutionary algorithms via POPTIMIZER. 177

The users can perform experiments using the integrated dashboard or individual 178

components separately outside the workbench. IBW makes the flow of information 179

between different components seamless and easy by passing parameter files and 180

model files through different components (see Fig. 4.2) [12]. 181

4.3.1 Simulation 182

The Infobiotics Workbench features a custom-built simulation platform, MCSS 183

(multicompartmental stochastic simulation), comprising two types of quantitative 184

simulations: deterministic numerical approximation with standard solvers and 185

stochastic simulation using Gillespie algorithms [23]. MCSS extends the baseline 186

Gillespie method with multicompartmental stochastic algorithms [63] that relies on 187

compartmentalized nature of lattice population P systems models. The algorithm 188

uses queues that store the next rule to execute in each compartment in the heap and 189

only recalculates the reaction propensities in a compartment where a rule is fired. 190

This approach significantly improves performance by reducing the simulation time 191

for models that consist of a large number of compartments. 192

IBW features a very user-friendly simulation dashboard (see Fig. 4.3) [12]. 193

The simulation environment allows tweaking various simulation parameters, for 194

example, number of runs, time points, and intervals, concentration units, and species 195

to be displayed. The results can be displayed as time series and histograms. System 196

population dynamics can also be observed as surface plotting functions in 3D by 197

selecting a subset of compartments. The results can be exported in common data 198

formats (e.g., csv) for manipulating by third-party software. 199

The simulation dashboard has a number of features to make the simulation 200

experiments simple, customizable, and reproducible. Users can: (i) select a subset 201

of (or all) entries, multiple, species, and compartments; (ii) filter species or sort 202

them in alphabetical order; (iii) filter compartments or sort them by their geometric 203

positions on the lattice; (iv) adjust simulation time points and intervals; (v) set data 204

and display units (species concentrations as molecules, moles, or concentrations; 205

compartment volumes as liters, milliliter, microliters, and nanoliters; and time 206



78 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.2 Summary of the data flow between different components of IBW. Information is passed
as files: parameters (.params) and models (.sbml, .lpp or .xml). Various intermediary files
are generated: simulation data (.h5) and verification data (.psm). The results can be exported
in various formants: tabulated data (.csv), image (.jpg,.png,.eps), and videos (.avi,
.mpg)



4.3 Software Description 79

Fig. 4.3 The simulation dashboard

points as seconds, minutes, or hours); (vi) select whether species’ amounts in each 207

compartment over the selected runs should be averaged for obtaining approximate 208

results; (vii) get an estimated memory requirement for each simulation experiment 209

to predict how fast the experiment can be carried out; (viii) export the selected and 210

rescaled datapoints in various data formats (.csv, .xls, .npz); and (ix) plot results for 211

selected runs and compartments as time series or histograms, which allows making 212

exact (combined) or relative (stacked/tiled) comparisons of the temporal 213

behavior of different molecular species of same/different compartments based on 214

specific, several, or averaged over many simulation runs. (x) export plots as images 215

for further comparison with experimental observations (see Fig. 4.4) [12]. The figure 216

toolbar enables zooming, panning, and subplot configuration and (xi) visualize 217

the system dynamics at real-time in 2D space using 3D heat-mapped meshes or 218

surface plots to capture the dynamic distribution of selected species over time (see 219

Fig. 4.5) [12]. Surfaces plots provide an intuitive means of qualitative evaluation 220

of population level dynamics that may (cautiously) be compared to laboratory 221

observations. 222



80 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.4 Time series plot styles (stacked view)

4.3.2 Verification 223

Formal methods have been used in systems biology in order to better understand 224

system behavior. As a complementary approach to simulation, formal verification is 225

a method which exhaustively analyzes all possible system behaviors, which cannot 226

be done via simulation, to evaluate the correctness of systems. It allows inferring 227

“more novel information about system properties” [44]. 228

Model checking [14], an algorithmic verification approach, is used to verify 229

whether a model with a finite structure satisfies certain system properties. Model 230

checking requires a formal system model and a formal specification, expressed in 231

a logical notation [34–39]. It then evaluates the formal specification against all 232

possible behaviors of the system model, which are computed by enumerating all 233

possible sequence of traces. 234



4.3 Software Description 81

Fig. 4.5 Surface plots illustrating dynamic expression patterns for two proteins. Users can
progress time either by moving the time point index slider forward or backward or by pressing
the Play/Pause button

Model checking has been widely utilized in computing and engineering applica- 235

tions for the last two decades in verifying various systems, for example, safety- 236

critical systems [40], concurrent systems [3], distributed systems [69], network 237

protocols [42], stochastic systems [41], multi-agent systems [1, 47], pervasive 238

systems [4,43,48], and swarm robotics [45,46] as well as some engineering applica- 239

tions [57, 58]. Due to its novel features to infer information about system behavior, 240

there is a growing interest to apply this technique in systems biology [8,9]. Recently, 241

it has been applied to analysis of various biological systems [21, 49, 49, 50, 52, 65]. 242

Probabilistic model checking is a stochastic extension of classical model check- 243

ing complemented with quantitative techniques to verify properties about the like- 244

lihood of the observation of certain behavior. However, they require a probabilistic 245

state machine (such as Discrete-Time Markov Chains (DTMCs), Continuous-Time 246

Markov Chains (CTMCs)) or Markov Decision Processes (MDPs) in a dedicated 247

syntax. System properties are written as probabilistic logical statements, often 248

probabilistic logics: CSL (Continuous Stochastic Logic) [5] for CTMCs and PCTL 249

(Probabilistic Computation Tree Logic) [26] for DTMCs and MDPs. A probabilistic 250

model checker then automatically verifies if the system model satisfies the property 251

using some analytical methods. 252



82 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

The Infobiotics Workbench features a verification module, called PMOD- 253

ELCHECKER, which integrates two third-party probabilistic models checkers 254

PRISM [28] and MC2 [15]. Properties of stochastic P system models are written 255

as probabilistic logic formulas and automatically verified using either PRISM or 256

MC2.PMODELCHECKER extends the verification capability to multicompartments 257

so as to verify LPP system models. 258

PMODELCHECKER supports both exact (i.e., numerical) and approximate (i.e., 259

statistical) model checking methods. To perform exact probabilistic model check- 260

ing, LPP systems are automatically converted into the reactive modules specifi- 261

cation, from which PRISM is executed. In this approach, the full state space is 262

generated and each property is verified against all states of the model, which 263

is usually computationally very demanding. The approximate probabilistic model 264

checking does not require generating all system states. Instead, simulations are run 265

up to a specified maximum number of runs or a confidence threshold (defined by 266

users), and properties are verified against the simulation traces instead of the system 267

model. To perform approximate probabilistic model checking, users can either (i) 268

call PRISM’s discrete event simulator or (ii) run MC2 using previous simulation 269

results or running new simulations. 270

The PMODELCHECKER dashboard provides an interface for both PRISM and 271

MC2 (see Fig. 4.6) [12]. Users can adjust verification parameters for each model 272

checker, accordingly. The dashboard allows loading multiple formulas from a file 273

and selecting a specific formula that can be edited or removed. Users can also add a 274

new formula using the respective buttons. 275

The PMODELCHECKER dashboard features a result view which displays the 276

outcome of a model checking experiment (see Fig. 4.7) [12]. The results can be 277

displayed in 2D if the probability of a property in question is compared against 278

one selected variable, or the results can be displayed in 3D if the probability 279

is checked against two variables. The dashboard allows performing queries thatAQ1 280

depend on several variables by enabling the choice of variables so that the results of 281

n-dimensional queries to be viewed in a consistent manner. 282

4.3.3 Optimization 283

The correct reproduction of cellular behavior depends on the accuracy of kinetic rate 284

constants used in both deterministic and stochastic models. Unfortunately, well- 285

characterized rate constants are not often available in many systems, and those 286

that are known for some models use artificial values that are obtained from similar 287

systems. One possible solution to this problem is using parameter optimization to 288

estimate the rate constants in order to fit model dynamics to laboratory observations. 289

For this purpose, IBW features the POPTIMIZER component, which optimizes 290

models in two ways: 291

1. Numerical model parameters: The stochastic kinetic constants linked to each rule 292

can be tweaked to fit the given target. 293



4.3 Software Description 83

Fig. 4.6 PMODELCHECKER parameterization interfaces

2. Model structure: The composition and structure of the rule sets managing 294

possible state transitions occurring in compartments can be changed to generate 295

alternative reaction networks recreating the target dynamics more accurately. 296

Both of these optimization steps aim to minimize the distance between the 297

stochastically simulated and user-provided quantities of molecular species at every 298

target time point, quantitatively evaluating the fitness of candidate models and 299

automatically discriminating between them. 300

POPTIMIZER searches both parameter and structure spaces using well-known 301

population-based optimization algorithms: Covariance Matrix Adaptation Evolu- 302

tion Strategies (CMA-ES) [25], Estimation of Distribution Algorithms (EDA), 303

Differential Evolution (DE) [67], and genetic algorithms (GA) [24]. The current 304

version of the optimization process is limited to single compartment models because 305

multicompartmental structures significantly increase the algorithmic complexity. 306



84 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.7 Model checking results interface

This is mainly due to the fact that simulating many copies of the cells at those 307

compartments would increase the computational cost and makes it difficult to 308

provide accurate target data. Hence, model optimization is generally feasible for 309

smaller models, which can then be reintegrated, provided they can be decoupled. 310

POPTIMIZER implements a genetic algorithm [13, 62] to produce candidate 311

models. This is initially done by random choice and then by mutating the fittest 312

models of the previous round, performing several runs of parameter optimization 313

steps on each model to ensure that the candidate models have fair chance of 314

fitting the target behavior before using the final fitness function to choose the next 315

generation. 316

The result of an optimization process is the fittest model generated, and the out- 317

come is displayed at the dashboard. POPTIMIZER also allows a visual comparison of 318

the quantities of each species for target and the optimized models (see Fig. 4.8) [12]. 319



4.4 Case Studies 85

Fig. 4.8 POPTIMIZER results interface

4.4 Case Studies 320

In this section, we will illustrate using the IBW features in two case studies. In 321

the first case study, we will use the pulse generator system [10], consisting of a 322

bacterial colony that displays a propagation behavior of a wave of gene expression. 323

The second case study is a genetic circuit, repressilator. 324

4.4.1 Pulse generator 325

The pulse generator system [10] synthesizes a signalling molecule AHL, triggering 326

the production of the green fluorescent protein (GFP). The system exhibits a 327

propagation behavior, that is, the propagation of the GFP expression along the 328

bacterial colony (see Fig. 4.11 and 4.12) [12]. The system consists of two different 329

bacterial strains, sender cells and pulsing cells (see Fig. 4.9) [50], which work as 330

follows: 331

“Sender cells contain the gene luxI from Vibrio fischeri. This gene codifies the enzyme 332

LuxI responsible for the synthesis of the molecular signal 3OC12HSL (AHL). The luxI 333

gene is expressed constitutively under the regulation of the promoter PLtetO1 from the 334

tetracycline resistance transposon.” 335

“Pulsing cells contain the luxR gene from Vibrio fischeri that codifies the 3OC12HSL 336

receptor protein LuxR. This gene is under the constitutive expression of the promoter 337

PluxL. It also contains the gene cI from lambda phage codifying the repressor CI under the 338



86 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

PLtetO1 luxI

LuxI AHL

PluxL luxR PluxR cI PluxPR gfp

Sender Cell

CI

LuxR

GFP

Pulsing Cell

AHL AHL

LuxR

Fig. 4.9 The sender and pulsing cells of the pulse generator.

regulation of the promoter PluxR that is activated upon binding of the transcription factor 339

LuxR_3OC12. Finally, this bacterial strain carries the gene gfp that codifies the green 340

fluorescent protein under the regulation of the synthetic promoter PluxPR combining the 341

Plux promoter (activated by the transcription factor LuxR_3OC12) and the PR promoter 342

from lambda phage (repressed by the transcription factor CI).” 343

The sender and pulsing bacterial strains are distributed along a lattice, where the 344

sender cells are located at one end of the lattice, and the pulsing cells are placed at 345

the rest of the lattice (see Fig. 4.10). 346

PLtetO1 luxI

LuxI AHL

PluxL luxR PluxR cI PluxPR gfp

Sender Cell

LuxR CI

AHL AHLLuxR

GFP

AHL

Pulsing Cell

Fig. 4.10 Spatial distribution of two bacterial strains



4.4 Case Studies 87

Modelling 347

As discussed in Sect. 4.2, IBW accepts lattice population systems as input. The pulse 348

generator system is captured by an LPP model, representing a bacterial colony over 349

a rectangular lattice, which distributes the sender cells at one end of the lattice and 350

the pulsing cells over the rest of the lattice. The LPP model contains two stochastic 351

P systems models, one for each different cell type. The first SP model represents 352

the stochastic behavior of the sender cell, capturing the production of the signal 353

3OC6-HSL (AHL). The second model represents the pulsing cell, capturing the 354

production of GFP protein as a response to the signal 3OC6-HSL (AHL). In both 355

SP models, the reaction rules govern the regulation of the corresponding promoters 356

used in the sender and pulsing cells. The complete stochastic model of the pulse 357

generator example (written in LPP) is available in the IBW website [60]. 358

Simulation 359

The IBW simulation dashboard visualizes the system behavior via time series, 360

histogram, or surface plotting functions. Users are able to choose species they 361

want to simulate over a subset of datapoints. Below, we present a set of simulation 362

experiments [12, 44, 50]. 363

Figure 4.11 shows the propagation of a pulse of GFP over a single pulsing cell 364

using time series. Figure 4.12 illustrates the spatial propagation over a bacterial 365

colony using 3D animation. The propagation of the GFP protein continues through 366

pulsing cells until the concentration level drops to 0. 367

Figure 4.13 shows the signalling molecule signal3OC6 amount, the number 368

of molecules, over time, suggesting that the pulsing cells located further away from 369

the sender cells produce lower concentrations of GFP. 370

These experiments suggest IBW’s stochastic simulation algorithms allow users 371

to generate realistic trajectories of molecular dynamics that can be compared to 372

laboratory data. 373

Fig. 4.11 Propagation of GFP over a pulsing cell



88 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

GFP at 50 

GFP at 100 

GFP at 200

GFP at 400

Fig. 4.12 Propagation of GFP along the bacterial colony

Fig. 4.13 Signalling molecule level over time

Verification 374

IBW’s PMODELCHECKER component allows users to perform verification using two 375

third-party probabilistic model checkers PRISM and MC2 to infer more information 376

about system behavior. 377

Below, we present a set of verification experiments [50] based on probabilistic 378

model checking. Here, we consider a lattice of size 2 × 6. The sender cells are 379

positioned to the initial 2 × 2 segment of the lattice, followed by the pulsing cells 380

that are distributed to the rest (2× 4 ) of the lattice (see Fig. 4.10). 381

In the following, we show the informal representation of queries (i.e., system 382

requirements to be verified) and their corresponding translations to the language 383

that PMODELCHECKER accepts as input. 384



4.4 Case Studies 89

(a) (b)

(c) (d)

Fig. 4.14 Quantitative analysis using probabilistic model checking. Row n denotes the nth row of
the pulsing cells in the lattice and T denotes time. (a) Prob. of GFP exceeds threshold (Prop. 1). (b)
Prob. of relative GFP (Prop. 2). (c) Expected GFP protein (Prop. 3). (d) Expected signal3OC6
(Prop. 4)

Query 1. “What is the probability that GFP concentration at row n ∈ {3, 4, 5, 6} 385

exceeds 100 at the time instant T ?” 386

This query is expressed formally as follows: 387

P=?[true U[T ,T ] GFP_pulsing_n ≥ 100]. 388

The verification results are illustrated in Fig. 4.14a. 389

Query 2. “What is the probability that GFP concentration at row n ∈ {3, 4, 5} 390

stays greater than GFP concentration at row 6 until the time instant T where GFP 391

concentration at row 6 exceeds GFP concentration at row n?” 392

The formal translation of this query is: 393

P=?[GFP_pulsing_n ≥ GFP_pulsing_6 U[T ,T ] GFP_pulsing_6 > 394

395

GFP_pulsing_n]. 396

The verification results are presented in Fig. 4.14b. 397



90 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

Query 3. “What is the expected GFP concentration at row n ∈ {3, 4, 5, 6} at the 398

time instant T ?” 399

This query is formally expressed as: 400

R{“GFP_pulsing_n”}=? [I = T ] . 401

The results are shown in Fig. 4.14c. 402

Query 4. “What is the expected signal3OC6 concentration at row n ∈ 403

{3, 4, 5, 6} at the time instant T ?” 404

The query is formally translated as: 405

R{“signal3OC6_pulsing_n”}=? [I = T ] . 406

The corresponding verification results are shown in Fig. 4.14d. 407

Figure 4.14a,c confirm the propagation of a pulse of GFP, whose concentration 408

first increases in the rows near to the sender cells and then gradually drops to zero. 409

The rows distant from the sender cells exhibit a similar behavior with some delay, 410

which is proportional to the distance between the row and the sender cells. Figure 411

4.14d shows that pulsing cells located further away from the sender cells produce 412

lower concentrations of GFP. 413

These results show verification, by means of formal queries, can provide more 414

novel information about the system behavior and dynamics, complementary to 415

simulation. 416

4.4.2 Repressilator 417

The repressilator is a genetic circuit [17] used as a canonical example in some P 418

system models [19]. 419

The system contains three genes codifying the corresponding repressors: the 420

operon lactose repressor, lacI; the repressor from the tetracycline transposon, 421

tetR; and a repressor from the λ phage virus, cI. These three genes are linked 422

in a gene regulatory network in such a way that lacI represses the expression of 423

tetR; the tetR gene then represses cI. Finally, cI represses the expression of 424

lacI to close the cycle. 425

Modelling 426

The repressilator system is captured as a stochastic P system. The molecular 427

interactions within the stochastic P system are defined in a modular manner. The 428

bacterial colony is modelled by a lattice population system over a rectangular 429

lattice. This is done by distributing the copies of this cell type over the points of 430



4.4 Case Studies 91

a rectangular lattice. The complete stochastic model of the repressilator system is 431

available in the IBW website [61]. 432

Simulation 433

Figure 4.15 shows the system evolution over time for the LacI, CI, and TetR pro- 434

teins, confirming that the circuit generates oscillations of these repressor molecules 435

based on the order they are connected within the regulatory network. 436

The oscillations significantly differ in amplitude and frequency due to stochastic 437

effects. Therefore, different cells in the lattice might exhibit different oscillatory 438

behavior, not necessarily synchronous (as illustrated in Fig. 4.15). 439

The asynchronous oscillatory behavior in different cells can be better observed 440

using the population dynamics. Figure 4.16 shows the spatiotemporal evolution of 441

LacI, CI, and TetR in the entire colony carrying the repressilator. 442

Verification 443

Below, we show two queries used to calculate the probability of having more or 444

fewer than 300 proteins of LacI, CI, and TetR simultaneously over different time 445

points of the evolution. 446

Query 1. “What is the probability that LacI, CI, and TetR can simultaneously 447

be below 300 molecules?” 448

This query is expressed formally as follows: 449

P=?[time = t U LacI < 300 ∧ CI < 300 ∧ TetR < 300]. 450

The verification results for t = 20, 000 . . .40, 000 (with increments of 5000) are 451

zero. 452

Query 2. “What is the probability that LacI, CI, and TetR can simultaneously 453

be above 300 molecules?” 454

The query is translated as: 455

P=?[time = t U LacI > 300 ∧ CI > 300 ∧ TetR > 300]. 456

Similarly, the verification results for t = 20,000 . . .40,000 (with increments of 457

5000) are zero. 458

The results obtained in both scenarios suggest that these three proteins cannot be 459

above or below 300 molecules simultaneously, confirming oscillating behavior. 460



92 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

Fig. 4.15 Oscillation behavior in two different cells [19]



4.5 KPWorkbench: A Qualitative Analysis Tool 93

Fig. 4.16 Spatiotemporal evolution of the CI and TetR proteins in the colony

4.5 KPWorkbench: A Qualitative Analysis Tool 461

We have illustrated how IBW facilitates the quantitative analysis of biological 462

systems using stochastic P systems. However, in some cases, quantitative analysis 463

might not be needed if, for example, we only want to observe the detection of 464

molecular species rather than measuring their concentration. In such cases, we can 465

only rely on qualitative analysis where we can apply some abstraction methods to 466

reduce the model complexity. One typical abstraction method is removing kinetic 467

constants from a stochastic model. In this way, we can obtain much simpler 468

nondeterministic models that can be used for detecting the existence of molecular 469

species. 470

A nondeterministic model captures all interactions included in its stochastic 471

counterpart but in a rather symbolic and qualitative way in that it removes more 472

precise quantitative aspects of the system. All possible system pathways are still 473

contained in the nondeterministic model but as exact molecular concentrations are 474

not necessary for these models. In certain circumstances, the multisets are bounded, 475

even restricted to one or two elements, describing their presence rather than their 476

molecular concentrations. 477

In order to facilitate the qualitative modelling, we have introduced kernel P 478

systems [22], a non-probabilistic variant of stochastic P systems, which mimic 479

biological membranes without any quantitative information. Kernel P systems allow 480

building nondeterministic models, which are used for qualitative analyses where 481

molecular concentrations are not necessary or a chain of reactions already analyzed 482

can be replaced by some abstractions mimicking their behavior through simpler 483

rewriting mechanisms. 484

The expressive power and efficiency of kP systems have been illustrated by a 485

number of representative case studies [49, 50, 58]. In this respect, we have also 486

introduced a modelling language, called kP–Lingua, allowing one to write kP 487

system models. The theoretical aspects of the methods and techniques developed 488

for kP systems have been discussed in [6, 7, 16, 20]. 489

We have also developed the kPWORKBENCH platform [53] (available and down- 490

loadable from its website [54]), which allows modelling and analysis of membrane 491

systems through various computational approaches, including modelling, simula- 492

tion, agent-based high-performance simulation [51], and verification. To simplify 493

verification queries, we have introduced a user-friendly property language based 494



94 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

on natural language statements. These unique features allow kPWORKBENCH to 495

support the non-probabilistic modelling and analysis of membrane systems using 496

various computational approaches. The usability and novelty of our approach have 497

been illustrated by some case studies from systems and synthetic biology [49, 50] 498

to some engineering problems [57, 58]. 499

4.6 Next-Generation Infobiotics for Synthetic Biology 500

Systems biology mainly focuses on studying existing organisms. In computational 501

biology, there is a growing trend to study biological phenomena that do not exist 502

in nature. To this end, synthetic biology, aiming to design new biological entities, 503

is emerging rapidly. As DNA sequencing and synthesis technology get cheaper and 504

become easy to reach [55], the scale and complexity of engineered biology systems 505

will grow. Moreover, rapidly emerging biotechnology is accelerating the adoption 506

of synthetic biology across various disciplines including computing science as well 507

as industrial applications. 508

In line with these advances, synthetic biology introduces new challenges difficult 509

for existing tools and approaches to address. It is well known that most of synthetic 510

biology models are complex, with a rich combinatorics of biochemical interactions 511

and certain motifs occurring. 512

Although IBW provides a good tool support for systems biology, and it can 513

be utilized for some small-scale synthetic biology systems, it cannot address the 514

challenges imposed by synthetic biology. The IBW language allows modelling 515

systems at a relatively high abstraction level but does not provide any support for 516

further refinements at the DNA level, which is a requirement of synthetic biology, 517

where different operations at that level have to be specified. Also, the simulation 518

and verification processes that are normally efficient for systems biology can be 519

very cumbersome depending on the complexity of synthetic systems. 520

In an attempt to provide a robust tool support for synthetic biology, we have 521

developed a new version of Infobiotics Workbench [31] that can assist synthetic 522

biologists in an informed, iterative workflow of system specification, verification, 523

simulation, and biocompilation. This new version of IBW features a unique domain- 524

specific language, called IBL (Infobiotics Language), offering a combined grammar 525

for modelling, verification, and biocompilation statements rather than relying upon 526

individual complex formalisms for each computational aspect. This novel approach 527

offers seamless interoperability across different tools as well as compatibility 528

with common data exchange formats, for example, SBOL (Synthetic Biology 529

Open Language) [18] and SBML (Systems Biology Markup Language) [29], and 530

eliminates the need of manual translations for stand-alone applications. 531

The new IBW also significantly improves the efficiency of computational 532

processes so as to cope with scaling-up demand of synthetic biology. The platform 533

implements a new simulation module, incorporating all the variants of Gillespie’s 534

stochastic simulation algorithms (SSAs) complemented with prediction tool that 535

selects the best performing SSA using machine learning algorithms. The simulation 536



References 95

algorithms are also speeded up via parallel implementation and executed on cloud- 537

based GPU clusters. 538

The verification queries use natural language statements, which are embedded 539

within the IBL language. This makes IBL easy to use and intuitive for nonexperts. 540

The verification process relies on statistical model checking approach [66], which 541

significantly improves model checking times. This allows verifying queries for large 542

systems in seconds rather than hours. 543

IBW also features a biocompilation module that allows automated compilation of 544

a specified synthetic circuit into eventual genetic sequence information and import 545

from/export to standard data exchange formats. 546

These unique features make IBW a very useful in silico tool for synthetic biology. 547

4.7 Conclusion 548

In this chapter, we have presented the Infobiotics Workbench, a computer-aided 549

in silico design suite for systems biology. We have provided an overview of the 550

platform’s important features: (a) a domain-specific language, where individual 551

cells are represented by stochastic P systems and multicellular populations are 552

represented by lattice population P systems; (b) a multicellular stochastic simulator 553

that enables molecular populations to be visualized over cellular populations in 554

space and time using a variety of visualization formats; (c) a verification component 555

that validates biological properties using probabilistic model checking; and (d) an 556

optimization engine that optimizes model parameters and model structures. 557

We have shown the usability and applicability of the platform with two case 558

studies: pulse generator and repressilator. For each case study, we have discussed 559

the respective modelling, along with its simulation and verification results. 560

We have also provided a brief overview of the new version of Infobiotics 561

Workbench [31] developed to address the challenges and requirements of synthetic 562

biology by providing an informed, iterative workflow of system specification, 563

verification, simulation, and biocompilation. 564

References 565

1. H. Abbink, R. van Dijk, T. Dobos, M. Hoogendoorn, C. Jonker, S. Konur, P.P. van Maanen, 566

V. Popova, A. Sharpanskykh, P. van Tooren, J. Treur, J. Valk, L. Xu, P. Yolum, Automated 567

support for adaptive incident management, in Proceedings of the 1st International Workshop on 568

Information Systems for Crisis Response and Management (ISCRAM’04) (Brussels, Belgium, 569

2004), pp. 153–170 570

2. U. Alon, Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8(6), 450–61 571

(2007). https://doi.org/10.1038/nrg2102 572

3. R. Alur, K. McMillan, D. Peled, Model-checking of correctness conditions for concurrent 573

objects. Inf. Comput. 160(1–2), 167–188 (2000). https://doi.org/10.1006/inco.1999.2847 574

4. M. Arapinis, M. Calder, L. Denis, M. Fisher, P. Gray, S. Konur, A. Miller, E. Ritter, M. Ryan, 575

S. Schewe, C. Unsworth, R. Yasmin, Towards the verification of pervasive systems. Electron. 576

Commun. EASST 22, 1–15 (2009). https://doi.org/10.14279/tuj.eceasst.22.315 577

https://doi.org/10.1038/nrg2102
https://doi.org/10.1006/inco.1999.2847
https://doi.org/10.14279/tuj.eceasst.22.315


96 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

5. C. Baier, B Haverkort, H. Hermanns, J.P. Katoen, Model-checking algorithms for continuous- 578

time markov chains. IEEE Trans. Software Eng. 29, 524–541 (2003). https://doi.org/10.1109/ 579

TSE.2003.1205180 580

6. M.E. Bakir, F. Ipate, S. Konur, L. Mierlă, I. Niculescu, Extended simulation and verification 581

platform for kernel P systems, in Membrane Computing (CMC 2014), ed. by M. Gheorghe, 582

G. Rozenberg, A. Salomaa, P. Sosík, C. Zandron. Lecture Notes in Computer Science, vol. 583

8961 (2014), pp. 158–178. https://doi.org/10.1007/978-3-319-14370-5_10 584

7. M.E. Bakir, S. Konur, M. Gheorghe, I. Niculescu, F. Ipate, High performance simulations 585

of kernel P systems, in Proceedings of the 2014 IEEE International Conference on High 586

Performance Computing and Communications, 2014 IEEE 6th International Symposium on 587

Cyberspace Safety and Security, 2014 IEEE 11th International Conference on Embedded 588

Software and System (HPCC,CSS,ICESS) (2014), pp. 409–412. https://doi.org/10.1109/HPCC. 589

2014.69 590

8. M.E. Bakir, M. Gheorghe, S. Konur, M. Stannett, Comparative analysis of statistical model 591

checking tools, in Membrane Computing (CMC 2016), ed. by A. Leporati, G. Rozenberg, A. 592

Salomaa, C. Zandron. Lecture Notes in Computer Science, vol. 10105 (2017), pp. 119–135. 593

https://doi.org/10.1007/978-3-319-54072-6_8 594

9. M.E. Bakir, S. Konur, M. Gheorghe, N. Krasnogor, M. Stannett, Automatic selection of 595

verification tools for efficient analysis of biochemical models. Bioinformatics 34(18), 3187– 596

3195 (2018). https://doi.org/10.1093/bioinformatics/bty282 597

10. S. Basu, Y. Gerchman, C.H. Collins, F.H. Arnold, R. Weiss, A synthetic multicellular system 598

for programmed pattern formation. Nature 434 (2005), 1130–1134. https://doi.org/10.1038/ 599

nature03461 600

11. J. Blakes, J. Twycross, F.J. Romero-Campero, N. Krasnogor, The Infobiotics Workbench: 601

an integrated in silico modelling platform for systems and synthetic biology. Bioinformatics 602

27(23), 3323–3324 (2011). https://doi.org/10.1093/bioinformatics/btr571 603

12. J. Blakes, J. Twycross, S. Konur, F.J. Romero-Campero, N. Krasnogor, M. Gheorghe, Infobi- 604

otics workbench: a P systems based tool for systems and synthetic biology, in Applications of 605

Membrane Computing in Systems and Synthetic Biology. Series Emergence, Complexity and 606

Computation, Chapter 7 (2014), pp. 1–41. https://doi.org/10.1007/978-3-319-03191-0_1 607

13. H. Cao, F.J. Romero-Campero, S. Heeb, M. Cámara, N. Krasnogor, Evolving cell models for 608

systems and synthetic biology. Syst. Synth. Biol. 4(1), 55–84 (2010). https://doi.org/10.1007/ 609

s11693-009-9050-7 610

14. E.M. Clarke, O. Grumberg, D.A. Peled, Model checking (MIT Press, New York, 1999) 611

15. R. Donaldson, D. Gilbert, A Monte Carlo model checker for probabilistic LTL with numerical 612

constraints. Res. Rep. (2008), TR-2008-282. Department of Computing Science, University of 613

Glasgow 614

16. C. Dragomir, F. Ipate, S. Konur, R. Lefticaru, L. Mierlă, Model checking kernel P systems, 615

in Membrane Computing (CMC 2013), ed. by A. Alhazov, S. Cojocaru, M. Gheorghe, Y. 616

Rogozhin, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 8340 (2013), 617

pp. 151–172. https://doi.org/10.1007/978-3-642-54239-8_12 618

17. M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature 619

403(6767), 335–338 (2000). https://doi.org/10.1038/35002125 620

18. M. Galdzicki, K.P. Clancy, E. Oberortner, M. Pocock, J.Y. Quinn, C.A. Rodriguez, R. Nicholas, 621

M.L. Wilson, L. Adam, J.C. Anderson, The synthetic biology open language (SBOL) provides 622

a community standard for communicating designs in synthetic biology. Nat. Biotechnol. 32(6), 623

545–550 (2014). https://doi.org/10.1038/nbt.2891 624

19. M. Gheorghe, V. Manca, F.J. Romero-Campero, Deterministic and stochastic P systems for 625

modelling cellular processes. Nat. Comput. 9(2), 457–473 (2009). https://doi.org/10.1007/ 626

s11047-009-9158-4 627

20. M. Gheorghe, S. Konur, F. Ipate, L. Mierlă, M.E. Bakir, M. Stannett, An integrated model 628

checking toolset for kernel P systems, in Membrane Computing (CMC 2015), ed. by G. 629

Rozenberg, A. Salomaa, J.M. Sempere, C. Zandron. Lecture Notes in Computer Science, vol. 630

9504 (2015), pp. 153–170. https://doi.org/10.1007/978-3-319-28475-0_11 631

https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1109/TSE.2003.1205180
https://doi.org/10.1007/978-3-319-14370-5_10
https://doi.org/10.1109/HPCC.2014.69
https://doi.org/10.1109/HPCC.2014.69
https://doi.org/10.1007/978-3-319-54072-6_8
https://doi.org/10.1093/bioinformatics/bty282
https://doi.org/10.1038/nature03461
https://doi.org/10.1038/nature03461
https://doi.org/10.1093/bioinformatics/btr571
https://doi.org/10.1007/978-3-319-03191-0_1
https://doi.org/10.1007/s11693-009-9050-7
https://doi.org/10.1007/s11693-009-9050-7
https://doi.org/10.1007/978-3-642-54239-8_12
https://doi.org/10.1038/35002125
https://doi.org/10.1038/nbt.2891
https://doi.org/10.1007/s11047-009-9158-4
https://doi.org/10.1007/s11047-009-9158-4
https://doi.org/10.1007/978-3-319-28475-0_11


References 97

21. M. Gheorghe, S. Konur, F. Ipate, Kernel P systems and stochastic P Systems for modelling and 632

formal verification of genetic logic gates, in Advances in Unconventional Computing, ed. by 633

A. Adamatzky. Series Emergence, Complexity and Computation, vol. 22 (2017), pp. 661–675. 634

https://doi.org/10.1007/978-3-319-33924-5_25 635

22. M. Gheorghe, R. Ceterchi, F. Ipate, S. Konur, R. Lefticaru, Kernel P systems: from modelling 636

to verification and testing. Theor. Comput. Sci. 724, 45–60 (2018). https://doi.org/10.1016/j. 637

tcs.2017.12.010 638

23. D. Gillespie, A general method for numerically simulating the stochastic time evolution of 639

coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976). https://doi.org/10.1016/ 640

0021-9991(76)90041-3 641

24. D.R. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison 642

Welsey, Reading, 1989) 643

25. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies. 644

Evol. Comput. 9(2), 159–195 (2001). https://doi.org/10.1162/106365601750190398 645

26. H. Hansson, B. Jonsson, A logic for reasoning about time and reliability. Formal Aspects 646

Comput. 6, 102–111 (1994). https://doi.org/10.1007/BF01211866 647

27. L.H. Hartwell, J.J. Hopfield, S. Leibler, A.W. Murray, From molecular to modular cell biology. 648

Nature 402, C47–C52 (1999). https://doi.org/10.1038/35011540 649

28. A. Hinton, M. Kwiatkowska, G. Norman, D. Parker, Prism: a tool for automatic verification of 650

probabilistic systems, in Tools and Algorithms for the Construction and Analysis of Systems, 651

12th International Conference, TACAS 2006 Held as Part of the Joint European Conferences 652

on Theory and Practice of Software, ETAPS 2006, Vienna, Austria, March 25—April 2, 2006. 653

Lecture Notes in Computer Science, vol. 3920 (2006), pp. 441–444. https://doi.org/10.1007/ 654

11691372_29 655

29. M. Hucka, A. Finney, H.M. Sauro, et al. The systems biology markup language (SBML): 656

a medium for representation and exchange of biochemical network models. Bioinformatics 657

19(4), 524–531 (2002). https://doi.org/10.1093/bioinformatics/btg015 658

30. Infobiotics Workbench. http://sysbio.infobiotics.org 659

31. Infobiotics Workbench for Synthetic Biology. http://infobiotics.org 660

32. S.A. Kauffman, Metabolic stability and epigenesis in randomly constructed genetic nets. J. 661

Theor. Biol. 22(3), 437–467 (1969). https://doi.org/10.1016/0022-5193(69)90015-0 662

33. J.W. Klop, Term rewriting systems, in Handbook of Logic in Computer Science, vol. 2 (Oxford 663

University, Oxford, 1993), pp. 1–116 664

34. S. Konur, A decidable temporal logic for events and states, in Proceedings of the Thirteenth 665

International Symposium on Temporal Representation and Reasoning (TIME’06), Budapest, 666

2006 (2006), pp. 36–41. https://doi.org/10.1109/TIME.2006.1 667

35. S. Konur, An interval logic for natural language semantics, in Proceedings of the Seventh 668

Conference on Advances in Modal Logic, Nancy, France, 9–12 September 2008, ed. by C. 669

Areces, R. Goldblatt (2008), pp. 177–191 670

36. S. Konur, Real-time and Probabilistic Temporal Logics: An Overview. CoRR abs/1005.3200 671

(2010) 672

37. S. Konur, A Survey on Temporal Logics. CoRR abs/1005.3199 (2010) 673

38. S. Konur, An event-based fragment of first-order logic over intervals. J. Logic Lang. Inf. 20, 674

49–68 (2011). https://doi.org/10.1007/s10849-010-9126-5 675

39. S. Konur, A survey on temporal logics for specifying and verifying real-time systems. Front. 676

Comput. Sci. 7(3), 370–403 (2013). https://doi.org/10.1007/s11704-013-2195-2 677

40. S. Konur, Specifying safety-critical systems with a decidable duration logic. Sci. Comput. 678

Program. 80(Part B), 264–287 (2014). https://doi.org/10.1016/j.scico.2013.07.012 679

41. S. Konur, Towards light-weight probabilistic model checking. J. Appl. Math. 2014, Article ID 680

814159, 1–15 (2014). https://doi.org/10.1155/2014/814159 681

42. S. Konur, M. Fisher, Formal analysis of a VANET congestion control protocol through 682

probabilistic verification, in Proceedings of the 2011 IEEE 73rd Vehicular Technology 683

Conference (VTC Spring), Yokohama, 2011 (2011), pp. 1–5. https://doi.org/10.1109/VETECS. 684

2011.5956327 685

https://doi.org/10.1007/978-3-319-33924-5_25
https://doi.org/10.1016/j.tcs.2017.12.010
https://doi.org/10.1016/j.tcs.2017.12.010
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1016/0021-9991(76)90041-3
https://doi.org/10.1162/106365601750190398
https://doi.org/10.1007/BF01211866
https://doi.org/10.1038/35011540
https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29
https://doi.org/10.1093/bioinformatics/btg015
http://sysbio.infobiotics.org
http://infobiotics.org
https://doi.org/10.1016/0022-5193(69)90015-0
https://doi.org/10.1109/TIME.2006.1
https://doi.org/10.1007/s10849-010-9126-5
https://doi.org/10.1007/s11704-013-2195-2
https://doi.org/10.1016/j.scico.2013.07.012
https://doi.org/10.1155/2014/814159
https://doi.org/10.1109/VETECS.2011.5956327
https://doi.org/10.1109/VETECS.2011.5956327


98 4 Infobiotics Workbench: An In Silico Software Suite for Computational Systems. . .

43. S. Konur, M. Fisher, A roadmap to pervasive systems verification. Knowl. Eng. Rev. 30(3), 686

324–341 (2015). https://doi.org/10.1017/S0269888914000228 687

44. S. Konur, M. Gheorghe, A property-driven methodology for formal analysis of synthetic 688

biology systems, in IEEE/ACM Transactions on Computational Biology and Bioinformatics, 689

vol. 12(2), 360–371 (2015). https://doi.org/10.1109/TCBB.2014.2362531 690

45. S. Konur, C. Dixon, M, Fisher, Formal verification of probabilistic swarm behaviours, in Swarm 691

Intelligence (ANTS 2010), ed. by M. Dorigo et al. Lecture Notes in Computer Science, vol. 692

6234 (2010), pp. 440–447. https://doi.org/10.1007/978-3-642-15461-4_42 693

46. S. Konur, C. Dixon, M. Fisher, Analysing robot swarm behaviour via probabilistic model 694

checking. Rob. Auton. Syst. 60(2), 199–213 (2012). https://doi.org/10.1016/j.robot.2011.10. 695

005 696

47. S. Konur, M. Fisher, S. Schewe, Combined model checking for temporal, probabilistic, and 697

real-time logics. Theor. Comput. Sci. 503, 61–88 (2013). https://doi.org/10.1016/j.tcs.2013.07. 698

012 699

48. S. Konur, M. Fisher, S. Dobson, S. Knox, Formal verification of a pervasive messaging system. 700

Formal Aspects Comput. 26(4), 677–694 (2014). https://doi.org/10.1007/s00165-013-0277-4 701

49. S. Konur, M. Gheorghe, C. Dragomir, F. Ipate, N. Krasnogor, Conventional verification for 702

unconventional computing: a genetic XOR gate example. Fundam. Inform. 134, 97–110 703

(2014). https://doi.org/10.3233/FI-2014-1093 704

50. S. Konur, M. Gheorghe, C. Dragomir, L. Mierlă, F. Ipate, N. Krasnogor, Qualitative and 705

quantitative analysis of systems and synthetic biology constructs using P systems. ACS Synth. 706

Biol. 4(1), 83–92 (2015). https://doi.org/10.1021/sb500134w 707

51. S. Konur, M. Kiran, M. Gheorghe, M. Burkitt, F. Ipate, Agent-based high-performance 708

simulation of biological systems on the GPU, in Proceedings of the 2015 IEEE 17th 709

International Conference on High Performance Computing and Communications, 2015 IEEE 710

7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th 711

International Conference on Embedded Software and Systems, New York, NY (2015), pp. 84– 712

89. https://doi.org/10.1109/HPCC-CSS-ICESS.2015.253 713

52. S. Konur, H. Fellermann, L.M. Mierlă, D. Sanassy, C. Ladroue, S. Kalvala, M. Gheorghe, 714

N. Krasnogor, An integrated in silico simulation and biomatter compilation approach to 715

cellular computation, in Advances in Unconventional Computing, ed. by A. Adamatzky. Series 716

Emergence, Complexity and Computation, vol. 23 (2017), pp. 655–676. https://doi.org/10. 717

1007/978-3-319-33921-4_25 718

53. S. Konur, L. Mierlă, F. Ipate, M. Gheorghe, kPWorkbench: a software suit for membrane 719

systems. SoftwareX 11, 100407 (2020). https://doi.org/10.1016/j.softx.2020.100407 720

54. kPWorkbench. https://github.com/kernel-p-systems/kpworkbench 721

55. P. Kuhn, K. Wagner, K. Heil, M. Liss, N. Netuschil, Next generation gene synthesis: from 722

microarrays to genomes. Eng. Life Sci. 17(1), 6–13 (2017). https://doi.org/10.1002/elsc. 723

201600121 724

56. J.C. Lagarias, Point lattices, in Handbook of Combinatorics, vol. 1 (1996), pp. 919–966 725

57. R. Lefticaru, S. Konur, Ü. Yildirim, A. Uddin, F. Campean, M. Gheorghe, Towards an 726

integrated approach to verification and model-based testing in system engineering, in Pro- 727

ceedings of the 2017 IEEE International Conference on Internet of Things (iThings) and IEEE 728

Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social 729

Computing (CPSCom) and IEEE Smart Data (SmartData), Exeter, 2017 (2017), pp. 131–138. 730

https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25 731

58. R. Lefticaru, M.E. Bakir, S. Konur, M. Stannett, F. Ipate, Modelling and validating an 732

engineering application in kernel P systems, in Membrane Computing (CMC 2017), ed. by 733

M. Gheorghe, G. Rozenberg, A. Salomaa, C. Zandron. Lecture Notes in Computer Science, 734

vol. 10725 (2018), pp. 183–195. https://doi.org/10.1007/978-3-319-73359-3_12 735

59. C. Priami, Stochastic π-calculus. Comput. J. 38(7), 578–589 (1995). https://doi.org/10.1093/ 736

comjnl/38.7.578 737

60. Pulse Generator Case Study. http://sysbio.infobiotics.org/pulsegenerator/pulsegenerator.html 738

61. Repressilator Case Study. http://sysbio.infobiotics.org/models/repressilator/repressilator.html 739

https://doi.org/10.1017/S0269888914000228
https://doi.org/10.1109/TCBB.2014.2362531
https://doi.org/10.1007/978-3-642-15461-4_42
https://doi.org/10.1016/j.robot.2011.10.005
https://doi.org/10.1016/j.robot.2011.10.005
https://doi.org/10.1016/j.tcs.2013.07.012
https://doi.org/10.1016/j.tcs.2013.07.012
https://doi.org/10.1007/s00165-013-0277-4
https://doi.org/10.3233/FI-2014-1093
https://doi.org/10.1021/sb500134w
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.253
https://doi.org/10.1007/978-3-319-33921-4_25
https://doi.org/10.1007/978-3-319-33921-4_25
https://doi.org/10.1016/j.softx.2020.100407
https://github.com/kernel-p-systems/kpworkbench
https://doi.org/10.1002/elsc.201600121
https://doi.org/10.1002/elsc.201600121
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2017.25
https://doi.org/10.1007/978-3-319-73359-3_12
https://doi.org/10.1093/comjnl/38.7.578
https://doi.org/10.1093/comjnl/38.7.578
http://sysbio.infobiotics.org/pulsegenerator/pulsegenerator.html
http://sysbio.infobiotics.org/models/repressilator/repressilator.html


References 99

62. F.J. Romero-Campero, H. Cao, M. Camara, N. Krasnogor, Structure and parameter estimation 740

for cell systems biology models, in Proceedings of the 10th Annual Conference on Genetic 741

and Evolutionary Computation (GECCO ’08), Atlanta, GA, USA, July 12–16, 2008 (2008), 742

pp. 331–339. https://doi.org/10.1145/1389095.1389153 743

63. F.J. Romero-Campero, J. Twycross, M. Cámara, M. Bennett, M. Gheorghe, N. Krasnogor, 744

Modular assembly of cell systems biology models using P systems. Int. J. Found. Comput. Sci. 745

20(3), 427–442 (2009). https://doi.org/10.1142/S0129054109006668 746

64. F.J. Romero-Campero, J. Twycross, H. Cao, J. Blakes, N. Krasnogor, A multiscale modeling 747

framework based on P systems, in Membrane Computing (WMC 2008), ed. by D.W. Corne, P. 748

Frisco, Gh. Păun, G. Rozenberg, A. Salomaa. Lecture Notes in Computer Science, vol. 5391 749

(2009), pp. 63–77. https://doi.org/10.1007/978-3-540-95885-7_5 750

65. D. Sanassy, H. Fellermann, N. Krasnogor, S. Konur, L. Mierlă, M. Gheorghe, C. Ladroue, 751

S. Kalvala, Modelling and stochastic simulation of synthetic biological Boolean gates, in 752

Modelling and Stochastic Simulation of Synthetic Biological Boolean Gates, 2014 IEEE 753

International Conference on High Performance Computing and Communications, 2014 IEEE 754

6th International Symposium on Cyberspace Safety and Security, 2014 IEEE 11th International 755

Conference on Embedded Software and Syst (HPCC,CSS,ICESS), Paris, 2014 (2014), pp. 404– 756

408. https://doi.org/10.1109/HPCC.2014.68 757

66. K. Sen, M. Viswanathan, G. Agha, Statistical model checking of black-box probabilistic 758

systems, in Computer Aided Verification (CAV 2004), ed. by R. Alur, D.A. Peled. Lecture 759

Notes in Computer Science, vol. 3114 (2004), pp. 202–215. https://doi.org/10.1007/978-3- 760

540-27813-9_16 761

67. R. Storn, K. Price, Differential evolution: a simple and efficient heuristic for global optimiza- 762

tion over continuous spaces. J. Global Optim. 11, 341–359 (1997). https://doi.org/10.1023/A: 763

1008202821328 764

68. F.J.W. Symons, Introduction to numerical Petri nets, a general graphical model of concurrent 765

processing systems. Aust. Telecommun. Res. 14(1), 28–32 (1980) 766

69. M. Yabandeh, Model checking of distributed algorithm implementations, Ph.D. thesis, IC 767

(2011). École Polytechnique Fédérale de Lausanne. https://doi.org/10.5075/epfl-thesis-4858 768

https://doi.org/10.1145/1389095.1389153
https://doi.org/10.1142/S0129054109006668
https://doi.org/10.1007/978-3-540-95885-7_5
https://doi.org/10.1109/HPCC.2014.68
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1007/978-3-540-27813-9_16
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.5075/epfl-thesis-4858


AUTHOR QUERY

AQ1. Please check sentence starting “The dashboard allows. . .” for completeness.


