
Fundamenta Informaticae 49 (2002) 261–272 261

IOS Press

A Formalization of Transition P Systems

Mario J. Pérez-Jiménez and Fernando Sancho-Caparrini
�

Dpto. Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla, España

Mario.Perez,Fernando.Sancho@cs.us.es

Abstract. In this paper we give a complete formalization of a new computability model of a dis-
tributed parallel type which is inspired by some basic features of living cells: transition P systems
as they were given in [3], addressed with completely different techniques than in [1] and [2]. For
this, we present a formal syntax and semantic of the transition P systems capturing the synchronized
work of P systems, and the nondeterministic and maximally parallel manner in which the rules of
these systems can be applied.

Keywords: Natural computing, P system, Formal verification

1. Introduction

In [3] a new computability model, of a distributed parallel type, based on the notion ofmembrane struc-
ture, is introduced. This model, calledtransition P system, starts from the observation that the processes
which take place in the complex structure of a living cell canbe consideredcomputations. This model
verifies interesting properties:

� It belongs to the framework ofNatural Computing, a field of research which tries to imitate nature
in the way itcomputes. In some way, it simulates the inner membrane structure of certain living
organisms, where simultaneous and isolated operations that can be considered as computations,
are produced.

� It is a parallel computational model, where parallelism acts in two different levels: in a first level,
inside every membrane, several operations can be made over different objects simultaneously,
and in a second level, all the membranes work simultaneously, with no direct intervention of the
produced operations of the other membranes.

�

Address for correspondence: Dpto. Ciencias de la Computación e Inteligencia Artificial, Universidad de Sevilla, España

262 M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems

� It is anon deterministiccomputational model, because, as we can see later, the rulesto execute in
each step of the computation are not determineda priori.

� It is an universal computational model. In [3] it is proved that P systems are able to compute all
Turing computable sets of natural numbers (all recursivelyenumerable languages, in the case of
string-objects).

The current bibliography of membrane computing can be foundin [6].
The problem of a complete formalization of the definition of aP system of a given type and, mainly,

of its computations and results of computations was explicitly formulated in [5]. A complete formal-
ization of transition P systems is presented in this paper, addressed with completely different techniques
than in [1] and [2]. We hope the formalization we present herecan be useful for two initial aspects: (a)
formal verification of these systems as a mechanical procedure of this new computability model, and (b) a
possible implementation of these systems into conventional electronic computers, making an application
allowing to define and execute them (with the loss of massive parallelism, not present in conventional
computers).

2. A Syntax for Transition P Systems

Themembrane structureof a P system is a hierarchical arrangement of membranes (understood as vesi-
cles in a space), embedded in askin membranethat separates the system from the environment. When
a membrane has not any membrane inside, it is calledelementary. Each membrane encloses a space
between it and the membranes directly included in it (if any). This space (theregionof the membrane)
can contain a multiset (a set where the elements can be repeated) of objects (represented by symbols of
a given alphabet) and a set of (evolution) rules for them. Each membrane defines an unique region; that
is, each region is delimited (from the outside) by an unique membrane.

2.1. Multisets

As a first step in our formalization, we need to define what multisets are, and a partial order and operations
over them that will be useful along the paper.

Definition 2.1. A multisetover a set,
�

, is an application� � � ���. Thesupportof � is the subset
of
�

: ���� 	�
 � � � � � �	
 � ��. A multiset is said to be empty (resp. finite) when its supportis
empty (resp. finite), and it will be denoted as� � �, or� � ��.
We will denote by�	�
 the set of multisets over

�
(when

�
is understood, we denote it briefly by�).

Definition 2.2. Given����� ��, we define:

� Inclusion:�� ��� � �� 	� � � ���	�
 ���	�

.
� Strict inclusion:�� ��� � �� ��� � �� �� ��.
� Union: � ��� ��� 	�� ���
	�
 � ��	�
 ���	�
.
� Difference:

� � �� ��� 	�� ���
	�
 � !"���	�
 ���	�
���.

M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems 263

� Amplification: � � � ����� 	� ���
	�
 � � ���	�
.
If � is a finite multiset over

�
, it will be usual to denote it as� � ���� � � � � ���, where the elements� are possibly repeated. Thesizeof the multiset�, denoted�� �, is defined as�� ���	
��	
. That

is, the size of a finite multiset is the sum of the multiplicities of the elements appearing in it (note that
this sum has only a finite number of non null terms).

2.2. Membrane structures

Following [3], the membrane structures are defined by a language,�, over the alphabet��� ��, whose
strings are defined by recursion as follows:

1. � � ��,

2. If ��� � � � ��� �� 	with � � �
, then ��� � � ���� ��.

In � we consider the following relation:

� � � � ��������� ��� 	����� � ���� �� � � � �������� � � � ��������

Let ��

be the reflexive and transitive closure of�, and let us denote� ��� ��

. The elements of
� are calledmembrane structures. Each matching pair of parenthesis is called amembrane.

In general, in a membrane structure with� elements, the membranes are identified with a set of
labels, usually the set��� � � � ���.

To carry out our formalization, we need the following concepts about graphs.
An undirected graph, �, is an ordered pair,	���
, where

�
is a finite set (its elements are called

verticesor nodes) and� is a finite set consisting of unordered pairs of vertices,�����, such that� �� �.
If ����� � �, then we say that vertices��� areadjacent.

A path of length from a vertex� to a vertex� in � � 	���
 is a sequence	�! ���� � � � ��"
 of
vertices such that� � �! � � � �" � � � 	� � � � � ��# ��#$�� � �
. The length of the path is
the number of edges in the path.

If there is a path from a vertex� to a vertex�, we say that� is reachablefrom � in �, and we denote
it as� %& �. Also, we say that� and� areconnectedin �.

An undirected graph isconnectedif every pair of different vertices are connected by a path inthe
graph.

A path issimpleif all edges and all vertices on the path, except possibly thefirst and the last vertices,
are distinct. Acycleis a simple path of length at least 1 which begins and ends at the same vertex. Note
that in an undirected graph, a cycle must be of length at least3. An undirected graph with no cycles is
saidacyclic.

A (free) tree is a connected, acyclic and undirected graph. Arooted treeis a tree with one of its
vertices distinguished from the other ones. The distinguished vertex is called theroot of the tree. Usually,
we represent a rooted tree by an ordered pair such that the first component of the pair is the root of the
tree and the second component is the adjacency list that consists of� lists, one for each vertex'. The list
for vertex' contains those vertices adjacent from'.

Let � be a rooted tree with root(. Given a vertex�, any vertex� (� �� �) on the unique path from
(to � is called aproper ancestorof �. If � is a proper ancestor of�, then we say that� is a proper
descendantof �. Any vertex� with no proper descendants is called aleaf of the rooted tree.

264 M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems

For every non root vertex,�, we will denote by� 	�
 (the fatherof � in �) the only proper ancestor
of � such that�� 	�
��� � �. The father of the root is undefined. For any vertex�we will denote��	�

(thechildrenof � in �) the set of proper descendants of� such that their father is�.

In a rooted tree� � 	���
 with root (we can define a binary relation��	�
 on
�

, in a natural
way, as follows:	���
 � ��	�
 � � � ��	�
. This binary relation establish, in some way, a direction
over the edges of the rooted tree.

Definition 2.3. A membrane structureis a rooted tree, where the nodes are calledmembranes, the root
is calledskin, and the leaves are calledelementary membranes.

In this formalization the labels of the membranes (as they appear in [3]) will be the vertices of the
graph. In a more general version of P systems, for example, where membranecreation is allowed, an
independent label for the nodes can be useful.

In order to define the transitions in a P system we need the concept of acell, which is a membrane
structure where a multiset (possibly empty) is associated with every membrane. The formalization of
this concept is the following one:

Definition 2.4. A cell 	or super-cell
 over an alphabet,
�

, is a pair 	���
, where� is a membrane
structure, and� is an application,� � � 	�
 �� �	�
, such that every node of the tree has an
associated multiset over the base alphabet.

If � � 	���
 is a cell over
�

, then we denote� � 	� 	�
�� 	�

. That is,
� 	�
 and� 	�
 are the

sets of vertices and edges, respectively, of the labeled rooted tree� that determine the cell. We define the
degreeof a cell� � 	���
, denoted�� �, as �� 	�
�; that is, the degree is equal to the total number of
membranes.

Definition 2.5. Let 	���
 be a cell over an alphabet
�

. Let � � � 	�
. An 	evolution
 rule associated
with � is a 3-tuple(� 	 ��� � ��� ���
where

– ��� is a multiset over
�

.

– ��� is a function with the domain
� 	�
 � ���(����	�, and the range contained in�	�
, where

��(����	 �� � 	�
 andhere �� out.

– �� � �
����, with
��� �� � and
� �� �.
Informally, an evolution rule,(, for a membrane� � � 	�
, has the form:� � � �� � 	��� '�#�
 � � � 	�� � '�#
	�����	
 � � � 	�" ���	
	�����(�
 � � � 	�� ���(�
�
with � � � or � � � (the empty string).

In this formalization ��� � ���� � � � � ���, ��� 	�
 	� � � 	�

 is the multiset consisting of the
elements appearing in the rule under the form	�� '��
, ��� 	��	
 � ����� � � � ��"��, and ��� 	��(�
 ������ � � � �����. The component�� (� or
�) indicates whether� � � or � � �. In the next section the
action of the rule is explained in detail.

Finally, to give the syntax of a P system we need to assign to every membrane of the structure a set
of rules that will be applied to the objects in the membrane. To this aim, we define:

M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems 265

Definition 2.6. Let � � 	���
 be a cell over an alphabet
�

. Let � � � 	�
. A collection � of
(evolution) rulesassociated with� is a function with domain

� 	�
 such that for every membrane� �� 	�
, �	�
 � �(�� � � � � �(���� (denoted��) is a finite set (possibly empty) of (evolution) rules associated
with �.

Definition 2.7. Let � � 	���
 be a cell over an alphabet
�

. Let � be a collection of (evolution) rules
associated with�. A priority relation over� is a function,�, with the domain

� 	�
 such that for every
membrane� � � 	�
, �	�
 (denoted��) is a strict partial order over�� (possibly empty).

The strict partial order�� over�� will be interpreted as follows:	(� �(
 � �� means that the rule(�
has a strictly higher priority than the rule(.

Definition 2.8. A transition P systemis a 4-tuple� � 	���! ��� '!
, where:

�
�

is a non-empty finite set (usually called base alphabet).

� �! � 	�! ��!
 is a cell over
�

.

� � is an ordered pair	���
 where� is a collection of (evolution) rules associated with�!, and�
is a priority relation over�.

� '! is a node of the rooted tree�!, which specifies the output membrane of�.

3. A Semantic for Transition P Systems

The semantic of a P system, that is, the way the P system evolves, is given informally as follows (we
study the case when the priority is interpreted in a strong sense: if a rule with a higher priority is used,
then no rule of a lower priority can be used, even if the two rules do not compete for objects).

P systems are synchronous, i.e., in each time unit (a global clock is assumed) a transformation of the
system takes place by applying the rules in each membrane, ina nondeterministic and maximally parallel
manner. This means that the objects and rules of each membrane are used in a nondeterministic and
exhaustive way, such that, after the application of them, norule can be applied in the same execution step
(there are not enough objects for any rule to be applied). In the case we are studying, priority relations
among rules of every membranes are given. This means that in each region a rule can be applied if no
rule of a higher priority is applicable.

We can define the evolution of a P system formally using the notion of a configuration. The idea
of a configuration is to represent the status of a computationof a P system. Basically, a P system
is a membrane structure with objects in its membranes, with specified evolution rules for objects and
with given input–output prescriptions. Such a descriptionof a P system has as variable elements only
the membrane structure (because of dissolution) and objects contained within each membrane. So, to
describe the status of a P system at some point during a computation, we only must specify the membrane
structure of the P system and the contents of the regions associated with each membrane. Intuitively, a
configuration contains a complete description of the current state of the computation: a hierarchical
arrangement of membranes with the multisets of objects associated with each one.

266 M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems

Definition 3.1. A configuration, �, of a P system� � 	���! ��� '!
with �! � 	�! ��!
 is a cell� �	���
 over
�

, where
� 	�
 � � 	�!
, and� has the same root as�!. The configuration�! � 	�! ��!

will be called theinitial configuration of�.

Next we study how to decide if a rule can be applied or not. For this, we remind the informal meaning
of an (evolution) rule,(� ��, from a membrane�,

(� � � � �� � 	��� '�#�
 � � � 	�� � '�#
	�����	
 � � � 	�" ���	
	�����(�
 � � � 	�� ���(�
�
with � � �� ��� ��� symbols of

�
and� � � or � � �.

� This rule can be applied only when there are enough copies of the objects�� � � � � � in the mem-
brane� and no rule of�� with a higher priority can be applied.

� The result of using this rule is determined by its right hand side as follows:

– The objects
��� � � � ��� will remain in the same region�.

– The objects��� � � � ��" will exit the membrane� and will become elements of the region
immediately outside it (they pass to the father of�, and if � is the skin membrane, they are
lost in the environment).

– Every object
�� will be added to the multiset associated with the membrane��, provided that

�� is a child of the membrane�. If the membrane�� is not a child of�, then the application
of the rule is not allowed.

– If the symbol� appears in the rule (� � �), then the membrane� is removed (we saydis-
solved) and at the same time the set of the rules�� (and its associated priority relation) will
not be used any longer. The multiset associated with the membrane� is added to the region
which is immediately external to it (its father). Of course,such a rule cannot be applied in
the skin membrane.

Definition 3.2. Let � � 	���
 be a configuration of a P system� � 	���! ��� '!
, with �! �	�! ��!
, and� � � 	�!
. We say that the (evolution) rule(� �� is semi-applicableto � if:

� The membrane associated with node� exists in�, that is,� � � 	�
.
� Dissolution is not allowed in the root node, that is, if� is the root node of�, then�� �
�.
� The membrane associated with� has all the necessary objects to apply the rule, that is,��� �� 	�
.
� Nodes where the rule tries to send objects (by means of'��) are children of�, that is� � �� 	�
	��� 	�
 �� �� � � � ��	�

.

(Note that rules trying to send objects to� by means of'�� are never semi-applicable).

However, it is not enough to verify the above conditions in order to conclude that a rule is applica-
ble, because nothing about priorities is considered. For that reason, we introduce the concept of a rule
applicable to a configuration of a P system.

M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems 267

Definition 3.3. Let � � 	���
 be a configuration of a P system� � 	���! ��� '!
, with �! �	�! ��!
, and� � � 	�!
. We say that the rule(� �� is applicableto �, if it is semi-applicable to�
and there is no semi-applicable rules in�� with a higher priority. That is,

�(� 	(� � �� � ��
	(� �(
 � (� semi-applicable to�
�

We define theindex of applicability of(in � over the node� as the maximum number of times the
rule (can be applied to� in the node�.

��� 	(����
 �
��� if (is not applicable to��
 !"�� � � � ��� �� 	�
�� otherwise�

Moreover, an applicable rule may not be actually applied, because of the non-determinism of the P
system. Next, we define the applicability vector over a node,a numerical vector with as many compo-
nents as rules in the node, and representing how many times each rule is applied in a transition.

Definition 3.4. Let � � 	���
 be a configuration of a P system�. We say that�� � �� is an
applicability vectorover� � � 	�
 for �, and we will denote it as�� ���	���
, if:

� The node is still alive, that is,�� �� ��� � � � 	�
.
� It has a correct size, that is,� � 	� � �� � ��	�
 � �
, where�� is the number of rules associated

with �.

� Every rule can be applied as many times as the vector�� indicates, that is,

� � 	� � � � �� � ��	�
 ���� 	(�# ����

�
� All the rules can be applied simultaneously, that is,

���
#�� �� 	�
 � ����	 �� 	�
.

� It is maximal, that is,
� �� ��� 	�� � �� � �� ���	���

 	considering�� � �� as infinite multisets
over�
.

As we said above, the application of the rules is simultaneous in every membrane. Because of this,
we define applicability matrices, where the rows will be applicability vectors over the nodes of the P
system in this configuration. That is, an applicability matrix indicates how many times we must apply
every rule in every membrane of the P system to get the next configuration.

Definition 3.5. Let � � 	���
 be a configuration of a P system� � 	���! ��� '!
 with �! �	�! ��!
. We will say that
 � � 	�!
 �� �� is an applicability matrix over �, denoted
 �
���	�
, if for every � � � 	�!
 we have
 	�
 � ��	���
 	usually, we will denote
� instead of
 	�

.

268 M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems

If
 is an applicability matrix over� � 	���
 and
� 	�
 � �'�� � � � � '"� with '� � � � � � '", then we

denote
 � 		���� � � � � �������
� � � � � 	���� � � � � �������

.
In order to determine how a P system evolves, we must formalize our intuitive understanding of

the way that a P systemcomputes. To determine a successor configuration of a given configuration,
� � 	���
, we proceed in two stages. In the first stage all the rules are executed without attending
dissolving actions. In the second stage we remove dissolving membranes/nodes and distribute their
contents to the region which is immediately external to them, and re-making the connections in the
resulting rooted tree.

The first stage (application of rules without considering dissolving actions) produces the configura-
tion ��� � 	��� ��
, where:

� �� 	�
 � � 	�
 �
���
#��
� 	�
 � ����	 �

���
#��
� 	�
� ����	 	��(�
�������

#��
����	�
 � �������	 	�
 � �
�
�	���

�
�
#��
� 	�
 � ���
	 	��	
�

To get the second stage (dissolving actions, and distribution of membrane contents) we need to
characterize the nodes to be dissolved by the execution of anapplicability matrix.

Definition 3.6. If � � 	���
 is a configuration of a P system�, and
 ���� 	�
 is an applicability
matrix over�, then we define�	
��
 � �� � � � � 	�
 � �� 	� � � � �� �
� 	�
 �� � � ���	 � �
�.

That is,�	
��
 represents the set of nodes in the rooted tree determined by the configuration� that
have to be dissolved after the application of the matrix
 .

In one step of the transition P system, a set of membranes/nodes can be dissolved. Hence, it will be
convenient to determine for every membrane,�, remaining in the next configuration, which is the set of
membranes dissolved during the application of an applicability matrix that may give their contents to�
(such membranes will be calleddonors) .

Definition 3.7. Let � � 	���
 be a configuration of a P system�. Let
 � ���	�
 be an applica-
bility matrix over�. For each node� � � 	�
, we define thedonorsof � for � in the application of

as follows:

���	��
��
 �
��
��
�� if � ��	
��
�
�� � � 	�
 � � ��	
��
 � � %� � �
� � � � � 	�
	� %� � %� � � � ��	
��

� � if � ���	
��
�

That is, if a membrane� is not dissolved, then a membrane� is a donor for� if � is dissolved in the
application of
 , and every membrane being a proper descendant of� and a proper ancestor of� is also
dissolved in the application of
 .

Now, we can define the execution of an applicability matrix over a given configuration.

Definition 3.8. Let � � 	���
 be a configuration of a P system�. Let
 � ��� 	�
 be an appli-
cability matrix over�. We define theexecutionof
 over�, denoted
 	�
, as the configuration of�,
�� � 	�� �� �
, where:

M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems 269

� �� is the rooted tree obtained from� by means of:

–
� 	��
 � � 	�
 ��	
��
�

– If ��� � � 	��
, then:

	���
 � ��	��
 � ��! � � � � ��� � � 	�
	��� � � � ����� ��	
��
 � �! � ��
�� � � � � ' 	� � ' � � � 	�� ���$�
 � ��	�

�

� � � 	�
 �
��
��
� �� 	�
 � �

�
����������
� �� 	�
� if � ���	
��
�

�� if � ��	
��
�
That is,�� is the rooted tree obtained from� by erasing all the dissolved nodes by the application

of matrix
 , and restoring the connections in the right way: if a node� is dissolved, then the node and
all the edges adjacent to it are erased, and every edge between the first non dissolved ancestor of� and
every first non dissolved descendant of� are added. If a node is dissolved, then its content is removed, if
not, we must add to it the content of every donor node determined by the application of
 .

Now we formalize the transition from a configuration of a P system to another configuration. That
is, we try to specify how the P systems compute, how they evolve.

Definition 3.9. We say that a configuration�� of a P system� yields a configuration�� by atransition
in one stepof �, denoted�� �� ��, if there exists a non–zero applicability matrix over��,
 , such
that
 	��
 � ��.

Intuitively, �� �� �� in one step with respect to the P system� if from the configuration�� we
obtain the configuration��.

Once we have defined the relation of one step transition amongconfigurations, we can define the
relation oftransition to be its transitive closure. We say that a configuration� yields a configuration��
in transition steps (� �), if there are configurations��� � � � ��"$� such that

�� � � � �"$� � �� ��' 	� � ' � � �� �� ��$�
�
Finally, we say that a configuration� yields a configuration��, denoted� ��� ��, if there is � �
such that� yields�� in transition steps.

With the fixed initial configuration, we can build the computation tree associated with the P sys-
tem, such that the nodes of this tree are the configurations ofthe computation, and the edges are the
applicability matrices used to get one configuration from another.

Definition 3.10. Thecomputation tree of a P system�, denoted�	
�	�
, is a rooted labeled maximal
tree defined as follows: the root of the tree is the initial configuration,�!, of �. The children of a node
are the configurations that follow in a one step transition. Nodes and edges are labeled by configurations
and applicability matrices, respectively, in such a way that two labeled nodes���� are adjacent in
�	
�	�
, by means an edge labeled with
 , if and only if
 ����	�
 � ��� � �� �
 	�
.

The maximal branches of�	
�	�
 are calledcomputationsof �. We say that a computation
of � halts if it is a finite branch. The configurations verifying��� 	�
 � ��� are calledhalting
configurations, and we denote the set of halting configurations by�		�
 � �� � ��� 	�
 � ����.

270 M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems

That is, a computation of a P system� � 	���! ��� '!
 is a sequence (possibly infinite) of configu-
rations�! �� �� �� � � � �� �� (with � � � � ���) such that�! is the initial configuration of�
and�' 	' � � � �� �� ��$�
.
Definition 3.11. We say that acomputation�! �� �� �� � � ��� �� of a P system� � 	���! ��� '!

is successfulif this computation halts, and'! is a leaf of the rooted tree��, where�� � 	�� ���
.

Then, we say that�� is asuccessful configurationof � and� is thelengthof thecomputation.

It is clear that we can define P systems where, for a concrete configuration, the applicability matrix
for this configuration is not unique, that is, the system has several possibilities to go on. In this way, we
get the non-determinism we noted in the Introduction.

Definition 3.12. If ��� 	�
 is unitary for every configuration� of the P system, then we say that the
system isdeterministic; otherwise, we say that the P system isnon deterministic.

A non deterministic P system allows the possibility that more than one next configuration can be
obtained from a given configuration. At any moment of a computation these P systems may evolve
according to several possibilities.

Next we will study the versatility of P systems. For this, we can see that a P system can be seen as
a device whichgeneratesmultisets, numbers or relations. It is also possible to interpret a P system as a
devicerecognizinga multiset or even as a devicecomputinga partial mapping from natural numbers to
sets of natural numbers.

4. P Systems Generating Multisets, Numbers, or Relations

P systems can be seen as devices which generate multisets, numbers or relations. Indeed, let� �	���! ��� '!
 be a P system. Let us consider the set of all successful configurations of�:

	�
 � �� � � is the leaf of a successful computation of���
Definition 4.1. Let � � 	���! ��� '!
 be a P system. TheParikh set generatedby �, denoted
 �	�
,
is the following collection of multisets:

�	�
 � ��� 	'!
 � � � 	�
 � � � 	�� ���
��
That is,
�	�
 represents the collection of all multisets over

�
appearing in the output membrane,'!, for

some successful configuration of the P system�.
Note: In [4] P systems with output to theenvironmentare considered (the output is defined as the
multiset of objects sent out of the system during the computation). The above formalization can be
easily adapted to this new case. For that, it is enough to change Definition 2.8, allowing, for example,
that the output membrane is'! � ��� �� � 	�!
. We also must extend the concept of a cell, where the
second component,�, must be an application from

� 	�
������ to M , and� 	���
will be interpreted
as the content of the environment; also, we must remove the last condition in Definition 3.11. Then,

�	�
 � ��� 	���
 � � � 	�
 �� � 	�� ���
��

M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems 271

Definition 4.2. Let
� � �! �� �� �� � � � �� �� be a successful computation of a P system

� � 	���! ��� '!
. Thenumerical outputof
�

, denoted by�	�
, is ��� 	'!
�where� is the length of� 	denoted�� �
.
Definition 4.3. Let � � 	���! ��� '!
 be a P system. Theset of natural numbers generatedby �,
denoted�	�
, is defined as follows:�	�
 � ���� 	'!
� � � � 	�
 � � � 	�� ���
�.

That is,�	�
 � ��	�
 � � is a successful computation of�� represents the set of all the sizes of
all multisets over

�
appearing in the output membrane,'!, for some successful configuration of the P

system�.

Definition 4.4. Let � � 	���! ��� '!
 be a P system. Let�� � � � � " � � 	 � �
 be pairwise distinct.
The –relation generated by� associated with	�� � � � � "
, denoted�" 	�
, is defined as follows:
�" 	�
 � �	��� � � � ��"
 � �" � � � � 	�
 	� � 	�� ���
 � �� 	� � � � �� 	�� 	'!

	#
 � �#

��
That is,�" 	�
 represents the collection of all –tuples of natural numbers,	��� � � � ��"
, such that in
the output membrane,'!, of some successful configuration of the P system�, the elements	�� � � � � "
,
have multiplicities	��� � � � ��"
 respectively.

5. Conclusions

In this paper we have presented a complete formalization fora new computability model which is inspired
by some basic features of living cells: transition P systems, as they have been introduced in [3]. For that,
a formal syntax and semantic of the P systems capturing the synchronous (in the sense that a global clock
is assumed), and the nondeterministic and maximally parallel manner that the rules of the system can be
applied, have been given. This formalization can be easily adapted to different variants of P systems that
have appeared in recent works (cooperative, priority, rewriting, communication, carriers, porters, and so
on).

We think that P systems formalization can represent an important contribution for the treatment of
certain questions about this new computability model (programs verification, validation of the model,
etc.) by means of automatic reasoning systems. Also, we think that the formalization can be useful for a
possible implementation into conventional electronic computers.

References

[1] A. V. Baranda, J. Castellanos, F. Arroyo, R. Gonzalo, Towards an electronic implementation of membrane
computing: A formal description of nondeterministic evolution in transition P systems,Proc. 7th Intern. Meet-
ing on D NA Based Computers(N. Jonoska, N.C. Seeman, eds.), Tampa, Florida, USA, 2001,273–282.

[2] A. Obtulowicz, Membrane computing and one-way functions, Intern. J. Found. Computer Sci., 12, 4 (2001),
551–558.

[3] Gh. Păun, Computing with membranes,Journal of Computer and System Sciences, 61, 1 (2000), 108–143,
andTurku Center for Computer Science-TUCS ReportNo 208, 1998 (www.tucs.fi).

[4] Gh. Păun, G. Rozenberg, A guide to membrane computing,Theoretical Computer Science, to appear.

272 M.J. Pérez-Jiménez and F. Sancho-Caparrini / A Formalization of Transition P Systems

[5] Gh. Păun, Further research topics about P systems,Pre-Proceedings of Workshop on Membrane Computing,
Curtea de Argeş, Romania, August 2001, Technical Report 17/01 of Research Group on Mathematical Lin-
guistics, Rovira i Virgili University, Tarragona, Spain, 2001, 243–250.

[6] ���� ��������	�
��������������������� ������������

