
Bulletin of Mathematical Biolooy Vol. 49, No. 6, pp. 737-759, 1987.
Printed in Great Britain.

0092-8240/8753.00 + 0.00
Pergamon Journals Ltd.

�9 1987 Society for Mathematical Biology

F O R M A L L A N G U A G E T H E O R Y A N D D N A : AN
ANALYSIS O F T H E G E N E R A T I V E C A P A C I T Y O F
S P E C I F I C R E C O M B I N A N T B E H A V I O R S

TOM HEAD
Department of Mathematical Sciences,
University of Alaska,
Fairbanks, AK 99775, U.S.A.

A new manner of relating formal language theory to the study of informational macromolecules
is initiated. A language is associated with each pair of sets where the first set consists of double-
stranded DNA molecules and the second set consists of the recombinational behaviors allowed
by specified classes of enzymatic activities. The associated language consists of strings of symbols
that represent the primary structures of the DNA molecules that may potentially arise from the
original set of DNA molecules under the given enzymatic activities.

Attention is focused on the potential effect of sets of restriction enzymes and a ligase that allow
DNA molecules to be cleaved and reassociated to produce further molecules. The associated
languages are analysed by means of a new generative formalism called a splicing system. A
significant subclass of these languages, which we call the persistent splicing languages, is shown
to coincide with a class of regular languages which have been previously studied in other
contexts: the strictly locally testable languages.

This study initiates the formal analysis of the generative power of recombinational behaviors
in general. The splicing system formalism allows observations to be made concerning the
generative power of general recombination and also of sets of enzymatic activities that include
general recombination.

1. Introduction. The purpose of this article is to establish a new relationship
between formal language theory and the study of informational macromole-
cules, Formal language theory is a branch of theoretical computer science that
is devoted to the study of sets of finite strings (called languages) of symbols
chosen from a prescribed finite set (called an alphabet). In considering the
primary structure of a protein molecule, an RNA molecule, or a double-
stranded DNA molecule it is natural to think of the first as a string over an
alphabet of twenty symbols each of which represents an amino acid, the second
as a string over an alphabet of four symbols each of which represents a
ribonucleotide, and the third as a string over an alphabet of four symbols each
of which represents a hydrogen-bonded deoxyribonucleotide pair. The theory
of formal languages has already been related in at least three distinct ways to
the study of these macromolecules: (i) Eberling and Jimenez-Montano (1980)
have established measures of complexity of protein molecules through the use
of context-free grammars and Jimenez-Montano (1984) has continued this line
of research; (ii) Brendel and Busse (1984) have expressed the process of the

737

738 TOM HEAD

translation of messenger RNA into protein by means of finite state transducers
and have derived conclusions using the closure properties of the class of regular
languages; (iii) algorithms for string comparisons have been analysed and
applied to the handling of sequence data for macromolecules in an extensive
literature that can be entered through the special issue of this Bulletin honoring
M. O. Dayhoff (Martinez, 1984). Two very recent, significant additions to this
growing literature are made by Landau et al. (1986).

In this article we represent the set of double-stranded DNA molecules that
may arise from an initial set of DNA molecules in the presence of specified
enzyme activities as a language over the four-symbol alphabet of deoxyribo-
nucleotide pairs. The recombinational power of such enzyme activities is
idealized as a set of operations on the strings over this four-symbol alphabet.
The fundamental theoretical construct is the language that is the closure of the
original set of strings under the associated set of operations. This language is
then analysed using the methods of formal language theory.

In Section 2 we explain in detail the language used to model a set of DNA
molecules in the absence of enzymes. Sections 3 and 4 are the core of this article.
In Section 3 the action of sets of restriction enzymes on sets of DNA molecules
is given a formal representation and analysis. In Section 4 examples are worked
out that illustrate each of the concepts introduced in Section 3. These examples
can be read in parallel with Section 3 or consulted as needed in the reading of
that section. In Section 5 general recombination is discussed. In Section 6
recombinational processes of additional types are mentioned as examples for
future analysis. In Section 7 it is shown that general recombination may be
regarded as dominant over other recombinational behaviors in determining
the global structure of the language of potential DNA molecules. In Section 8 a
brief summary of this article is given and related algorithmic questions are
raised. At the end of this article are two Appendices. The first consists of the
proofs of the Propositions discussed in Section 3 and the second gives a
relevant algorithm.

It is intended that Section 3 should constitute a paradigm for relating the
effect of other enzyme activities, such as those mentioned in Section 6, to the
structure of the associated languages of potential DNA molecules. We suggest
Salomaa (1985) and Hopcroft and UUman (1979) as general references for
formal language theory and Lewin (1983, 1987) and Watson et al. (1983) as
general references for DNA behavior_Legerski and Robberson (1985) may be
consulted regarding the action of ligase enzymes.

It is hoped that the line of research initiated here will interest biologists who
have not previously found reason to be concerned with formal language theory.
The situations modeled are usually ones in which the enzymes and the string
operations they provide are known. Consequently the models usually apply
directly only in vitro although some results may be suggestive for the in vivo

FORMAL LANGUAGE THEORY AND DNA 739

situation. The present article provides illustrations of two directions of
development that may be of interest: 1. This type of work determines the set of
possibilities for the outcome of in vitro activities. This is exemplified by the
Theorem that concludes Section 3. Interpretation of this result provides a
characterization of the set of possible DNA molecules that can arise in specified
circumstances. Although the conditions appearing in this theorem use the
special terminology developed here, the second condition of the theorem has a
simple non-technical meaning that is made clear by the paragraph following
Proposition 2 of Section 3. 2. The relationships between or among the
transforming activities made possible by different enzymes or combinations of
enzymes may be made precise or at least conceptually clarified. This is
exemplified by the discussion in Section 7 of the relation between general
recombination (which provides the required uniform splicing) and all other
forms of recombination (known and unknown). The italicized statements in
Section 7 are in one sense the most satisfying in this article for the following
reason: With uniform splicing replaced by general recombination, these
statements do not contain the technical terms introduced here. Thus they
convey information that has now been established in a formal sense, but which
has meaning independent of the formalism. The results discussed here are
certainly only modest formal achievements. It is hoped that future develop-
ments will provide much stronger results following the two given paradigms
and yield wholly new paradigms as well. Finally, it should not go unnoticed
that these formal models and the related algorithms provide the basis for
software that will allow computer experimentation with the recombination
processes formalized.

2. The Language Associated with a Set of DNA Molecules. First we choose an
appropriate alphabet of symbols in terms of which we can model each double-
stranded DNA molecule as a string over this alphabet. Let A, C, G and T
denote the four deoxyribonucleotides that incorporate adenine, cytocine,
guanine and thymine respectively. Consider for discussion the small hypotheti-
cal molecule:

A G C T A T C C T G A C C A T G A A T C G C
T C G A T A G G A C T G G T A C T T A G C G .

We wish to regard this molecule as one single string, not as two strings that are
bound together in parallel. (As yet formal language theory does not deal
directly with linked pairs of strings.) Consequently our alphabet must consist of
the four complex symbols:

A C G T
T G C A.

7 ~ TOM HEAD

To save space we will denote these four elements of our alphabet by: [A/T],
[C/G], [G/C] and [T/A], respectively. Thus our alphabet will be the set
O = {[A/T], [C/G], [G/C], [T/A]}. Note that our alphabet is not the set {A, C,
G, T} which would be appropriate for discussing single-stranded DNA.

By an alphabet in the general sense of formal language theory we mean a
finite, non-empty set. Let A be any such alphabet. Then A* denotes the set of all
finite strings of symbols that can be constructed using symbols in A. The length
of a string x in A* is the number of symbol occurrences in x. A* is understood to
contain a string of length zero, i.e. a string in which no symbol occurs. This
string is denoted with the numeral 1 and is called the null string. A subset of A*
is called a language over A. Formal language theory is the theory of languages
over alphabets in this abstract sense. A* has a natural binary operation, called
concatenation, under which it is closed: from strings x and y in A* having
lengths m and n, respectively, we may form a string of length m + n by attaching
a copy of y onto the right end of a copy of x. Then xy denotes the resulting
string. When D denotes the four-letter alphabet for DNA, D* denotes the set of
all conceivable (primary structures of) DNA molecules.

By an involution of A* we mean a function f : A* ~ A * for which f (f (x))= x
and f (xy)=f (y) f (x) hold for all x and y in A*. An involution is necessarily a
one to one mapping of A* onto A*. Consequently f(a) must lie in A for every a
in A. Moreover, f is determined uniquely by the values it takes on A since
f (a l a 2 . . , an_la,)=f(an)f(an_l). . . f(a2)f(al) for any a l . . . , a n in A. It is
convenient to use the alternate notation for involutions obtained by defining
x '=f(x) for each x in A*. Then we have the identities: x"=x and (xy)'=y'x'.
The DNA alphabet D={[A/T] , [C/G], [G/C], IT/A]} has the natural
involution: [A/T]' = IT/A], [C/G] ' = [G/C], [a / c] ' = [C/G], IT/A]' = [A/T].
When dealing with DNA we will use the extension of this function' to the whole
of D*. Thus for the small, hypothetical DNA molecule x = [G/C] [A/T]
[C/G] [A/T] we have x ' = IT/A] [G/C] IT/A] [C/G].

In modeling DNA molecules as strings, x and x' must be regarded as
alternate and equivalent models for the same DNA molecule: DNA molecules
exist in three-dimensional space and may be rotated around freely. Strings are
conceived of as lying in a line and having a left to right orientation. To
compensate for this difference it is necessary and sufficient to keep the equivalence
of x and x' as models in mind systematically. It may seem that another alternate
model for the molecule x = [G/C] [A/T] [C/G] [A/T] would be y = [A/T]
[C/G] [A/T] [G/C]. But y and x are not models of the same molecule: recall
that successive nucleotides in DNA are held together by phosphodiester bonds
which introduce a form of directionality. Each of the two strands has so-called
5' and 3' ends. At each end of a double-stranded DNA molecule one strand has
an open 5' end and the other has an open 3' end. Thus the two strands are
oppositely oriented. In properly formed DNA the bonds join a 5' end only to a

FORMAL LANGUAGE THEORY AND DNA 741

3' end. We will use the usual convention of denoting our DNA molecules on a
typed line with the top strand having an open 5' end at the left and consequently
an open 3' end at the right. When this point is clear it allows one to see why
strings x and y represent different molecules and confirms that x and x'
represent the same molecule: The open 5' ends of both x and x' are on a G and a
T in the example above. The open 5' ends of y are on an A and a C.

The use of the involution concept allows an especially clear discussion of
palindromes. Let A be any alphabet and let ' be an involution. When no
involution is explicitly given the involution defined for all a in A by a' = a may
be assumed. The following definition of a palindrome then coincides with the
use of this term in formal language theory (where we may take a' = a for all a in
A) and in molecular biology (where we understand the effect of' on the special
alphabet D as defined above): a string x of even length is a palindrome ifx = yy'
for a string y in A*. A string x of odd length is a palindrome if x=yay' for a
symbol a in A and a string y in A*. In the even length case the condition x = yy'
can be replaced by the simpler condition x = x'.

DNA exists not only as linear molecules but also as circular molecules.
Conventional formal language theory deals only with linear strings. Conse-
quently, since we wish to take a conservative approach to the problem of
relating formal language theory to the study of DNA in this initial work, we will
ignore circular DNA here. Closure of sets of DNA molecules under
recombinational events such as the ligation required in Section 3 or the
excision/insertion events as mentioned in Section 6 calls for a unified formal
treatment of linear and circular DNA. We therefore look forward to the
development in the future of an expanded theory of formal languages that will
deal with linear and circular strings in a unified fashion. The theme of analysis
introduced here provides motivation for such a theory. Note that at the dawn
of this century Axel Thue considered circular as well as linear strings.
Moreover, circular strings have continued as objects of study in the theory of
circular codes. However, what we are suggesting here is that in the future a
unified theory of mutually interacting circular and linear strings might be
developed. The present article deals only with linear double-stranded DNA in
which no mismatched pairs occur.

3. Languages Generated by Restriction Enzymes. A restriction enzyme cuts
DNA molecules in a very specific way. We illustrate this by discussing the
enzyme EcoRI. Let

. . . N N N N N N N G A A T T C N N N N N N N . . .

. . . N N N N N N N C T T A A G N N N N N N N . . .

be a DNA molecule where N is a variable used to denote any arbitrary
deoxyribonucleotide. EcoRI operates only at six-term sequences of exactly the

742 T O M H E A D

form shown in the center above. The effect is to cut the molecule into two
pieces:

. . . N N N N N N N G A A T T C N N N N N N N . . .

. . . N N N N N N N C T T A A G N N N N N N N

Such staggered strands of DNA spontaneously reassociate if the ends are in the
neighborhood of each other. (To maintain the reassociation a ligase must be
available to seal the two bonds in the phosphodiester backbone at the G-A
nucleotides. Throughout this article we assume the presence of an appropriate
ligase wherever needed. Whenever small molecules are needed for such
purposes as supplying energy they are also assumed present.) Suppose now
that each of two different DNA molecules is cut by EcoRI into two such pieces
as illustrated above. After reassociation the original two molecules may be
reformed, but it is also possible that two new hybrid molecules will be formed
by the left half of the first of the original molecules reassociating with the right
half of the second and the right half of the first with the left half of the second.
Let us move to a more convenient notation:

Let c = [G/C] and x = [A/T] [A/T] [T/A] [T/A]. If EcoRI is added to a
collection of copies of two molecules of the form ucxc'v and pcxc'q (where u, v, p
and q are arbitrary DNA segments) then after reassociation we may expect to
find, in addition to molecules of the original forms, molecules of the forms
ucxc'q and pcxc'v. Many restriction enzymes are available and their behavior
with respect to DNA molecules is quite similar to that of EcoRI, although their
cleavage sites vary in sequence and some have more than one cleavage site.
Appendix A of Watson et al. (1983) contains convenient tables of restriction
enzymes and their associated sites or cleavage recognition sequences. With
each restriction enzyme we associate a triple that we will call the cleavage
pattern of the enzyme. This pattern will show the cleavage sequence plus the
points of cleavage. For example, the cleavage pattern of EcoRI is ([G/C],
[A/T] [A/T] IT/A] T/A], [C/G]). Notice from the diagram above illustrating
the effect of cleavage by EcoRI that the single-stranded tails (called cohesive
ends) each terminate with an A having an open 5' end. Such single-stranded
tails are called 5' overhangs.

Consider three more enzymes, their cleavage sites, the nature of the cohesive
ends they form, and our notation for the cleavage patterns they provide:

~ q I ~ iNI HhaI

. . . N N T C G A N N N N G C G C N N N N G C G C N N . . .

. . . N N A G C T N N N N C G C G N N N N C G C G N N . . .

. . . N N T C G A N N N N G C G C N N N N G C G C N N . . .

. . . N N A G C T N N N N C G C G N N N N C G C G N N . . .

([m/a], [C/G] [G/C], [A/m]) (EG/C], [C/G] [G/C], [C/G]) ([G/C], It/G] [G/C], [C/G]).
An important aspect of the cleavage process is not encoded in our cleavage

FORMAL LANGUAGE THEORY AND DNA 743

patterns: The fragments produced by TaqI and SciNI can form hybrid
molecules but the fragments produced by HhaI cannot recombine with the
fragments produced by the other two. The single-stranded tails produced by
the first two are 5' overhangs, but for HhaI the single-stranded tails are 3'
overhangs. To build this last distinction into our formal model we will group
our cleavage patterns into two sets: those associated with 5' overhangs and
those associated with 3' overhangs. [It is typical but not universal for cleav-
age sites to be palindromes, as is the case for each of the four enzymes
illustrated�9 Note that since ucxc'v represents the same molecule as
(ucxc'v)'= v'c"x'c'u'= v'cxc'u', EcoRI may act on two copies of ucxc'v to yield
the long palindromic molecules ucxc'u' and v'cxc'v].

There are also restriction enzymes for which the cleavages produced are not
staggered. These are said to create blunt ends. For example, AluI has the
cleavage pattern ([A/T] [G/C], 1, [C/G] [T/A]) which indicates that it cleaves
as illustrated:

�9 . . N N N A G C T N N N . . . b e c o m e s . . . N N N A G a n d C T N N N . . .
�9 N N N T C G A N N N N N N T C G A N N N

The ligases currently in use rejoin such blunt ends and consequently mixed
splicing of blunt end segments occurs. Ligation of blunt ends and cleavages that
produce blunt ends raise some minor questions about the model we are
developing. These are best ignored until Section 6.

The behavior of DNA with respect to restriction enzymes suggests the
following intuitively presented questions�9 Suppose we are given a finite set M of
DNA molecules and a finite set N of restriction enzymes (nucleases); suppose
also that as many copies as desired of any DNA molecule that is given or
produced are always available. What is the nature of the language consisting of
all DNA molecules that can arise through the action of the restriction enzymes
in N (followed by reassociation) on the set M of DNA molecules and on any
further DNA molecules produced? In particular, which molecules can
potentially arise? We set down a definition to allow a formal treatment of these
questions:

Definition�9 A splicing system S = (A, L B, C) consists of a finite alphabet A, a
finite set Iofinitial strings in A*, and finite sets B and C of triples (c, x, d) with c,
x and d in A*. Each such triple in B or C is called a pattern. For each such triple
the string cxd is called a site and the string x is called a crossing. Patterns in B
are called left patterns and patterns in C are called right patterns. The language
L = L(S) generated by S consists of the strings in I and all strings that can be
obtained by adjoining to L ucxfq and pexdv whenever ucxdv and pexfq are in L
and (c, x, d) and (e, x , f) are patterns of the same hand. A language L is a
splicing language if there exists a splicing system S for which L = L(S).

This definition allows a formal treatment of the intuitively stated question

744 TOM HEAD

above concerning the language formed by the interaction of a finite set M of
DNA molecules with a finite set N of restriction enzymes: The splicing system
associated with the intuitive question is S = (D, I u / ' , B, C), where D is our
usual four-symbol alphabet for duplex D N A , / i s the set of strings over D that
represent the primary structures of the molecules in M, B consists of the set of
all patterns associated with the enzymes in the set N that either produce 5'
overhangs or produce blunt ends, and C consists of the patterns associated with
enzymes in N that produce 3' overhangs. For example, if EcoRI is in N then it
contributes the pattern ([G/C], [A/T] [A/T] IT/A] IT/A], [C/G]) to B. If
HhaI is in Nthen it contributes ([G/C], [C/G] [G/C], [C/G]) to C. IfAluI is in
Nthen it contributes ([A/T] [G/C], 1, [C/G] IT/A]) to B. If HgiAI is in Nthen
it contributes the following four patterns to C: ([G/C], [A/T] [G/C]
[C/G] [A/T], EC/G]), ([G/C], [A/T] [G/C] [C/G] [T/A], [C/G]), ([G/C],
[T/A] [G/C] [C/G] [A/T], [C/G]), and ([G/C], IT/A] [G/C] [C/G] [T/A],
[C/G]) as can be seen by consulting Appendix A of Watson et al. (1983).

Certain features of B and C need to be pointed out and the use of / ' needs
explanation; we have seen that x and x' in D* must be interpreted as models of
the same molecule. The convenient way to incorporate this identity of
interpretations into our formalism is to adjoin I ' = {w in A*: w' in I} to the set of
initial strings. For splicing systems derived from models of the situations we are
discusssing, C and D will also have an involutional property: If (c, x, d) is a
pattern for an enzyme then (d', x', c') must also be a pattern of the same hand
for this enzyme. [This can be seen from elementary physical considerations or
by the following formal considerations: Suppose (c, x, d) is a pattern and we
have ud'x'c'v. Then ud'x'c'v models the same molecule as (ud'x'c'v)'= v'cxdu'.
Thus cleavage at the site d'x'c' via the pattern (d', x', c') is the same process as
cleavage at the site cxd via the pattern (c, x, d)]. Consequently, for the splicing
system S = (D, Iw I', B, C) derived from a set M of DNA molecules and a set N
of restriction enzymes, we will automatically have B = B' and C = C' where for
any set T of triples we define T' = {(d', x', c'): (c, x, d) in T}.

The present study is focused on splicing systems for which the property of
being the crossing of a site is passed from certain segments to subsegments
(persists) when a splicing operation is performed:

Definition. Let S = (A,/, B, C) be a splicing system. Then S is persistent if for
each pair of strings ucxdv, and pexfq, in A* with (c, x, d) and (e, x , f) patterns of
the same hand: Ify is a subsegment ofucx (respectively xfq) that is the crossing
of a site in ucxdv (respectively pexfq) then this same subsegment y of ucxfq
contains an occurrence of the crossing of a site in ucxfq.

Note that whether a splicing system is persistent or not is independent of the
set I of initial strings. To clarify the concept of persistence we give immediately
two elementary examples. A crucial example of a non-persistent system that
has a chemical interpretation is given in Section 4.

FORMAL LANGUAGE THEORY AND DNA 745

1. Let S=({c, d, x}, /(unspecified), {(c, x, d), (d, x, c)}, ~b). Consider the
strings cxd, dxc and the string cxc obtained from these by splicing. Here x is
a subsequent of cx that is the crossing of a site in cxd. This same subsequent
x does not contain an occurrence of the crossing of any site in cxc. Thus S is
not persistent. IfB and/or Cis enlarged so that B w C also contains either the
set {(c, x, c), (d, x, d)} or the set {(1, x, 1)} then S becomes persistent.

2. Let S= ({c, d, x, y}, /(unspecified), q~, {(d, x, y), (cx, y, d), (c, x, y)}).
Consider the strings dxy, cxyd and the string dxyd obtained from these by
splicing. Here y is a subsegment of xyd that is the crossing of a site in cxyd.
This same subsegment y of dxyd does not contain an occurrence of the
crossing of any site in dxyd. Thus S is not persistent.

When restriction enzymes are chosen from Appendix A of Watson et al.
(1983) the associated splicing system models are frequently persistent. If a
single enzyme is chosen the result is persistent in all cases including those such
as HgiAI that have multiple cleavage sites. When several enzymes are chosen
the resulting system will still often be persistent. Examples 3 and 4 of Section 4
show that this is not always the case.

It is important that an algorithmic procedure be available for deciding
whether an arbitrarily given splicing system is persistent. Such a procedure is
given here in Appendix B. The following special class of splicing systems will
also play a major role in this study.

Definition. A null context splicing system is a splicing system S = (A, L B, C)
for which each cleavage pattern in B and each in C has the form (1, x, 1).

Observe that each null context system is persistent.
Let S= (A,/, B, C) be a null context splicing system. Let X be the set of

crossings of B and Y the set of crossings of C. The association of each crossing x
in Xwith its unique pattern (1, x, 1) in B provides a one to one correspondence
between Xand B. We have a similar one to one correspondence between Yand
C. Consequently we will adopt the lighter notation S = (A,/, X, Y] for null
context systems, where X and Y are the sets of crossings for B and C,
respectively. We will continue to regard a null context system as a special case
of a persistent system. In this notation the enzyme EcoRII, which has two
cleavage sites both with 5' overhangs, would provide B={(1,
[C/G] [C/G] [A/T] [G/C] [G/C], 1), (1, [C/G] [C/G] IT/A] [G/C] [G/C],
1)} or X= {[C/G] [C/G] [A/T] [G/C] [G/C], [C/G] [C/G] [T/A] [G/C]
[G/C]}. Both C and Y would be empty.

M. P. Schutzenberger (1975) has elready introduced a concept intimately
associated with splicing into the mathematical literature. We paraphrase what
we need of his concept:

Definition (Schutzenberger). With respect to a language over A, a string c in
A* is a constant if, whenever ucv and pcq are in the language, ucq and per are
also in the language.

746 TOM HEAD

Note that when a string c is constant for a language L in A* then all strings in
A'cA* are also constant. In specifying a splicing system S = (A,/ , B, C) we are
demanding that the sites be constants for the language being generated.
Consequently when either B or C is not empty the set of constants is always
infinite since it contains u{A*cxdA*:(c, x, d) in B or C}. Note that a string s
may be a constant for a splicing language even when no site occurs in s: let L be
an arbitrary language and let s be a string for which there are no strings x and y
for which xsy is in L. Consulting the definition of a constant reveals that s is a
constant with respect to L in this vacuous sense. In Example 1 of Section 4 a
specific string is given which is constant in this vacuous sense.

With each splicing system S = (A, L B, C) for which I is not empty we
associate three non-negative integers M(S), LR(S) and RR(S) as follows: For
each s in / , let L(s) be the length of the longest subsegment of s which does not
contain the crossing of any occurrence of a cleavage site in s. Let
M(S)=l+max{L(s):s in 1}. Let the left radius of S be LR(S)=max{length
c: (c, x, d) in B or C} and the right radius of S be RR(S) = max{length d: (c, x, d)
in B or C}.

PROPOSITION 1. For the language L(S) generated by a persistent splicing
system S, every string of length P=LR(S)+ M(S)+ RR(S) is constant. (See
Appendix A for proof.)

If the requirement that S be persistent is dropped from Proposition 1 the
resulting statement is false. This is shown by Example 4 given in Section 4.

For P a positive integer, At" is the set of all strings over the alphabet A that
have length exactly P. For each pair of sets Xand Y, X~ Y= {x in X: x not in Y}.
With each language L and each positive integer P we associate the following
four sets:

Sv=L\AeA *.

L e = {u inAV: there is a v in A* for which uv is in L}.

R e = {v in At': there is a u in A* for which uv is in L}.

M e = {w in At': uwv is in L for some u, v in A*}.

Thus Sp is the set of strings in L of length less than P; Lt" (respectively Rt') is the
set of left (respectively right) end segments of length P of strings in L; and Mt" is
the set of segments of length P of strings in L. From these definitions Pt" and Re
must be subsets of Mt'. Apparently:

L __ Sp w [(Lt'A* n A*Rt')\A*(At'\Mp)A*] (1)

holds for every language L.

FORMAL LANGUAGE THEORY AND DNA 747

The following concept traces back to McNaughton and Papert (1971) but
the present version of the definition follows A. De Luca and A. Restivo (1980):

Definition. A language L is P-strictly locally testable if equality holds for L in
the containment relation (1) displayed above. A language is strictly locally
testable if it is P-strictly locally testable for some P.

The following theorem is fundamental for our investigation of the structure
of splicing languages. A converse form of this theorem is stated later.

THEOREM (De Luca and Restivo, 1980). I f for a langua9 e L over A all the
strings in A v are constants then L is (P + 1)-strictly locally testable.

From this Theorem and Proposition 1 we have immediately:

PROPOSITION 2. For each persistent splicin9 system S = (A , I , B , C),
L = L(S) is P-strictly locally testable for P = LR(S) + M(S) + RR(S) + 1, i.e.for
this value of P:

L = S e u [LEA* c~A*Rp)\A*(AP\Mp)A*]. (2)

This equation gives a clear structural description of L = L(S). Moreover,
when Sp, Lp, R e and M e are known, (2) provides us with a transparent
procedure for deciding whether an arbitrarily given string over A lies in the
language (i.e. in the DNA interpretation, whether a given DNA sequence can
arise from a given set of DNA molecules in the presence of a given set of
restriction enzymes). Let us elaborate on the significance of (2). Suppose that
the four finite lists of strings SI,, L~,, Rp and M e have been formed and consider
the right side of (2). On the left of the union sign is the set of strings in L of length
less than P. To the right is the set of strings in L of length P or more. The term
(LpA* c~ A*Rp) demands that a string in L of length P or more must begin with
an acceptable segment of length P and terminate with an acceptable segment of
length P. Since Mp is the set of segments of length P that are acceptable for
strings in L, the set (AP\Mp) is the set of segments of length P that are
unacceptable for strings in L. Consequently A*(AJ'\Mp)A * is the set of all
strings over A that contain at least one subsegment unacceptable for strings in
L. Thus (LvA* c~ A*R1,)\A*(Ae\MI,)A * explicitly represents the set of strings
of length P or more that initiate and terminate with acceptable segments of
length P and contain no unacceptable segment of length P. Suppose now that a
string s over A is given and we wish to determine whether it is in L. If the length
of s is less than P we merely examine the list S 1, to see if s is in this list. If s has
length exactly P we merely check to see ifs lies in both Lip and R e. Ifs has length
greater than P we examine the leftmost subsegment of length P to see if it lies in

748 TOM HEAD

L e. We then examine the next subsegment of length P (i.e. symbol occurrences
2 through P + 1) to see if it lies in Mp. We continue in the same manner with the
next subsegment of length P and then the next and the next until we arrive at
the rightmost subsegment of length P which we examine for membership in Rp.
The nature of this test for determining whether long strings lie in L explains the
choice of the term P-strictly locally testable: the test is based on collecting
purely local information about the string.

Proposition 2 and the discussion above demonstrate the conceptual
simplicity of the structure of the persistent splicing languages. Unfortunately
practical limitations exist for many simple examples derived from DNA and
restriction enzymes because M(S), and therefore P, may be in the thousands.
On the other hand in many such cases the structure of the language is again
made transparent by encoding judiciously chosen (sometimes very long)
subsegments of the initial strings as single symbols. It is hoped that the brief
comments in Example 2 in Section 4 clarify our meaning here.

The expression (2) shows that strictly locally testable languages are regular
and are therefore recognizable by finite automata. Within automata theory it is
easily verified that a P-strictly locally testable language can be recognized by a
finite deterministic automaton having 21A I e or fewer states, where IAI denotes
the number of symbols in the alphabet A of the language.

From Proposition 1 we know that for every persistent splicing language L
there is a positive integer P for which every string of length P is constant. This
suggests the possibility of using as crossings in a splicing system the set of all the
strings of a fixed common length. The investigation of such systems provides
the result that the persistent splicing languages are precisely the strictly locally
testable languages and lays a convenient background for remarks about
general recombination in Section 5 and related matters in Section 7.

Definition. A uniform splicing system is a null context splicing system
S = (A, L X, X) for which there is a positive integer P such that X = A e. A
language L is a uniform splicing language if there is a uniform splicing system S
for which L = L(S).

Observe that for X=A e, the languages generated by the following three
splicing systems are identical: (A, L X, X), (A, L X, ~b) and (A, L ~b, X).
Consequently for a uniform splicing system (A, L X, X) we lighten the notation
to (A,/, X).

Let L be a language with respect to which all strings of length P are constant.
By the Theorem of De Luca and Restivo we know that L is (P + 1)-strictly
locally testable and therefore that it is regular and is recognized by a finite
deterministic automaton. Any such automaton can be reduced to a similar
automaton that recognizes L and has the smallest number of states. Any two
such minimal automata that recognize L are isomorphic and therefore have the
same number of states.

FORMAL LANGUAGE THEORY AND DNA 749

PROPOSITION 3. Let L be a language over A with respect to which all strings in
A p are constant. Let N be the number of states in a minimal automaton
recognizing L. Then L = L(S) for the uniform splicing system S = (A, 1, A e) where
I is the set of all those strings in L o f length less than P + 2N. (See Appendix A for
proof.)

The following result is a converse form of the Theorem by the same authors
stated above:

THEOREM (De Luca and Restivo, 1980). For a P-strictly locally testable
language L over an alphabet A, all strings in A e are constants.

The following theorem tells us that the uniform splicing systems do not
generate languages that have special properties not shared by all persistent
splicing languages. In fact, it tells us that every persistent splicing language is
generated by some uniform splicing system.

THEOREM. The following conditions on a language L over an alphabet A are
equivalent:

(i) L is a persistent splicing language;
(ii) L is a strictly locally testable language;

(iii) the set o f constants for L contains AP for some P;
(iv) L is a uniform splicing language.

Proof. (1) implies (ii) by Proposition 2. (ii) and Off) are equivalent by the two
Theorems of De Luca and Restivo. (iii) implies (iv) by Proposition 3. That (iv)
implies (i) is immediate from the fact that a uniform splicing system is a special
case of a persistent splicing system. �9

The class of persistent splicing systems is the broadest class of splicing
systems for which we are able at this time to do two things: (i) give a complete
determination of the structure of the associated languages (see the Theorem
above); and (ii) give a procedure for deciding whether any given splicing system
is persistent (see Appendix B).

In Section 4 an example is given of a splicing language that is not strictly
locally testable.

4. Examples.
Example I. Let S = (A,/, B, C) where A = {c, x}, I = {cxcxc},

B = {(c, x, c)} and C= ~b. Since there is only one cleavage site, cxc, it is easily
confirmed that S is persistent. [In order to provide a biochemical interpreta-
tion of this example, consider the restriction enzyme ClaI which has the
cleavage pattern ([A/T] [T/A], [C/G] [G/C], [A/T] [T/A]) and leaves 5'
overhangs on its fragments. We may regard the element c in our alphabet as a

750 TOM HEAD

higher order symbol for the two-symbol string [A/T] IT/A] and the element x
as a higher order symbol for [C/G] [G/C]. With this interpretation the
language L = L (S) generated by our example represents all molecules that can
potentially arise from the action of ClaI (and an appropriate ligase, as always)
on (copies of) the molecule [A/T] [T/A] [C/G] [G/C] [A/T] IT/A] [C/G]
[G/C] [A/T] IT/A]. Regardless of this interpretation we deal with the two-
symbol alphabet for which, for example, cxcxc has length 5 (not 10).] This
example has been chosen to be simple enough that a convenient algebraic
expression can be given for the language: the initial string can be written both
as ucxc and cxcv where u = cx and v = xc. Since the pattern (c, x, c) is in B and
both ucxc and cxcv are in L, the two strings ucxcv and cxc must also be in L.
Since ucxcv = ucxcxc = u2cxc and cxcv are in L, u2cxcv must also be in L. Since
u 2 c x c v = u 2 c x c x c = u 3 c x c and cxcv are in L, uacxcv must also be in L. This
process can be continued indefinitely. Thus L contains { (cx)ncxc:n > 0}. Since
this latter set is apparently closed with respect to the operation provided by the
single pattern (c, x, c), L = { (cx)ncxc: n > 0}.

For this system the only crossing is x. The length of the longest subsegment
of the initial string that does not contain the crossing of a site occurring in the
initial string is 1. (There are three such segments each being an occurrence of
a c.) Thus M(s)= 1 + 1 =2. The radii are L R (S) = 1 and R R (S) = 1. From
Proposition 2 it follows that every string of length 4 is a constant for L.

That strings of length 4 are constants is a consequence of the fact that every
segment of length 4 of every word in L contains a site. The string xcx of length 3
contains no site, so the 4 is in a weak sense sharp. However strings can be
constant for reasons that are less obvious than that they contain sites. All
strings except 1 and c are constant for L: Since cxc and cxc are in L and c is not
in L, c is not a constant for L. Likewise since L contains l cxc and cxc l but not
1, 1 is not a constant for L. However, on examining the expression for the
complete language L, we verify from the definition of a constant that all other
strings in A* are constant. The string cc, for example, vacuously satisfies the
condition for being a constant since it does not occur in any string in the
language. Thus the relation between sites and constants is not as simple as one

mi#ht think. [This distinction can be given an interesting biochemical
interpretation: A string s may be constant because it contains an occurrence of
a site of a restriction enzyme that is present, but a string t may be constant
merely because of the exact global nature of the language of possible molecules
(as was the case of cc in the present example). Suppose that a new enzyme is
added (that does not conflict with the previous enzymes). In general the
language of possible molecules will now be different. The string s will still be a
constant because it contains the site of the restriction enzyme that is still
present. However, t may no longer be a constant.] Since we have seen that all
strings of length 2 are constant for L, the first Theorem of De Luca and Restivo

FORMAL LANGUAGE THEORY AND DNA 751

in Section 3 asserts that L is 3-strictly locally testable. Examination of the
expression for L is not only 3-strictly locally testable but 2-strictly locally
testable where $2 = ~b, L2= {cx}, R2= {xc}, and M2= {cx, xc].

From the expression for L the minimal automaton recognizing L is easily
constructed and found to have N= 5 states. Proposition 3 now asserts that
L=L(U) for the uniform splicing system U= ({c, x}, J, {cc, cx, xc, xx}) where
J consists of all strings in L of length (P + 2 N = 2 + 2 (5) = 12. Thus J = {cxc,
cxcxc, cxcxcxc, cxcxcxcxc, cxcxcxcxcxc}. Examination of L confirms that
J= {cxcxc} is adequate.

Example 2. Suppose we have (copies of) the single molecule
dlS~176 2s~ where d denotes [C/G] [G/C], x denotes the cleavage site of
EcoRI which is [G/C] [A/T] I-A/T] IT/A] IT/A] [-C/G] and the exponents,
150, 750 and 250 denote repetitions of d. In contrast with the first example the
site occurrences do not overlap here. As cleavages and ligations take place it is
clear from an inspection of the initial molecule and the given site that site
occurrences of future molecules will not overlap. Let us encode the powers ofd
as follows for our convenience: a=d 15~ b = d 75~ c = d 25~ To keep this
example short we have chosen d to be a palindrome and therefore a, b and c are
also palindromes. On the other hand our initial molecule, which is now
modeled by the string axbxc, is not a palindrome. However
(axbxc)'=c'x'b'x'a'=cxbxa. We let S be the null context system
S = ({a, b, c, x}, {axbxc, cxbxa}, {x}). Then L = L(S) is the resulting model for
the set of possible DNA molecules. Here M(S) = 2, LR(S) = 0, and RR(S) = O. A
simple expression for L is again available: L = {a(xb)"xa: n>_0} u {a(xb)"xc:
n>0} w {c(xb)"xa:n>O} u {c(xb)"xc: n>0}.

Example 3. Let S= (D, L B, C) where D is our usual four-letter alphabet, I
may go unspecified, B consists of the patterns provided by EcoRI, TaqI, SciNI
and AluI and C contains the single pattern provided by HhaI. (These five
patterns were given in Section 3.) By a careful comparison of the sequences
occurring in these five sites it is found that this system is not persistent, but that
it becomes persistent on deleting either the pattern for TaqI or the pattern for
SciNI. These two patterns are in conflict. Consider the strings [T/A] [C/G]
[G/C] [A/T] and [G/C] [C/G] [G/C] [C/G] and the string [T/A] [C/G]
[G/C] [C/G] obtained from the first two by splicing. Let y be the segment
[C/G] [G/C] which is the crossing of the site of the first pattern (also of the
second). Observe that this segment in the third string does not contain the
crossing of any site in that string. With either of these two patterns deleted, no
further conflicts are possible.

Example 4. A splicing language that is not strictly locally testable. We
shorten notation: for [A/T], [C/G], [G/C] and [T/A] we will write only A, C,

752 TOM HEAD

G and T with the understanding that these single symbols now abbreviate the
elements of our alphabet D. Thus TAG is short for IT/A] I-A/T] [-G/C]. Let
S = (D,/, B, ~b) where I = {AGATCT GCGCGT GGATCC, ACGCGT
GGATCT GCGCGC} and B= {(A, GATC, T), (G, GATC, C),
(A, CGCG, T), (G, CGCG, C)}. Note that there are only two initial strings.
Symbols are being kept in groups of six for easy reading. The cleavage patterns
have been chosen for chemical realism: They are, in order, the cleavage patterns
of BglII, BamHI, MluI and BsePI. These four all leave 5' overhangs.

Careful attempts to pattern match will reveal that no sites exist in the initial
strings except at the ends and that the crossings occurring in the first string are
incompatible with the crossings occurring in the second. With this clear it may
then be seen that L = L(S) falls naturally in two separate parts: splicing the first
string with itself gives AGATCT GCGCGT GGATCT GCGCGT GGATCC
which again has sites only at the ends. Continuing in this way yields
{AGATCT (GCGCGT GGATCT)" GCGCGT GGATCC: n > 0}. Splicing
the second with itself gives ACGCGT GGATCT GCGCGT GGATCT
GCGCGC which again has sites only at the ends. Continuing in this way yields
{ACGCGT GGATCT (GCGCGT GGATCT)" GCGCGC: n>0}. The
language L is the union of these two sets, one produced from each initial string.
Observe that all the strings in the first set begin with AG and end with CC,
whereas all the strings in the second set begin with AC and end with GC. It
follows that none of the strings in the infinite set {(GCGCGT GGATCT)":
n > 0} is a constant since each such string occurs as a segment of a string in each
of the two sets. (If such a string were constant a string beginning with AG and
ending with GC would lie in L.) We have shown that for this splicing language
there is no positive integer P for which all strings of length P are constant. For
this reason, or direct examination, the language is not strictly locally testable.
Note, however, that it is the union of two strictly locally testable languages.
(This S is not persistent.)

5. General Recombination. Suppose that two DNA molecules have the form
uxv and pxq where the common subsegment x is sufficiently long. Then in the
presence of appropriate enzymes (in E.Coli this would include RecA and
others) these molecules can recombine to yield the two molecules uxq and pxv.
Unlike the related activity allowed by restriction enzymes, this does not depend
on any sequence specificity ofx at all but only on x being sufficiently long. Thus
there seems to be agreement that there is a sufficiently large positive integer P
for which ifx has length P then this process, called general recombination, can
take place about x.

Suppose that an initial set M of DNA molecules is given and that enzyme
activity supporting general recombination is present. Suppose, as we have
previously, that as many copies as may be desired of any DNA molecule given

FORMAL LANGUAGE THEORY AND DNA 753

or produced are always available. Let L be the language that consists of the
strings that represent the primary structures of all DNA molecules that may
potentially arise by general recombination acting on the molecules in M and on
any further molecules produced. Since for an appropriate P all strings of length
P are constant, the first Theorem of De Luca and Restivo applies and gives the
conclusion that L is (P + 1)-strictly locally testable.

We note that recombination can take place between molecules uxlv and
px2q not only when x x = x 2 and this common segment is long enough but also
when x I and x 2 are not equal but sufficiently similar (homologous). Such
splicings will produce imperfect molecules containing one or more mismatched
pairs. As we consider the languages being modeled to consist only of those
double-stranded molecules that do not contain mismatched pairs (and since we
are not assuming the presence of repair enzymes), we may disregard such
defective products. Nevertheless we do consider that this limits the significance
of the remarks we have made here concerning general recombination.

6. Modelin9 Questions. The fact that the ligases in use can concatenate the
blunt ends of DNA molecules (as mentioned in Section 3) is worth a special
clarifying comment. If we have an initial set I of DNA molecules, a ligase, and
no restriction enzymes at all then, in view of the blunt end ligation capability,
the appropriate formal model of the language generated would be I*. We did
not wish to build such a universal closure under concatenation into our splicing
language model. To avoid the resulting dissonance between our modeling
process via splicing systems and this blunt end ligation capability we prefer to
assume that in all situations in which we are using splicing systems to model the
effect of restriction enzymes our initial DNA molecules have ends that are
chemically modified to prevent such ligation. This restores I itself, rather than
I*, as the appropriate model in the trivial situation described above and has the
correct effect when enzymes are present.

The adjustment of the previous paragraph provides an adequate back-
ground for one further question concerning our modeling procedure. As
mentioned in Section 3 we have intended our splicing system model to cover
the action of such enzymes as AluI which cleaves leaving blunt ends. We have
stated that our language is taken as a model of the set of all well-formed, linear
double-stranded DNA molecules that can potentially arise. However the result
of a blunt-end cut in such a molecule is two separate molecules that are again
well-formed, linear and fully double-stranded. An examination of the definition
of a splicing system and its associated language will confirm that we have not in
general provided for the two fragments produced by a blunt end cleavage to be
covered by our model. The splicing system formalism implicitly requires that
all fragments resulting from cleavage must be reconnected with companion
fragments before being included in the language generated. To avoid this

754 TOM HEAD

dissonance between our modeling process and the possible presence of blunt
end cleaving enzymes we make the following modification: The set of molecules
being modeled consists of the well-formed, linear, fully double-stranded DNA
molecules both ends of which possess the chemical modification assumed of the
initial molecules.

In the remainder of this section we consider additional types of recombinant
behavior and suggest that previously existing formalisms of language theory
may be appropriate for modeling the generative power of these processes. Our
comments here also serve to provide a background for Section 7. The
languages generated by persistent splicing systems proved to be regular. The
following considerations suggest that if we extend our modeling to cover these
additional processes the resulting languages may cease to be regular.

Certain segments of DNA are known to move into and out of DNA
molecules or to be replicated from one DNA molecule into another (or into
another location within the original molecule). Among such segments are the
insertion sequences and the transposons which we shall discuss first. For brevity
we will discuss both under the single title of insertion sequence:

Suppose that we have two DNA molecules uiv and ptq where u, i, v, p, t and q
denote subsegments of these molecules. Assume that the segment i is an
insertion sequence. To assume this means that for certain (generally short)
sequences called targets, an enzyme (or enzymes) exist that may cause a
replication of i to be formed adjacent to a target sequence in a DNA molecule.
We will make this formally clear by supposing that the t in ptq is a target for the
i in uiv. Then the enzyme can act on ptq and uiv to convert ptq into ptitq while
uiv remains unchanged. Note that the target t has also been replicated and that
a copy of t now lies on each side of i in the new longer molecule ptitq. We will
imitate this sort of process with a simple language generating formalism. We
use as an alphabet the three symbols: t, (, and). Suppose that the three term
sequence (t) is an insertion sequence with the one term string t as target. Let us
suppose that we have initially the single string t(t)t. The effect of the insertion
feature of (t) can be expressed by the production rule t--,t(t)t. By means of this
production rule the initial string generates the language of all non-empty, well-
formed strings of parentheses with an initial t adjoined, a terminal t adjoined
and a t inserted between each pair of parentheses of either hand. This is a
context free language that is not regular. [Here we have tacitly assumed that
the target for an insertion sequence is unique. It is commonly supposed that for
each insertion sequence there is a positive integer P (often between 4 and 9) for
which each subsequence of length P may serve as a target.]

There are DNA sequences that have the ability (in the presence of
appropriate enzymes) to insert into other DNA sequences and also to leave
DNA sequences in which they appear. Let such sequences be called excision
sequences. Such behavior could be represented in formal language theory in a

FORMAL LANGUAGE THEORY AND DNA 755

natural way in terms of Thue systems and the associated congruential languages
which Book (1983, 1985) has recently surveyed. Such languages are not in
general regular.

7. Uniform Splicing in the Presence of Further Enzymes. Suppose that we have
a finite set M of DNA molecules, enzymes that guarantee uniform splicing
about all strings of length P for some positive integer P (perhaps, for example,
enzymes allowing general recombination), and various other unspecified
enzymes that allow the activities of various insertion sequences, various
excision sequences, and possibly other processes not yet described. Let L be the
language of all possible sequences that can be formed in this setting. Can
anything be said about the nature of L? Yes: regardless of the vagaries of the
hypothesis, all strings of length P must be constant for L. Thus the first
Theorem of De Luca and Restivo applies and tells us that L is (P + 1)-strictly
locally testable. Then L can be recognized by a finite deterministic automaton
having 21DI e+ 1 = 2(4e+ 1) or fewer states. Consequently, by Proposition 3, L is
(or can be modeled as) the splicing language of S = (D, L D e) where D is the
usual four-symbol alphabet and where I consists of those strings in L of length
less than P+2(2 (4P+1))=P+4 P+2. Thus when enzymes are present that
provide uniform splicing, they completely override all other enzymes in
determining the global character of the language, i.e. they insure strict local
testability regardless of what other enzymes may be present. Also, since
L= L(S), it is seen that after a fixed finite number of applications of the various
recombination processes allowed by the total set of enzymes (enough to produce
the set I) only the enzymes that provide uniform splicing about segments of length
P are required to produce all further possible molecules.

8. Summary and Algorithmic Questions. In this article we have illustrated
what we mean by a formal characterization of the generative capacity of
specified enzymatic activities operating on specified sets of double-stranded
DNA molecules. This was done by concentrating on the action of restriction
enzymes together with an appropriate ligase. This led to the development of the
new generative formalism here called a splicing system. Examples of specific
splicing systems modeling specific sets of restriction enzymes were given. Three
special subclasses of splicing systems were defined and illustrated by DNA
examples: persistent systems, null-context systems and uniform systems. The
Theorem that closes Section 3 gave a full characterization of the persistent
splicing languages by showing that they are precisely the strictly locally testable
languages. The special structural clarity of this class of languages was
delineated in Proposition 2 and the paragraph that follows the statement of
that proposition. In Section 5 (with a reference to Section 7) it was shown that

756 TOM HEAD

the generative power of general recombination can be modeled by means of a
uniform splicing system as long as we consider only the molecules produced
that are purely double-stranded with no mismatched pairs. In Section 7 it was
shown that in the presence of general recombination no matter what additional
recombinant processes are enabled by the presence of further enzymes
(assuming the additional ones do not block general recombination) the
resulting language will be strictly locally testable.

On the basis of this paper further analyses of the generative power of sets of
enzymes will be carried out in terms of the formalisms that have been
introduced here. Thus the present article is intended to provide the link
between future formal work and the imagery of molecular biology from which
this work will derive and to which it will refer. Much of this will deal with the
presentation of algorithms, some of which are needed to put the results of the
present article on a constructive basis.

When a splicing system S is given the three integers LR(S), M(S), and RR(S)
defined in Section 3 are immediately computable and consequently so is the P
defined by P = LR(S) + M(S) + RR(S) + 1 in Proposition 2. Consequently
when S is persistent we know a value of P for which the language L = L(S) is P-
strictly locally testable. However, the present article does not give a means of
calculating the four finite sets S~,, Lp, Rp and Mp that are required if
equation (2) in Proposition 2 is to be a constructive expression for L. In joint
work in progress now algorithmic solutions are sought for this and other
related problems. Beyond this lies the problem of characterizing the splicing
languages that are not persistent.

I thank Donald L. Robberson for reading and correcting from a biological
perspective portions of an early version of this paper. I thank my colleague
Ronald Gatterdam for his continued interest in this topic and for many
provocative conversations. I thank also both Antonio Restivo and Aldo De
Luca for helpful guidance to their results that are so fundamental to this work.
Any errors in the current version are wholly my own.

APPENDIX A

Proofs of the propositions of Section 3. Let S = (A, I, B, C) be a splicing system. To provide a
convenient background for the proof of Proposition 1 we partition the language L = L(S) into an
infinite pair-wise disjoint family of finite subsets Io, 11,/2 I., I . + 1 :

Let I o = I . Let 11 = {s in A*\Io: there exist strings ucxdv and pexfq in I o and patterns (c, x, d)
and (e, x , f) of the same hand, for which s = ucxfq}. Suppose that Io, 11 I . have been defined.
Define I.+ 1= {s in A*\(I o w . . . w I.): there exist strings ucxdv and pexfq in I o w . . . w I. and
patterns (c, x, d) and (e, x , f) of the same hand, for which s = ucxfq}. We have L = w {Ij :j >_ 0} and
I m is disjoint from I. when m and n are distinct.

FORMAL LANGUAGE THEORY AND DNA 757

Recall that M(S) = 1 + max{L(s):s in I} where L(s) is the length of the longest subsegment of s
which does not contain the crossing of any occurrence of a site in s.

LEMMA. Let S= (A,/ , B, C) be a persistent splicing system. Then each subsegment of length
M = M(S) of each string z in L(S) contains the crossing of an occurrence in z of a site.

Proof. From the definition of M(S) the assertion holds for z in I = I o. Suppose that the Lemma
holds for all z in I, for n < k, where k is any non-negative integer and let s be a string in I k § 1. Then
there are strings ucxdv and pexfq in u { I i : O < j < k } with s=ucxfq and patterns (c, x, d) and
(e, x , f) of the same hand. Suppose that y is a subsegment ofs having length M. Then at least one
of the following three cases holds: (i) (respectively (ii)) y is contained in the exhibited occurrence
of ucx (respectively xfq), hence in ucxdv (respectively pexfq), and therefore by the induction
hypothesis contains a crossing x 1 of an occurrence of a site in ucxdv (respectively pexfq). By the
hypothesis of persistence this occurrence of x 1 in y contains an occurrence of a crossing x 2 of a
site in s. (iii) y contains the exhibited occurrence ofx which by the hypothesis of persistence must
contain the crossing of an occurrence of a site in s. Thus in any case the assertion of the Lemma
holds for all z in Ik+ 1. By finite induction the Lemma holds for all z in u { I n : n>0} =L(S). �9

Recall that the left radius (respectively right radius) of S = (A,/ , B, C) is LR(S) = max{length
c:(c, x, d) in B or in C} (respectively RR(S)=max{length d:(c, x, d) in B or in C}).

PROPOSITION 1. For S= (A, I, B, C) persistent, every string of length LR(S) + M(S) + RR(S) is
constant with respect to L(S).

Proof. Let s be a string of length LR(S)+ M(S)+ RR(S). Case l: Suppose that there is a string
usv in L(S). Let s = ywz where length y = LL(S), length w = M(S), and length z = LR(S). By the
Lemma, w contains the crossing x of an occurrence in usv of a site cxd. By the choices of the
lengths of y and z this occurrence of cxd lies in s. Since s contains a site, s is a constant relative to
L(S). Case 2: Suppose that s does not occur as a subsegment of any string in L(S). Then s
vacuously satisfies the definition of a constant relative to L(S). �9

The proof of Proposition 2 was complete in Section 3.

PROPOSITION 3.Let L be a language over A with respect to which all strings in ,4 e are constants.
Let N be the number of states in a minimal automaton recognizing L. Then L = L(S)for the uniform
splicing system S= (A, I, A P) where I is the set of all those strings in L of length less than P + 2N.

Proof. (L(S)~_ L:) Since I _ L and all the strings in A e are constants for L the desired inclusion
follows.

(L _ L(S):) Suppose this inclusion fails. Then among the strings in L\L(S) there is at least one
string, s, for which no string in L\L(S) is shorter than s. This proof will be complete once we have
demonstrated the contradiction that s is in L(S). Let M be the length of s. Since s is in L\L(S) , s is
not in I and consequently M>_P+2N. Let s = a (1) . . , a(M) with the a(i) in A. Let
u = a (1) . . , a(N), x = a (N + 1) . . . a (M - N) and v = a (M - N + 1) . . . a(M). Since length
u = N = length v and M_> P + 2N it follows that the length of x is at least P and consequently that
x is a constant for L. Let Q(0), Q(1) Q(M) be the sequence of states that the minimal
automaton for L passes through as it reads s. Thus Q(0) and Q(M) are initial and final states,
respectively.

In the list of N + 1 states Q(0) Q(N) there must be a repetition. Let Q(j) = Q(k) where
0 < j < k _ < N . Let u I - - a (1) . . . a(j)a(k+ 1) . . . a(N). Observe that ulxv is in L since as it is read
into the automaton for L the sequence of states passed through is
Q(O) . . . Q(j)Q(k + 1) . . . Q(M).

In the list of N + 1 states Q (M - N) Q(M) there must be a repetition. Let Q(m)= Q(n)
where (M - N) < m < n < M. Let v 1 = a (M - N + 1) . . . a(m)a(n + 1) . . . a (M). Observe that uxv 1
is in L since as it is read into the au tomaton for L the sequence of states passed through is
Q (0) . . . Q(m)a(n+ 1) . . . Q(M).

We now produce the desired contradiction: Since uxv 1 and u lxv are in L and x is a constant for
L, s = uxv is in L. �9

758 TOM HEAD

A P P E N D I X B

Recognizing persistence. Fundamental for the present article is the fact that there is an
algorithmic procedure for deciding whether any given splicing system S = (A,/ , B, C) is
persistent. We present one such algorithm here. The presentation given is chosen for maximum
clarity of the algorithm and its validity. Efficiency has not been considered and no proof of
validity is given:

By the site length, SL(S), of S we mean the length of the longest site in S.
Consider all ordered pairs of strings slcxds 2 and s3exfs 4 for which:

(i) (c, x, d) and (e, x , f) are both in B or both in C;
(ii) length slcx = length s3ex = S L (S) - 1 ; and
(iii) length xds 2 = length xfs 4 = SL(S) - 1.
For each such pair there are two procedures to carry out:

First procedure. Find all patterns (g, y, hk) for which:
(i) (g, y, hk) is in either B or C;

(ii) gyh is a suffix of slcx; and
(iii) k is a prefix of ds 2.
If there is no such pattern begin the second procedure.
If there are such patterns then every such pattern must be treated as follows:
Decide whether there is a factorization y = YlY2Y3 for which there is a pattern (p, Y2, q) for which:

(i) (p, Y2,q) is in either B or C;
(ii) py2Y3 h is a suffix of slcx;

(iii) q is a prefix of yahfs4.
If there is no such pattern, S is not persistent and we may stop.

Second procedure. Decide whether there is a pattern (gh, y, k) for which:
(i) (gh, y, k) is in either B or C;

(ii) hyk is a prefix ofxds2; and
(iii) g is a suffix of sic.
If there is no such pattern begin the treatment of the next pair of strings.
If there are such patterns then every such pattern must be treated as follows:
Decide whether there is a factorization y = YlY2Y3 for which there is a pattern (p, Y2, q) for which:

(i) (p, Y2, q) is either in B or C;
(ii) hyly2q is a prefix of xfs4; and

(iii) p is a suffix of slchy 1.
If there is no such pattern, S is not persistent and we may stop.
If all the original pairs of strings have been treated completely and no stop order has been
encountered then S is persistent. �9

L I T E R A T U R E

Book, R. 1983. "Thue Systems and the Church-Rosser Property: Replacement Systems,
Specification of Formal Languages, and Presentations of Monoids." In: L. Cummings (Ed.),
Combinatorics on Words, pp. 1-38. New York: Academic Press.

- - 1985. "Thue Systems and Word Problems." In: J. P. Jouannand (Ed.), Rewriting Systems
and Applications, Lecture Notes on Computer Science 202, pp. 63-94. Springer.

Brendel, V. and H. G. Busse. 1984. "Genome Structure Described by Formal Languages."
Nucleic Acids Res. 12, 2561-2568.

De Luca, A. and A. Restivo. 1980. "A Characterization of Strictly Locally Testable Languages
and Its Application to Subsemigroups of a Free Semigroup." Information and Control 44,
300--319.

FORMAL LANGUAGE THEORY AND DNA 759

Eberling, W. and M. A. Jimenez-Montano. 1980. "On Grammars, Complexity, and Information
Measures of Biological Macromolecules." Mathematical Biosciences 52, 53-72.

Jimenez-Montano, M. A. 1984. "On the Syntactic Structure of Protein Sequences and the
Concept of Grammar Complexity." Bull. math. Biol. 46, 641~559.

Hopcroft, J. E. and J. D. Ullman. 1979. Introduction to Automata Theory, Languages, and
Computation. Reading, MA: Addison-Wesley.

Landau, G. M. and U. Vishkin. 1986. "Introducing Efficient Parallelism into Approximate
String Matching and a New Serial Algorithm." Proceedinos of the 18th Annual A C M
Symposium on Theory of Computing, pp. 220-230.

, and R. Nussinov. 1986. "An Efficient String Matching Algorithm with k
Differences for Nucleotide and Amino Acid Sequences." Nucleic Acids Res. 14, 31-46.

Legerski, R. J. and D. L. Robberson. 1985. "Analysis and Optimization of Recombinant DNA
Joining Reactions." J. tool. Biol. 181,297-312.

Lewin, B. 1983. Genes. New York: Wiley.
- - . 1987. Genes III. New York: Wiley.
Martinez, H. M. (Ed.) 1984. "Mathematical and Computational Problems in the Analysis of

Molecular Sequences.' Bull. math. Biol. (Special Issue Honoring M. O. Dayhoff) 46(4).
McNaughton, R. and S. Papert. 1971. Counter-Free Automata. Cambridge MA: M.I.T. Press.
Salomaa, A. 1985. Computation and Automata. Cambridge: Cambridge University Press.
Schutzenberger, M. P. 1975. "Sur Certaines Operations de Fermeture dans les Langages

Rationnels." Symposia Math. 15, 245-253.
Watson, J. D., Tooze, J. and Kurtz, D. T. 1983. Recombinant DNA: A Short Course. New York:

Freeman.

RECEIVED 1.9.87

REVISED 7.17.87

