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1.

Abstract. In this paper we give a complete formalization of a new corability model of a dis-
tributed parallel type which is inspired by some basic fesgwof living cells: transition P systems
as they were given in [3], addressed with completely difietechniques than in [1] and [2]. For
this, we present a formal syntax and semantic of the tramsRisystems capturing the synchronized
work of P systems, and the nondeterministic and maximaliglfgd manner in which the rules of
these systems can be applied.
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Introduction

In [3] a new computability model, of a distributed parallgbe¢, based on the notion ofembrane struc-

ture, is introduced. This model, callddhnsition P systenstarts from the observation that the processes

which take place in the complex structure of a living cell t@nconsidered@omputations This model
verifies interesting properties:

¢ It belongs to the framework dfatural Computinga field of research which tries to imitate nature

in the way itcomputes In some way, it simulates the inner membrane structure rdiceliving

organisms, where simultaneous and isolated operationsadmabe considered as computations,

are produced.

It is a parallel computational model, where parallelisnsacttwo different levels: in a first level,
inside every membrane, several operations can be made iffeet objects simultaneously,
and in a second level, all the membranes work simultaneowdly no direct intervention of the
produced operations of the other membranes.

*Address for correspondence: Dpto. Ciencias de la Computacinteligencia Artificial, Universidad de Sevilla, Egpa
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¢ It is anon deterministicomputational model, because, as we can see later, theoudgecute in
each step of the computation are not determia@diori.

e It is an universal computational model. In [3] it is provea@ih systems are able to compute all
Turing computable sets of natural numbers (all recursieglymerable languages, in the case of
string-objects).

The current bibliography of membrane computing can be foorf].

The problem of a complete formalization of the definition & aystem of a given type and, mainly,
of its computations and results of computations was exjli@ormulated in [5]. A complete formal-
ization of transition P systems is presented in this papkelessed with completely different techniques
than in [1] and [2]. We hope the formalization we present luame be useful for two initial aspects: (a)
formal verification of these systems as a mechanical proeasfiihis new computability model, and (b) a
possible implementation of these systems into converitileatronic computers, making an application
allowing to define and execute them (with the loss of massarallglism, not present in conventional
computers).

2. A Syntax for Transition P Systems

Themembrane structuref a P system is a hierarchical arrangement of membranegistodd as vesi-
cles in a space), embedded iskin membrang¢hat separates the system from the environment. When
a membrane has not any membrane inside, it is calethentary Each membrane encloses a space
between it and the membranes directly included in it (if affy)is space (theegion of the membrane)
can contain a multiset (a set where the elements can be eepedtobjects (represented by symbols of
a given alphabet) and a set of (evolution) rules for them hEfaembrane defines an unique region; that
is, each region is delimitedrém the outsidgby an uniqgue membrane.

2.1. Multisets

As afirst step in our formalization, we need to define what isetl$ are, and a partial order and operations
over them that will be useful along the paper.

Definition 2.1. A multisetover a setA, is an applicationn : A — N. Thesupportof m is the subset
of A: supp(m) ={a € A: m(a) > 0}. Amultiset is said to be empty (resp. finite) when its support
empty (resp. finite), and it will be denoted @s= (), orm = 0.

We will denote byM (A) the set of multisets oved (when A is understood, we denote it briefly ByI).
Definition 2.2. Givenmy, ms € M, we define:

e Inclusion:my; <mso < Vj(j € A= mi(j) < ma(j)).

e Strictinclusion:m, < mq < my < mo A My 7 mo.

e Union: +: M2 — M, (m1 +m2)(5) = m1(5) + ma(j).

e Difference:— : M2 — M, (m; —m2)(j) = max{m;(j) — ma(5),0}.
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e Amplification: ® : N x M — M, (n®m1)(j) = n-mq(j).

If m is a finite multiset over, it will be usual to denote it as: = {{a1,...,an }}, where the elements
a; are possibly repeated. TBezeof the multisetn, denotedm|, is defined agm| = > . , m(a). That

is, the size of a finite multiset is the sum of the multiplieitiof the elements appearing in it (note that
this sum has only a finite number of non null terms).

2.2. Membrane structures

Following [3], the membrane structures are defined by a laggu\/ S, over the alphabef], |}, whose
strings are defined by recursion as follows:

1. []eMS,
2. fpq, ... pn € MS (withn > 1), then[u; ... u,) € MS.

In M S we consider the following relation:

T~y > I, o, 143, g (B2, p3s ppa € MS A o= pypiopizpia Ny = i1 pi3fi2404)

Let ~* be the reflexive and transitive closure-of and let us denotd/S = M S/ ~*. The elements of
M S are callednembrane structure€€ach matching pair of parenthesis is callei@mbrane

In general, in a membrane structure withelements, the membranes are identified with a set of
labels, usually the sdtl, ... ,n}.

To carry out our formalization, we need the following contsegbout graphs.

An undirected graphG, is an ordered paiiV, E), whereV is a finite set (its elements are called
verticesor node$ and E is a finite set consisting of unordered pairs of vertidesy }, such that # v.

If {u,v} € E, then we say that vertices v areadjacent

A path of lengthk from a vertexu to a vertexv in G = (V, E) is a sequencézg, x1, ..., z) Of
vertices such that = 2o A v =z, AVj (0 <j <k — {zj,z;41} € E). The length of the path is
the number of edges in the path.

If there is a path from a vertexto a vertexv, we say that is reachablefrom  in G, and we denote
itasu ~»¢g v. Also, we say that, andv areconnectedn G.

An undirected graph isonnectedf every pair of different vertices are connected by a patthim
graph.

A path issimpleif all edges and all vertices on the path, except possiblyitseand the last vertices,
are distinct. Acycleis a simple path of length at least 1 which begins and endeataime vertex. Note
that in an undirected graph, a cycle must be of length at Basin undirected graph with no cycles is
saidacyclic

A (freg) treeis a connected, acyclic and undirected graphroéted treeis a tree with one of its
vertices distinguished from the other ones. The distirrdsvertex is called th@ot of the tree. Usually,
we represent a rooted tree by an ordered pair such that thedirgoonent of the pair is the root of the
tree and the second component is the adjacency list thaist®oén lists, one for each vertex The list
for vertex: contains those vertices adjacent from

Let G be a rooted tree with roat Given a vertex:, any vertexv (v # u) on the unique path from
r to u is called aproper ancestoof u. If v is a proper ancestor af, then we say that is a proper
descendanof v. Any vertexv with no proper descendants is calletbaf of the rooted tree.
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For every non root vertexy, we will denote byf (u) (thefatherof « in G) the only proper ancestor
of u such thaf f(u),u} € E. The father of the root is undefined. For any vertexe will denoteCh(u)
(thechildrenof « in G) the set of proper descendantsucduch that their father is.

In a rooted tree5 = (V, E)) with rootr we can define a binary relatiofi* (G) on V, in a natural
way, as follows:(z,y) € E*(G) < y € Ch(x). This binary relation establish, in some way, a direction
over the edges of the rooted tree.

Definition 2.3. A membrane structures a rooted tree, where the nodes are caftednbranesthe root
is calledskin and the leaves are calletementary membranes

In this formalization the labels of the membranes (as thg@eapin [3]) will be the vertices of the
graph. In a more general version of P systems, for exampleraumembranereationis allowed, an
independent label for the nodes can be useful.

In order to define the transitions in a P system we need theepbd acell, which is a membrane
structure where a multiset (possibly empty) is associatithl @ery membrane. The formalization of
this concept is the following one:

Definition 2.4. A cell (or super-cel] over an alphabet4, is a pair(u, M), whereyu is a membrane
structure, andV/ is an application,M : V(u) — M(A), such that every node of the tree has an
associated multiset over the base alphabet.

If C = (u, M) is a cell overA, then we denotg = (V (i), E(i)). Thatis,V(u) andE(u) are the
sets of vertices and edges, respectively, of the labeladddoeey, that determine the cell. We define the
degreeof a cellC = (u, M), denotedC|, as|V (n)|; that is, the degree is equal to the total number of
membranes.

Definition 2.5. Let (u, M) be a cell over an alphabet. Letz € V(1). An (evolutior) rule associated
with z is a 3-tupler = (d,., v,, §,) where

— d, is a multiset over.

— 4, is a function with the domai (x) U {here, out}, and the range contained M (A), where
here,out ¢ V (u) andhere# out

— 8, € {~6,8}, with —4,6 ¢ A and—4 # 4.

Informally, an evolution ruley, for a membrane € V (), has the form:
ai...am — (bi,ing,) ... (bp,ing,)(c1,out) ... (cx, out)(dy, here) ... (d;, here)s
with s = § ors = X (the empty string).

In this formalizationd, = {{a1,...,am}}, 7-(y) (y € V(n)) is the multiset consisting of the
elements appearing in the rule under the fditmin, ), 0. (out) = {{c1,...,c}}, and @, (here) =
{{dy,...,d;}}. The componend, (§ or —d) indicates whethes = § or s = A. In the next section the
action of the rule is explained in detail.

Finally, to give the syntax of a P system we need to assigndoyanembrane of the structure a set
of rules that will be applied to the objects in the membrarethls aim, we define:
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Definition 2.6. Let C = (u, M) be a cell over an alphabet. Letz € V(u). A collection R of
(evolution) rules associated withC' is a function with domairi/ () such that for every membranee
V(p), R(z) = {r,...,ri } (denotedR,) is a finite set (possibly empty) of (evolution) rules asatemi
with z.

Definition 2.7. Let C = (u, M) be a cell over an alphabet. Let R be a collection of (evolution) rules
associated witl®’. A priority relation overR is a function,p, with the domainy/ () such that for every
membrane: € V (i), p(x) (denotedp,) is a strict partial order oveR, (possibly empty).

The strict partial ordep, over R, will be interpreted as follows(r’, ) € p, means that the rule
has a strictly higher priority than the rute

Definition 2.8. A transition P systens a 4-tuplell = (A, Cy, R, ig), where:
e Ais anon-empty finite set (usually called base alphabet).
e Cy = (no, Myp) is a cell overA.

e R is an ordered paifR, p) whereR is a collection of (evolution) rules associated witf, andp
is a priority relation oveR.

e ig is a node of the rooted trgg, which specifies the output membrand bf

3. A Semantic for Transition P Systems

The semantic of a P system, that is, the way the P system aya$vgiven informally as follows (we
study the case when the priority is interpreted in a stromgeseif a rule with a higher priority is used,
then no rule of a lower priority can be used, even if the tweswdo not compete for objects).

P systems are synchronous, i.e., in each time unit (a glddbeck s assumed) a transformation of the
system takes place by applying the rules in each membraaendndeterministic and maximally parallel
manner. This means that the objects and rules of each meenhrarused in a nondeterministic and
exhaustive way, such that, after the application of themruteocan be applied in the same execution step
(there are not enough objects for any rule to be applied)hdrcase we are studying, priority relations
among rules of every membranes are given. This means thatimregion a rule can be applied if no
rule of a higher priority is applicable.

We can define the evolution of a P system formally using thénaaf a configuration The idea
of a configuration is to represent the status of a computaifoa P system. Basically, a P system
is a membrane structure with objects in its membranes, wpititiied evolution rules for objects and
with given input—output prescriptions. Such a descriptidra P system has as variable elements only
the membrane structure (because of dissolution) and gbgecttained within each membrane. So, to
describe the status of a P system at some point during a catigmytwe only must specify the membrane
structure of the P system and the contents of the regionsiatst with each membrane. Intuitively, a
configuration contains a complete description of the curstate of the computation: a hierarchical
arrangement of membranes with the multisets of objectscaged with each one.
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Definition 3.1. A configuration C, of a P systemil = (A, Cy, R, i) With Cy = (10, M) isacellC =
(1, M) over A, whereV () C V(ug), andu has the same root ag. The configuratiorCy = (40, Mo)
will be called theinitial configuration ofII.

Next we study how to decide if a rule can be applied or not. kisr tve remind the informal meaning
of an (evolution) ruler € R,, from a membrane,
r:oar...am = (biying) ... (by,inj,)(c1,0ut) ... (ck,out)(d, here) ... (d;, here)s
with a;, b;, ¢;, d; symbols ofA ands = § ors = A.

e This rule can be applied only when there are enough copidedilijectsiq, . . ., a,, in the mem-
branez and no rule ofR, with a higher priority can be applied.

e The result of using this rule is determined by its right haide s follows:

— The objectsly, . . ., d; will remain in the same region.

— The objectscy, ..., ¢, will exit the membraner and will become elements of the region
immediately outside it (they pass to the fatherzofand if z is the skin membrane, they are
lost in the environment).

— Every object; will be added to the multiset associated with the membyanprovided that
js is a child of the membrane. If the membrang;, is not a child ofz, then the application
of the rule is not allowed.

— If the symbolé§ appears in the rules(= §), then the membrane is removed (we sadis-
solved and at the same time the set of the rulgs(and its associated priority relation) will
not be used any longer. The multiset associated with the meerab is added to the region
which is immediately external to it (its father). Of courseich a rule cannot be applied in
the skin membrane.

Definition 3.2. Let C' = (u, M) be a configuration of a P systefh = (A, Cy, R,14g), with Cy =
(10, My), andz € V (119). We say that the (evolution) rutee R, is semi-applicabldo C if:

e The membrane associated with nadexists inC, that is,z € V(u).
¢ Dissolution is not allowed in the root node, that iszifs the root node ofi, thend, = —d.
¢ The membrane associated witlhas all the necessary objects to apply the rule, thd is; M (7).

e Nodes where the rule tries to send objects (by means:gf are children ofz, that isVy €
V() (@ (y) #0 =y € Ch(z)).
(Note that rules trying to send objectsatdy means oin, are never semi-applicable).

However, it is not enough to verify the above conditions idesrto conclude that a rule is applica-

ble, because nothing about priorities is considered. Fairrason, we introduce the concept of a rule
applicable to a configuration of a P system.



M.J. Pérez-Jiménez and F. Sancho-Caparrini/ A Formaiizeof Transition P Systems 267

Definition 3.3. Let C' = (u, M) be a configuration of a P systeth = (A, Cy, R,ig), with Cy =
(10, My), andx € V(ug). We say that the rule € R, is applicableto C, if it is semi-applicable ta”
and there is no semi-applicable rulesip with a higher priority. That is,

-37" (' € Ry A py(r',r) A ' semi-applicable t@).

We define théndex of applicability of- in C' over the node: as the maximum number of times the
ruler can be applied t¢’ in the noder.

0, if 7 is not applicable ta@’,

N 707 = 7 i
Ap(r, O, ) {max{n :n®d, < M(z)}, otherwise

Moreover, an applicable rule may not be actually appliedabee of the non-determinism of the P
system. Next, we define the applicability vector over a nadeyumerical vector with as many compo-
nents as rules in the node, and representing how many tinceg@e is applied in a transition.

Definition 3.4. Let C = (u, M) be a configuration of a P systefh. We say thaty € NN is an
applicability vectoroverz € V(u) for C, and we will denote it ag € Ap(z,C), if:

e The node is still alive, that igi # 0 = = € V().

It has a correct size, that i85 (5 > s, — p(j) = 0), wheres, is the number of rules associated
with z.

Every rule can be applied as many times as the vettodicates, that is,

Vi (1<j<s,—p(j) < Nap(rf,C,z)).

All the rules can be applied simultaneously, thatys 5(j) ® J;f < M(z).
7=1

It is maximal, that is;m37 € NN (5 < & A ¥ € Ap(zx, C)) (consideringy, 7 as infinite multisets
overN).

As we said above, the application of the rules is simultasgéowevery membrane. Because of this,
we define applicability matrices, where the rows will be aaiility vectors over the nodes of the P
system in this configuration. That is, an applicability maindicates how many times we must apply
every rule in every membrane of the P system to get the nefigcwation.

Definition 3.5. Let C' = (u, M) be a configuration of a P systehh = (A, Cy, R,ip) with Cy =
(po, Mp). We will say thatP : V(ug) — NN is an applicability matrix over C, denotedP <
Map(C), if for everyz € V(ug) we haveP(z) € Ap(z,C) (usually, we will denoteP, instead of
P(x)).
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If P is an applicability matrix ove€' = (u, M) andV (u) = {i1,..., i} withi; < --- <, then we
denoteP = ((p',... ,p’slil), ey (DY ,p’s’;k))

In order to determine how a P system evolves, we must formalir intuitive understanding of
the way that a P systemomputes To determine a successor configuration of a given configumat
C = (u, M), we proceed in two stages. In the first stage all the rules»eeuted without attending
dissolving actions. In the second stage we remove disgplriembranes/nodes and distribute their
contents to the region which is immediately external to thamd re-making the connections in the
resulting rooted tree.

The first stage (application of rules without consideringsdiving actions) produces the configura-
tion C" = (u, M"), where:

M"(z)= M(z)— ZP ) @ dye +ZP ® Tys (here)+

Sf(2)

Z‘Pf ) ®U f(r Z ZP out)

yeCh(z) j=

To get the second stage (dissolving actions, and distobutf membrane contents) we need to
characterize the nodes to be dissolved by the execution apjplicability matrix.

Definition 3.6. If C = (u, M) is a configuration of a P systelh, andP € M, (C) is an applicability
matrix overC, then we defin\(P,C) ={z: z € V() ANFj (1 <j <s; A Pr(j) #0 A bpe = d)}.

That is,A(P, C) represents the set of nodes in the rooted tree determindeelpnhfiguratiorC that
have to be dissolved after the application of the maftix

In one step of the transition P system, a set of membranesgnuah be dissolved. Hence, it will be
convenient to determine for every membrangremaining in the next configuration, which is the set of
membranes dissolved during the application of an applitalonatrix that may give their contents to
(such membranes will be calletbnors .

Definition 3.7. Let C' = (u, M) be a configuration of a P systelh Let P € M ,(C') be an applica-
bility matrix overC'. For each node € V (1), we define thelonorsof = for C' in the application ofP
as follows:

0, if z € A(P,C),
Don(z, P,C) = {yeV(u):yec AP,C) ANz ~,y A

Jif 2 ¢ A(P,C).
AV2EV () (T ~pz~,y—2€APC))}

That is, if a membrane is not dissolved, then a membranés a donor forz if y is dissolved in the
application ofP, and every membrane being a proper descendantofl a proper ancestor gfis also
dissolved in the application d?.

Now, we can define the execution of an applicability matrieroa given configuration.

Definition 3.8. Let C = (i, M) be a configuration of a P systefh Let P € Ma,(C) be an appli-
cability matrix overC'. We define theexecutionof P overC, denotedP(C), as the configuration dfl,
C' = (u', M), where:



M.J. Pérez-Jiménez and F. Sancho-Caparrini/ A Formaiizeof Transition P Systems 269

e 4/ is the rooted tree obtained fromby means of:

- V() =V(p) - AP, C).
- If z,y € V(i/), then:

(z,y) € E*(1) & Fzoy...yzn € V(u)(21,..  2n-1 € AP, C) AN 29 =2 A
Tn =y AVi(0<i<n—(z5zi41) € E*(1))).

M'(z)u ) M'(y), ifx¢A(PO),
L] MI(I) = y€Don(z,P,C)
0, if x € A(P,C).

That is, ' is the rooted tree obtained fromby erasing all the dissolved nodes by the application
of matrix P, and restoring the connections in the right way: if a ngde dissolved, then the node and
all the edges adjacent to it are erased, and every edge lretiveéirst non dissolved ancestorypfind
every first non dissolved descendantaire added. If a node is dissolved, then its content is remafved
not, we must add to it the content of every donor node detextniny the application aP.

Now we formalize the transition from a configuration of a Ptegsto another configuration. That
is, we try to specify how the P systems compute, how they evolv

Definition 3.9. We say that a configuratiofi; of a P systenil yields a configuratior®s by atransition
in one stepof 11, denotedC; = Oy, if there exists a non—zero applicability matrix ov@y, P, such
thatP(Cl) = (.

Intuitively, C7 =11 C5 in one step with respect to the P systéhif from the configurationC; we
obtain the configuratiods.

Once we have defined the relation of one step transition amonfigurations, we can define the
relation oftransitionto be its transitive closure. We say that a configuratibyields a configuratior®’
in k transition stepsk( > 0), if there are configuration§', ..., Cj.1 such that

0120/\Ck+1201/\V’i(1Siﬁk)ici:h]CH_l).

Finally, we say that a configuratiofl yields a configuratiorC’, denotedC =ty €7, if there isk > 0
such thatC' yieldsC’ in k transition steps.

With the fixed initial configuration, we can build the compida tree associated with the P sys-
tem, such that the nodes of this tree are the configuratiokeo€omputation, and the edges are the
applicability matrices used to get one configuration frorothar.

Definition 3.10. Thecomputation tree of a P systdih denotedComp(II), is a rooted labeled maximal
tree defined as follows: the root of the tree is the initialfaration, Cy, of II. The children of a node
are the configurations that follow in a one step transitioad®s and edges are labeled by configurations
and applicability matrices, respectively, in such a way tin labeled node€’, C’ are adjacent in
Comp(II), by means an edge labeled with if and only if P € M, (C) — {0} A C" = P(C).

The maximal branches d®omp(II) are calledcomputationsof TI. We say that a computation
of II haltsif it is a finite branch. The configurations verifyinyIa,(C) = {0} are calledhalting
configurations and we denote the set of halting configurationstyit(II) = {C : Map(C) = {0}}.
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That is, a computation of a P systdin= (A, Cy, R, i) is a sequence (possibly infinite) of configu-
rationsCy =1 C1 =11 ... =1 C, (Withn € N U {oo}) such thatCj is the initial configuration ofI
andVi (i < n — C; =1 Ciy1).

Definition 3.11. We say that @omputatiorCy =1 Cy =11 ... = C, ofaP systenil = (A, Cy, R, o)
is successfuif this computation halts, ang is a leaf of the rooted tree,,, whereC,, = (un, My,).
Then, we say thaf’,, is asuccessful configuratioof TT andn is thelengthof the computation

It is clear that we can define P systems where, for a concretfggooation, the applicability matrix
for this configuration is not unique, that is, the system lea®al possibilities to go on. In this way, we
get the non-determinism we noted in the Introduction.

Definition 3.12. If M (C) is unitary for every configuratiof’ of the P system, then we say that the
system ideterministi¢ otherwise, we say that the P systerm@ deterministic

A non deterministic P system allows the possibility that entitan one next configuration can be
obtained from a given configuration. At any moment of a coragiom these P systems may evolve
according to several possibilities.

Next we will study the versatility of P systems. For this, vansee that a P system can be seen as
a device whiclgeneratesnultisets, numbers or relations. It is also possible torprit a P system as a
devicerecognizinga multiset or even as a devicemputinga partial mapping from natural numbers to
sets of natural numbers.

4. P Systems Generating Multisets, Numbers, or Relations

P systems can be seen as devices which generate multisetbersuor relations. Indeed, I&t =
(A,Cy,R,iy) be a P system. Let us consider the set of all successful coafiigus ofI1:

S(IT) = {C : C'is the leaf of a successful computationl®f.

Definition 4.1. LetII = (A, Cy, R, io) be a P system. Thearikh set generatebly II, denotedPs(IT),
is the following collection of multisets:

Py(I) = {Mc(io) : C € S(M) AC = (uc, Mc)}-

That is,Ps(II) represents the collection of all multisets oveappearing in the output membrarig, for
some successful configuration of the P sysiém

Note: In [4] P systems with output to thenvironmentare considered (the output is defined as the
multiset of objects sent out of the system during the contjmmta  The above formalization can be
easily adapted to this new case. For that, it is enough togehBrfinition 2.8, allowing, for example,
that the output membraneds = env ¢ V(ug). We also must extend the concept of a cell, where the
second componend/, must be an application froii(x) U{env} toM, andM (env) will be interpreted

as the content of the environment; also, we must remove shedadition in Definition 3.11. Then,

Py(II) = {Mc¢(env) : C € SII)ANC = (e, Mc)}.
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Definition 4.2. LetC = Cy = C1 =1 ... =0 C, be a successful computation of a P system
IT = (A, Cy, R, i9). Thenumerical outpubf C, denoted byO(C), is |M¢, (io)| wheren is the length of
C (denoted()).

Definition 4.3. Let IT = (A, Cy, R,1ip) be a P system. Thset of natural numbers generatéy II,
denotedN(II), is defined as followsN(IT) = {|M¢(i0)| : C € S(I) AC = (uc, M)}

That is,N(II) = {O(C) : C is a successful computation Hf} represents the set of all the sizes of
all multisets overd appearing in the output membrarig, for some successful configuration of the P
systemil.

Definition 4.4. LetIl = (A, Cy, R,ip) be a P system. Lety,...,ax € A (k > 2) be pairwise distinct.
Thek-relation generated by associated witfa1, . . . , ax), denotedRy (IT), is defined as follows:
Ri(I1) = {(n1,...,ng) € N¥: 3C € SII) (C = (uc, Mc) AVj (1 <j <k —

— (Mc(io))(a;) = ny))}.

That is, R (II) represents the collection of dli-tuples of natural numbersn,, ..., ny), such that in
the output membranegy, of some successful configuration of the P systénthe elements$ay, . .., ax),
have multiplicities(nq, . .., ny) respectively.

5. Conclusions

In this paper we have presented a complete formalizatioa few computability model which is inspired
by some basic features of living cells: transition P systeanghey have been introduced in [3]. For that,
a formal syntax and semantic of the P systems capturing tiehsynous (in the sense that a global clock
is assumed), and the nondeterministic and maximally malhnner that the rules of the system can be
applied, have been given. This formalization can be eadiypted to different variants of P systems that
have appeared in recent works (cooperative, priority, itgwgr communication, carriers, porters, and so
on).

We think that P systems formalization can represent an itapbcontribution for the treatment of
certain questions about this new computability model (faotws verification, validation of the model,
etc.) by means of automatic reasoning systems. Also, wk that the formalization can be useful for a
possible implementation into conventional electronic paters.
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