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Multienvironment probabilistic P systems provide a framework of specification for modeling popula-
tion biology. It has been used to model real ecosystems in a comprehensible, modular and probabilistic
way. However, simulators are needed for virtual experimentation. Hence, the development of correct
simulation algorithms becomes a critical point. In this paper we present a formal verification of a new
algorithm of simulation designed for this kind of probabilistic P systems.
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1. Introduction

Modeling biological, chemical and physical phenomena has been, in the last years, a trend
to analyze, describe and understand the intrinsic knowledge of these complex systems. Fur-
thermore, computational formal models have been used as auxiliary tools for improving the
development of experiments in many empirical sciences. In this sense, P systems have been
used as a modeling framework for systems biology and population dynamics[1, 6]. P sys-
tems are theoretical computational devices defined in the field of Membrane Computing,
first introduced by Gh. Păun in 1998[5].

Recently, a P systems based general framework for modeling ecosystems dynamics
was presented in[1]. This computational modeling framework has been employed for real
ecosystems, such as the scavenger birds in the Catalan Pyrenees[2] and the zebra mussel in
Ribarroja reservoir (located in Tarragona, Spain)[1]. It is noteworthy that the development
of these models has been supervised by expert ecologists. The mentioned framework is
based on multienvironment probabilistic P systems. The computations of these P systems
behave non-deterministically, according to probabilistic functions that follow, as recom-
mended by experts, the binomial distribution. Moreover, the modularity of these models
also enables to easily adding or removing new ingredients and characteristics.

107

http://dx.doi.org/10.1142/S0129054111007873


January 6, 2011 14:24 WSPC/INSTRUCTION FILE S0129054111007873

108 M. A. Mart́ınez-del-Amor et al.

The aim of this P system based modeling framework is to help the ecologists to adopt
a priori strategies in the real systems by executing virtual experiments. Therefore, the de-
sign of simulators and other related software tools becomesa critical point in the process
of model validation, as well as for virtual experimentation. Thus, a software tool, based on
pLinguaCore library[3], was developed and presented in[1].

In this paper, we present a formal verification of a new simulation algorithm called
DNDP, in the sense that we prove that for each computation step, the multiset of rules
selected to be applied byDNDP algorithm is maximally consistent (this notion will be
explained later), and we also prove thatDNDP correctly generates the next configuration
obtained after the simulated step. This kind of formal checking is important in order to
properly simulate the mentioned models based on probabilistic P systems.

The rest of the paper is structured as follows. Section2 describes the modeling frame-
work based on probabilistic P systems. Section3 depicts the details of theDNDP simulation
algorithm. In section4 we show a formal verification of the algorithm. The paper endswith
some conclusions and ideas for future work.

2. A Computational Modeling Framework

First, let us define the syntactical specifications of a P systems based framework for popu-
lation biology, bringing in additional features, such as 3 electrical charges which turn out
to be quite convenient for handling some specific features ina better waya.

A multienvironment probabilistic functional P system withactive membranes of degree
(q,m) takingT time units can be viewed as a collection ofm connected environments
e1, . . . , em (the structure of connections is given by the arcs from a directed graph) such
that each environmentej contains a probabilistic functional P system with active mem-
branes of degreeq, Πj = (Γ, µ, RΠ, {fr,j : r ∈ RΠ}, {Mi,j : 0 ≤ i ≤ q − 1}). All Πj ,
for j = 1, . . . ,m, share thesame skeleton, (Γ, µ, RΠ); each rule of the system has asso-
ciated a probabilistic functionfr,j ; and the tupleM0,j, . . . ,Mq−1,j describes the initial
multisets.

Definition 1. A multienvironment probabilistic functional P system withactive membranes
of degree(q,m) with q ≥ 1, m ≥ 1, takingT time units,T ≥ 1, is a tuple

(G,Γ,Σ, T, µ,RE , RΠ, {fr,j : r ∈ RΠ, 1 ≤ j ≤ m}, {Mi,j : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})

where:

• G = (V, S) is a directed graph such that(x, x) ∈ S, for eachx ∈ V . The
elements of the setV = {e1, . . . , em} are called environments;

• Γ is the working alphabet andΣ $ Γ is an alphabet representing the objects that
can be present in the environments;

• T is a natural number that bounds the number of steps of the system. In some
sense, it indicates the look-ahead time that we will work with in the modeling;

aDetails about the use of charges in the models are out of the scope of this paper, see e.g.[1].
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• µ is a membrane structure (that is, a rooted tree) consisting of q membranes injec-
tively labeled with0, 1, . . . , q − 1. The skin membrane is labeled with 0. We also
associate electrical charges with membranes from the set{0,+,−};

• RE is a finite set of communication rules between environments of the form:

(x)ej
p(x,j,j1,...,jh)

−−−→ (y1)ej1 . . . (yh)ejh

wherex, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S (l = 1, . . . , h) and p(x,j,j1,...,jh) is a
computable function ranging over[0, 1] and whose domain is{1, 2, . . . , T }. If
p(x,j,j1,...,jh)(t) = 1, for eacht, then we omit it. These rules verify that for each
environmentej and for each objectx ∈ Σ, the sum of functions associated with
the rules fromRE whose LHS (left–hand side) is(x)ej coincide with the constant
function equal to 1;

• RΠ is a finite set of evolution rules of the formr : u [ v ]αi → u′ [ v′ ]α
′

i where
u, v, u′, v′ are multisets overΓ, i ∈ {0, 1, . . . , q − 1}, andα, α′ ∈ {0,+,−};

• For eachr ∈ RΠ and for eachj, 1 ≤ j ≤ m, fr,j is a computable func-
tion such thatdom(fr,j) ⊆ {1, . . . , T }, andrange(fr,j) ⊆ [0, 1] verifying that
∑z

h=1 frh,j(t) = 1, for eacht, 1 ≤ t ≤ T , wherer1, . . . , rz are the rules from
RΠ whose LHS is the same asr;

• For eachi, 0 ≤ i ≤ q − 1 and for eachj, 1 ≤ j ≤ m,Mi,j are strings overΓ,
describing the multisets of objects initially placed in theq regions ofΠj .

The configuration of the system at any instant is a tuple(C1, . . . , Cm) whereCj is
the configuration of the environmentej at that moment, that is, the tuple of multisets of
objects present in the environmentej and in theq regionsof Πj , together with their respec-
tive polarizations. The tuple((∅,M0,1, . . . ,Mq−1,1), . . . , (∅,M0,m, . . . ,Mq−1,m)) with
neutral polarizations in every membrane, is the initial configuration of the system.

Rules are applied as follows:

• When a communication rule(x)ej
p(x,j,j1,...,jh)

−−−→ (y1)ej1 . . . (yh)ejh is applied, ob-
ject x passes fromej to ej1 , . . . , ejh possibly modified into objectsy1, . . . , yh,
respectively. In any momentt, 1 ≤ t ≤ T , communication rules will be maxi-
mally applied to all available objects occurring in the LHS of some rule ofRE

(the selection is done according to the probabilities of therules).
• A rule u[v]αi → u′[v′]α

′

i is applicable to a membrane labeled byi and withα
as electrical charge, if multisetu is contained in the father of membranei and
multisetv is contained in the membrane labeled byi havingα as electrical charge.
When that rule is applied, multisetu (resp.v) in the father of membranei (resp.
in membranei) is removed from that membrane, and the multisetu′ (resp.v′) is
produced instead, setting the charge of membranei toα′.
• The rules of each P systemΠj are applied in amaximal consistent parallelway;

that is, a maximal multiset of applicable rules is selected (according to their as-
sociated probabilities), keeping in mind that for eachi ∈ {0, 1, . . . , q − 1}, all
applicable rules of the typeu[v]αi → u′[v′]α

′

i selected to be applied must agree on
the chargeα′ of the RHS (consistence).
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We assume that a global clock exists, marking the time for thewhole system (for its
compartments), that is, all membranes and the application of all rules are synchronized.

3. TheDNDP Simulation Algorithm

In this section we describe the design and the pseudocode of the DNDP (Direct Non-
deterministic Distribution with Probabilities) simulation algorithm. Its aim is to overcome
the disadvantages of the algorithm introduced in[1], that restricted the variety of P systems
models that could be correctly simulated. The input is a multienvironment probabilistic
functional extended P system with active membranes of degree(q,m), takingT time units.
The algorithm simulates only one computation of the P system(actually, onlyT transition
steps), by executing rules in a non-deterministic maximal consistent parallel way.

Next we show the pseudocode of theDNDP algorithm.

Input: A multienvironment functional P system with active membranes of degree(q,m)

with q ≥ 1, m ≥ 1, takingT time units,T ≥ 1.
1: C0 ← initial configuration of the system
2: for t ← 0 to T − 1 do
3: C′

t ← Ct

4: Initialization
5: First selection phase: generates a multiset ofconsistentapplicable rules.
6: Second selection phase: generates a multiset ofmaximal consistentapplicable rules.
7: Execution of selected rules.
8: Ct+1 ← C′

t

9: end for

Roughly speaking, the simulation of each transition step isdivided into two phases:
selectionandexecution. In the first one, a multiset of maximally consistent applicable rules
is calculated. In the last one, the rules in the multiset are applied to the configuration, each
one as many times as indicated by their multiplicity. Note that adding new objects before
finishing selection phase could mislead the algorithm yielding inconsistent states, since the
algorithm could use such new objects for triggering rules ofthe P system that were not
supposed to be applied until the next transition step. Cooperation is another feature to be
taken into account, in the sense that left-hand sides of the rules consist of several objects
“cooperating” to activate the rule. Moreover, if there are rules with overlapping left-hand
sides, then they will compete for the common objects. Therefore, the algorithm should
efficiently perform an object distribution.

Finally, execution phase will add the RHS (right-hand side)of the rules in the maximal
consistent applicable multiset of rules to the configuration C′

t. At the end of the process,
C′

t is actually the next configurationCt+1: the LHS of rules has been removed in the first
and second selection phases, and the RHS of rules is added in the execution stage.

Let us now describe the pseudocode of the four main modules ofthe algorithm.
First of all, in order to simplify the selection and execution phases, theinitialization

process constructs two ordered set of rules,Aj andBj , gathering only rules fromRE and
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RΠ applicable in environmentej , and having a probability greater than0.

Initialization
1: RΠ ← ordered set of rules ofΠ
2: for j ← 1 tom do
3: RE,j ← ordered set of rules fromRE related to the environmentj
4: Aj ← ordered set of rules fromRE,j whose probability at the momentt is> 0
5: LCj ← ordered set of pairs〈label, charge〉 for all the membranes fromCt contained in the

environmentj
6: Bj ← ∅
7: for each〈h, α〉 ∈ LCj (following the considered order)do

8: Bj ← Bj∪ ordered set of rulesu[v]αh → u′[v′]β
h

from RΠ whose probability at the
momentt is greater than0 for the environmentj

9: end for
10: end for

The selection process is split into two phases, following the design of the DND (Di-
rect Non-deterministic Distribution) algorithm introduced by Nguyen et al. in[4]. Thefirst
selectionphase generates a multiset of consistent applicable rules,where the number of
times each rule will be applied is randomly calculated by running a binomial distribution
according to their associated probability function, as explained below. Thesecond selection
phase eventually increases the multiplicity of some of these rules, obtaining a multiset of
maximal consistent applicable rules.

First selection phase (consistence)
1: for j ← 1 tom do
2: Rj ← the empty multiset
3: Dj ← Aj ∪ Bj with a random order
4: for eachr ∈ Dj (following the considered order)do
5: M ←maximum number of times thatr is applicable toC′

t

6: if r is consistentwith the rules inR1
j ∧M > 0 then

7: N ←maximum number of times thatr is applicable toCt

8: n← min{M,Fb(N, fr,j(t))}
9: C′

t ← C′

t − n · LHS(r)
10: Rj ← Rj ∪ {〈r, n〉}
11: end if
12: end for
13: end for

In the first selection phase, a multiset of consistent applicable rules, denoted byRj for
each environmentj, is calculated. First, a random order is applied toAj ∪ Bj , and stored
in an ordered setDj. Moreover, a copy of the configurationCt, calledC′

t, is created and it
is updated each time that a rule is selected (removing the LHS).

Then, a ruler is applicable if the following holds: it is consistent with the previouslyb

selected rules inRj , and the number of possible applicationsM in C′

t is greater than0.
On the one hand, sinceC′

t has been updated by the previously selected rules, the number

bAccording to the order inDj .
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n cannot exceedM to guarantee a correct object distribution. On the other hand, if the
generated numbern is 0, the corresponding rule is also added to the multisetRj , giving a
new chance to be selected in the next phase (maximality). Therefore, we will handle the
“multiset” of rulesRj as a set of pairs〈x, y〉wherex ∈ Dj andy is the number of times that
x is going to be applied (eventuallyy = 0). We will denoteR0

j = {r ∈ Dj : 〈r, 0〉 ∈ Rj}

andR1
j = {r ∈ Dj : 〈r, n〉 ∈ Rj , n > 0}.

In the second selection phase, rules fromRj are checked again in order to achieve
maximality. If one ruler ∈ Rj has a number of applicationsN greater than0 in C′

t, N
will be directly assigned to the ruler. Rules fromRj are iterated in order according to
the probabilities for fair object distribution. Note that rules inR0

j are also checked, so the
condition of consistence has to be tested again.

Second phase of rules selection (maximality)
1: for j ← 1 tom do
2: Rj ← Rj with an order by the rule probabilities, from highest to lowest
3: for each〈r, n〉 ∈ Rj (following the selected order)do
4: if n > 0 ∨ (r is consistentwith the rules inR1

j ) then
5: M ←maximum number of times thatr is applicable toC′

t

6: if M > 0 then
7: Rj ← Rj ∪ {〈r,M〉}
8: C′

t ← C′

t −M · LHS(r)
9: end if

10: end if
11: end for
12: end for

In order to complete the simulation of the computation step,the last phase (execution)
takes care of the effects of applying the rules selected in the previous phase: updating the
charges according to the RHS of the rules and adding the necessary objects.

Execution of selected rules
1: for j ← 1 tom do
2: for each〈r, n〉 ∈ Rj with n > 0 do
3: C′

t ← C′

t + n ·RHS(r)
4: Update the electrical charges ofC′

t according toRHS(r)
5: end for
6: end for

4. A Formal Verification

Let us start by analyzing the first selection phase (consistence). Its goal is to select a mul-
tiset of applicable rules forCt, trying to capture the stochasticity of the system.

4.1. Verification of the first selection phase (consistence)

This module receives as input:

• A numbert (0 ≤ t ≤ T − 1), that indicates the step of the computation that is
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being simulated (actually, stept of the main loop ofDNDP algorithm refers to the
(t+ 1)-th step of the P system computation).
• A numberj (1 ≤ j ≤ m), representing which environment is being considered.
• Ct, the configuration at timet of the simulated multienvironment functional prob-

abilistic P system with active membranes of degree(q,m).
• The setAj of all rules fromRE applicable on environmentej and having a prob-

ability at timet strictly greater than 0.
• The setBj of all rulesr ∈ RΠ applicable onΠj such that their probability is

strictly greater than 0.

The output generated by this module is a multiset of rulesRj and a configurationC′

t.
The following theorems formalize the concept of correctness that we want to prove for

this module:

Theorem 2. The multiset of rulesRj is applicable toCt, and the result of removing the
objects consumed by those rules isC′

t.

Theorem 3. There exists a maximally consistent multiset of applicablerules forCt that
can be obtained fromRj . That is, any rule that does not appear inRj , cannot be consis-
tently applied toC′

t.

Before proceeding with the details of the formal verification, let us re-label the module.

1: C′

t,0 ← Ct

2: Rj,0 ← ∅

3: Dj ← Aj ∪Bj = {r
j
1, . . . , r

j
sj
} with a random order(rj1 < · · · < rjsj )

4: for α← 1 to sj do
5: M j

α ← maximum number of times thatrjα is applicable toC′

t,α−1

6: if rjα is consistentwith the rules inR1
j,α−1 ∧M

j
α > 0 then

7: N j
α ← maximum number of times thatrjα is applicable toCt

8: nj
α ← min{M j

α, Fb(N
j
α, frjα,j

(t))}

9: C′

t,α ← C′

t,α−1 − n
j
α · LHS(r

j
α)

10: Rj,α ← Rj,α−1 ∪ {〈rjα, n
j
α〉}

11: else
12: C′

t,α ← C′

t,α−1

13: Rj,α ← Rj,α−1

14: end if
15: end for

wheref
r
j
α,j

(t) stands for the probability of applying rulerjα at timet.

Remark 4. We shall use the following notation.

• l(Rj,h) = {r : ∃n (〈r, n〉 ∈ Rj,h)}

• R1
j,h = {r : ∃n > 0 (〈r, n〉 ∈ Rj,h)}

• M j
h = maximum number of times that rulerjh can be applied to configuration

C′

t,h−1.
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• N j
h = maximum number of times that rulerjh can be applied to configurationCt.

Let us consider the following formulaϕ(α), for anyα (α = 1, . . . , sj).

∀β (1 ≤ β ≤ α =⇒

[rjβ ∈ Dj − l(Rj,α) =⇒ (rjβ is not consistent withR1
j,α−1) ∨ (M j

β = 0)] ∧

[〈rjβ , n
j
β〉 ∈ Rj,α =⇒ (rjβ is consistent withR1

j,α−1) ∧M
j
β > 0 ∧ nj

β ≤M
j
β ∧

(C′

t,β = C′

t,β−1 − n
j
β · LHS(r

j
β)) ∧ Rj,β = Rj,β−1 ∪ {〈r

j
β , n

j
β〉}])

Theorem 5. ∀α (1 ≤ α ≤ sj) =⇒ ϕ(α).

Proof. By induction onα. For the base case, letrj1 ∈ Dj . In this case,R1
j,0 = R0

j,0 = ∅.

Thus,rj1 is clearly consistent withR1
j,0. Moreover,N j

1 ≥M
j
1 ≥ 0.

• If M j
1 = 0 then we haveC′

t,1 = C′

t,0 = Ct, andRj,1 = Rj,0 = ∅

• If M j
1 > 0 thennj

1 = min{Fb(N
j
1 , frj1,j

),M j
1},C

′

t,1 = C′

t,0−n
j
1 ·LHS(r

j
1), and

Rj,1 = {〈rj1, n
j
1〉}

Thus,ϕ(1) follows.
Let α be such that1 ≤ α < sj and let us suppose that the formulaϕ(α) holds. Letβ

be such that1 ≤ β ≤ α+ 1.
Let us suppose1 ≤ β ≤ α. If rjβ ∈ Dj − l(Rj,α+1), thenrjβ ∈ Dj − l(Rj,α) and, by

applying the induction hypothesis, we have eitherrjβ is not consistent withR1
j,β−1 or rjβ is

consistent withR1
j,β−1 andM j

β = 0. If rjβ ∈ l(Rj,α+1) then

• Case 1:rjβ ∈ l(Rj,α). In this case all properties are deduced from the veracity of
ϕ(α).
• Case 2:rjβ ∈ l(Rj,α+1) − l(Rj,α). In this case,〈rjβ , n

j
β〉 should have been added

to the setRj,α+1 at the stepα+ 1. But this is not possible because1 ≤ β ≤ α.

Let us suppose now thatβ = α+ 1. Then, we distinguish two cases.

• Case 1:rjα+1 ∈ Dj−l(Rj,α+1) andrjα+1 is consistent withR1
j,α. ThenM j

α+1 = 0

because on the contrary we haverjα+1 ∈ l(Rj,α+1) according to the semantics of
the algorithm (more precisely, we haveRj,α+1 = Rj,α ∪ {〈r

j
α+1, n

j
α+1〉}).

• Case 2:rjα+1 ∈ l(Rj,α+1). In this case, that rule has been added to the set
l(Rj,α+1) becauserjα+1 is consistent withR1

j,α andM j
α > 0. Moreover, we have:

nj
α+1 = min{Fb(N

j
α+1, frj

α+1,j
),M j

α+1},C
′

t,α+1 = C′

t,α − n
j
α+1 · LHS(r

j
α+1),

andRj,α+1 = Rj,α ∪ {〈r
j
α+1, n

j
α+1〉}

The previous theorem implies that, in particular, the formulaϕ(sj) holds.
Let us denoteRj,sj = {〈rδ1 , nδ1〉, . . . , 〈rδk , nδk〉}, where1 ≤ δ1 < · · · < δk ≤ sj
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Proposition 6. The set of rules{rδ1 , . . . , rδk} is consistent, that is, for any pair of rules,
if their LHS refer to the same membrane label and charge (e.g.u [ v ]αh andu′ [ v′ ]αh), then
both RHS must agree on the new charge (e.g.u′′ [ v′′ ]α

′

h andu′′′ [ v′′′ ]α
′

h ).

Proof. Since the formulaϕ(sj) holds, we deduce

∀β ((1 ≤ β ≤ sj ∧ rβ ∈ l(Rj,sj )) =⇒ rβ is consistent withR1
j,β−1)

Hence,∀i (1 ≤ i ≤ k =⇒ rδi is consistent with{rδ1 , . . . , rδk})

Proposition 7. For all i, 1 ≤ i ≤ k we have:

C′

t,δi
= C′

t,δi−1
− nδi · LHS(rδi) ∧ ∀γ (δi−1 < γ < δi =⇒ C′

t,γ = C′

t,δi−1
)

Proof. (Sketch) The proof can be easily deduced from Theorem5, taking into account that
rδi ∈ l(Rj,sj ), for everyi, 1 ≤ i ≤ k, and∀γ (δi−1 < γ < δi =⇒ rγ /∈ l(Rj,sj )).

Corollary 8. For all i, 1 ≤ i ≤ k we haveC′

t,δi
= Ct −

i
⋃

h=1

nδh · LHS(rδh).

Proof. (Sketch) The proof follows from proposition7 reasoning by induction.

Corollary 9. C′

t,sj
= C′

t,δk
= Ct −

⋃

r∈Rj,sj

nr · LHS(r).

Proof. From Corollary 8, we haveC′

t,δk
= Ct −

⋃

r∈Rj,sj

nr · LHS(r). Moreover,

∀γ (δk < γ ≤ sj =⇒ C′

t,γ = C′

t,δk
). Indeed, letγ be such thatδk < γ ≤ sj , then

γ ∈ Dj − l(Rj,sj ). Having in mind the formulaϕ(sj) is true we deduce that rulerγ is not
applied at the current configuration at the stepγ. Hence,C′

t,γ = C′

t,δk
.

Corollary 10. The multiset of rulesRj,sj is applicable in a consistent manner to the con-
figurationCt.

Proof. It is enough to notice that for alli, 1 ≤ i ≤ q, the rulerδi is applicable toC′

t,δi−1

and consistence is always checked before adding a new pair〈rδi , nδi〉 toRj,δi .

Note that the proof of Theorem2 follows from Corollary9 and Corollary10.

Proposition 11. If r ∈ Dj − l(Rj,sj ) then the ruler is not applicable in a consistent
manner to the configurationC′

t,sj
.

Proof. From Corollary9 we haveC′

t,sj
= Ct −

⋃

r∈Rj,sj

nr ·LHS(r). Since formulaϕ(sj)

holds, we deduce that ifrβ ∈ Dj − l(Rj,sj ) then eitherrβ is not consistent withR1
j,β−1,

or rβ is consistent withR1
j,β−1 andM j

β = 0.
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From this last result we deduce that in order to determine a maximal consistent multiset
of applicable rules for a configurationCt, it suffices to take rules from the setl(Rj,sj ) and
apply them in a maximal way. That is, we deduce that Theorem3 holds.

4.2. Verification of the second phase of rules selection (consistent maximality)

This module receives as input two numberst andj (0 ≤ t ≤ T − 1 and1 ≤ j ≤ m), like
in the previous module, and it also receives the following:

• A multiset of rulesRj,sj = {〈rγ1 , nγ1〉, . . . , 〈rγk
, nγk
〉}, obtained as output of

the previous algorithmic module, with an order given by the probabilities of the
rules at timet, from highest to lowest.
• An intermediate configurationC′

t, obtained from configurationCt by removing
all objects consumed by the application of the multisetRj,sj .

The output generated by this module is a multiset of rulesRj and a configurationC′

t.
The following theorems formalize the concept of correctness that we want to prove for

this module:

Theorem 12. The multiset of rulesR1
j is maximally applicable in a consistent manner to

the configurationCt.

Theorem 13. The configurationC′

t obtained as output of the module is the result of re-
moving fromCt the objects consumed by the application of the multiset of rulesR1

j .

Before proceeding with the formal verification, let us re-label the algorithmic module.

1: for i← 1 to k do
2: if nγi

> 0 ∨ (rγi
is consistentwith R1

sel,j) then

3: M j
sj+i ← max{number of times thatrγi

is applicable toC′

t,sj+i−1}

4: if M j
i > 0 then

5: R1
j,sj+i ← R1

j,sj+i−1 ∪ {〈rγi
,M j

sj+i〉}

6: C′

t,sj+i ← C′

t,sj+i−1 −M
j
sj+i · LHS(rγi

)

7: else
8: R1

j,sj+i ← R1
j,sj+i−1

9: C′

t,sj+i ← C′

t,sj+i−1

10: end if
11: end if
12: end for

From the design of the algorithm we deduce this result.
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Proposition 14. The following formulaψ(i) is true for1 ≤ i ≤ k:
[

nγi
> 0 ∧M j

sj+i > 0 ∧ (rγi
is applicableM j

sj+i times toC′

t,sj+i−1 but notM j
sj+i)

+1 times∧ (C′

t,sj+i = C′

t,sj+i−1 −M
j
sj+i · LHS(rγi

))

∧ (Rj,sj+i = Rj,sj+i−1 ∪ 〈rγi
,M j

sj+i〉)
]

∨
[

nγi
> 0 ∧M j

sj+i = 0 ∧ (C′

t,sj+i = C′

t,sj+i−1) ∧ (Rj,sj+i = Rj,sj+i−1)
]

∨
[

nγi
= 0 ∧M j

sj+i > 0 ∧ (rγi
is consistent withR1

j,sj+i−1)

∧ (C′

t,sj+i = C′

t,sj+i−1 −M
j
sj+i · LHS(rγi

))

∧ (Rj,sj+i = Rj,sj+i−1 ∪ 〈rγi
,M j

sj+i〉)
]

Proposition 15. The multisetR1
j,sj+k = {〈rγ1 , nγ1 +M j

sj+1〉, . . . , 〈rγk
, nγk

+M j
sj+k〉}

is a multiset of rules maximal consistent for the configurationCt. Moreover,C′

t,sj+k is the
configuration obtained fromCt removing the objects consumed by the application of the
multiset of rulesR1

j,sj+k.

Proof. The maximality of the multisetR1
j,sj+k follows from the construction of the multi-

plicitiesM j
sj+i. Let us recall thatC′

t,sj
= Ct − nγ1 · LHS(rγ1)− · · · − nγk

· LHS(rγk
).

From Proposition14we deduce that:


















C′

t,sj+1 = C′

t,sj
−M j

sj+1 · LHS(rγ1)

C′

t,sj+2 = C′

t,sj+1 −M
j
sj+2 · LHS(rγ2)

. . . . . .

C′

t,sj+k = C′

t,sj+k−1 −M
j
sj+k · LHS(rγk

)

Note that this proposition corresponds to a re-labelling ofTheorem12and Theorem13.
Thus, the correctness of the module follows.

4.3. Execution of selected rules

This module receives as input, for eachj (1 ≤ j ≤ m), the configurationC′

t,sj+q and the

selected multiset of rulesR1
j,sj+k = {〈rγ1 , nγ1 +M j

sj+1〉, . . . , 〈rγk
, nγk

+M j
sj+k〉}. The

output isC′

t,sj+2k which is the next configurationCt+1.

1: for j ← 1 tom do
2: for i← 1 to k do
3: C′

t,sj+k+i ← C′

t,sj+k+i−1 + (nγi
+M j

sj+i) · RHS(rγi
)

4: Update the electrical charges ofC′

t,sj+k+i according toRHS(rγi
)

5: end for
6: end for

From Proposition15 we deduce thatC′

t,sj+k is the configuration obtained fromCt

removing the objects consumed by the application of the multiset of rulesR1
j,sj+k. But

configurationC′

t,sj+2k is obtained fromC′

t,sj+k adding the objects produced by the appli-
cation of multiset of selected rulesR1

j,sj+k (and updating the corresponding polarizations).
Thus,C′

t,sj+2k is the configuration of the environmentej obtained fromCt after the appli-
cation of the multiset of selected rulesR1

j,sj+k.
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5. Conclusions

The correctness (in the sense explained in Section 4) of a newsimulation algorithm for
multienvironment probabilistic functional extended P systems with active membranes has
been demonstrated in this paper. This new algorithm, calledDNDP, has been presented and
formally verified. The framework for modeling population dynamics based on multienvi-
ronment probabilistic P systems has been also described.

Finally, correct simulation algorithms are needed to develop simulators, which are re-
quired for model validation process and virtual experimentation. In this sense, new simu-
lators and software tools, based on both sequential and parallel platforms, are under devel-
opment considering the correctness of the algorithm.

Another interesting issue is to study the way in which objects are assigned to rules
according to their probability. We do not deal with this in this paper, but it could be exper-
imentally investigated in cooperation with expert ecologists.
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