
Neural Networks 127 (2020) 110–120

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Dendrite P systems✩

Hong Peng a, Tingting Bao a, Xiaohui Luo a, Jun Wang b,∗, Xiaoxiao Song b,
Agustín Riscos-Núñez c, Mario J. Pérez-Jiménez c

a School of Computer and Software Engineering, Xihua University, Chengdu 610039, China
b School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610039, China
c Research Group of Natural Computing, Department of Computer Science and Artificial Intelligence, Universidad de Sevilla, Sevilla 41012, Spain

a r t i c l e i n f o

Article history:
Received 14 December 2019
Received in revised form 27 March 2020
Accepted 14 April 2020
Available online 18 April 2020

Keywords:
P systems
Neural-like P systems
Dendrite P systems
Computational power

a b s t r a c t

It was recently found that dendrites are not just a passive channel. They can perform mixed
computation of analog and digital signals, and therefore can be abstracted as information processors.
Moreover, dendrites possess a feedback mechanism. Motivated by these computational and feedback
characteristics, this article proposes a new variant of neural-like P systems, dendrite P (DeP) systems,
where neurons simulate the computational function of dendrites and perform a firing–storing process
instead of the storing–firing process in spiking neural P (SNP) systems. Moreover, the behavior of
the neurons is characterized by dendrite rules that are abstracted by two characteristics of dendrites.
Different from the usual firing rules in SNP systems, the firing of a dendrite rule is controlled by the
states of the corresponding source neurons. Therefore, DeP systems can provide a collaborative control
capability for neurons. We discuss the computational power of DeP systems. In particular, it is proven
that DeP systems are Turing-universal number generating/accepting devices. Moreover, we construct
a small universal DeP system consisting of 115 neurons for computing functions.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Neural-like P systems are one of the main types of mem-
brane computing models (Bernardini & Gheorghe, 2004; Cien-
cialová, Csuhaj-Varjú, Kelemenová, & Vaszil, 2009; Freund, Pǎun,
& Pérez-Jiménez, 2005; Gheorghe et al., 2013; Martínez-Del-
Amor, Macías-Ramos, Valencia-Cabrera, & Pérez-Jiménez, 2016;
Pavel & Buiu, 2012; Peng, Shi, Wang, Riscos-Núñez, & Pérez-
Jiménez, 2017; Peng, Wang, Pérez-Jiménez, & Riscos-Núñez, 2015;
Peng, Wang, Shi, Pérez-Jiménez, & Riscos-Núñez, 2016; Păun,
2000; Pǎun & Pérez-Jiménez, 2010; Pǎun & Pǎun, 2006; Song,
Zhang, & Pan, 2016; Wang, Shi, & Peng, 2016; Xue et al., 2018;
Zhang, Gheorghe, Pan, & Pérez-Jiménez, 2014; Zhang, Wu, Pǎun,
& Pan, 2016; Zhao, Liu, & Qu, 2012). They generally refer to a class
of distributed and parallel computing models, motivated by the
mechanisms of biological neurons and nervous systems. Topolog-
ically, neural-like P systems are expressed by a directed graph
or a more complex network. They address three main topics:
(i) models and computational theoretical problems (universality,

✩ This work was partially supported by Research Fund of Sichuan Science
and Technology Project China (No. 2018JY0083), and Research Foundation of
the Education Department of Sichuan province China (No. 17TD0034), China.
∗ Corresponding author.

E-mail addresses: ph.xhu@hotmail.com (H. Peng), wj.xhu@hotmail.com
(J. Wang).

effectiveness, and complexity); (ii) application of models; and (iii)
implementation of models. Much effort has been made in the
realm, as found in the Handbook of Membrane Computing (Păun,
Rozenberg, & Salomaa, 2010).

Spiking neural P (SNP) systems (Ionescu, Păun, & Yokomori,
2006) are a widely studied type of neural-like P system, inspired
by the way that neurons work with and exchange information
by sending spikes along synapses. An SNP system is a distributed
and parallel computing model. Except a directed graph, SNP sys-
tems have two components: data and rules. Data can usually
be denoted by the number of spikes in each neuron, and the
collection of the states of all neurons, known as a configuration,
describes the state of the entire system. The behavior of the
system is controlled by firing rules and forgetting rules. Firing
rules are expressed by the form E/ac → ap, where E is a regular
expression. To distinguish the dendrite rules presented below,
E/ac → ap are called ‘‘usual firing rules’’ in this work, and their
semantics can be illustrated as follows. Suppose that a neuron σ

has a firing rule E/ac → ap and n spikes. If an ∈ L(E) and n ≥ c ,
then the neuron can fire. When the neuron fires, it consumes c
spikes (n − c spikes are retained) and generates p spikes. The
generated p spikes will be sent to its succeeding neurons. If p = 0,
then the rules can be written in the form ac → λ. A forgetting rule
indicates that c spikes are consumed, but no spike is generated.
From the perspective of working mechanism, the action of a
neuron contains the two steps of integration and excitation. In

https://doi.org/10.1016/j.neunet.2020.04.014
0893-6080/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2020.04.014
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2020.04.014&domain=pdf
mailto:ph.xhu@hotmail.com
mailto:wj.xhu@hotmail.com
https://doi.org/10.1016/j.neunet.2020.04.014


H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120 111

the integration step, a neuron receives, accumulates, and stores
the spikes that its prepositive (source) neurons send out. The
excitation step accomplishes a neuron’s firing procedure, as de-
scribed above. Therefore, the working mechanism of neurons can
be simply summarized as a storing–firing process: the spikes are
first stored and then are excited by the firing rules.

Many variants have appeared since SNP systems were first
proposed. Abstracted from the inhibitory and excitatory influence
of astrocytes on synapses, Păun (2007) discussed SNP systems
with astrocytes. Pan, Wang, and Hoogeboom (2012) presented
SNP systems with anti-spikes inspired by inhibitory
impulses/spikes. Peng, Yang, et al. (2017) and Song et al. (2018)
discussed SNP systems with multiple channels. SNP systems with
polarizations were discussed in Wu, Păun, Zhang, and Pan (2018).
The structural dynamism of biological synapses inspired Cabarle,
Adorna, Jiang, and Zeng (2016) to propose an SNP system with
scheduled synapses. Considering a new communication strategy
among neurons, Pan, Păun, Zhang, and Neri (2017) investigated
SNP systems with communication on request. Wang, Hoogeboom,
Pan, Păun, and Pérez-Jiménez (2010) discussed an SNP system
with weights, while Zeng, Zhang, Song, and Pan (2014) presented
SNP systems with thresholds. Abstracted from Eckhorn’s neuron
model and intersecting cortical model (ICM), coupled neural P
systems and dynamic threshold neural P systems were inves-
tigated by Peng and Wang (2018), Peng, Wang, Pérez-Jiménez,
and Riscos-Núñez (2019), respectively. Moreover, spiking neural
P systems with inhibitory rules and nonlinear spiking neural P
systems were discussed in Peng, Li, et al. (2020), Peng, Lv, et al.
(2020). Ionescu, Păun, Pérez-Jiménez, and Yokomori (2011) dis-
cussed spiking neural dP systems (with request rules). With the
limitation that at each time at most one neuron works, sequential
SNP systems were discussed in Ibarra, Păun, and Rodríguez-Pat́on
(2009) and Zhang, Zeng, Luo, and Pan (2014). A global clock is
usually assumed in the above SNP systems, in which case they
are synchronized. Cavaliere et al. (2009) and Song, Pan, and Păun
(2012) discussed a number of asynchronous SNP systems. Several
SNP systems using fuzzy logic were investigated, for example,
weighted fuzzy SNP systems (Wang, Shi, Peng, Pérez-Jiménez,
& Wang, 2013) and fuzzy reasoning SNP systems (Peng et al.,
2013). Computational power (as function computing devices and
number or language generating devices) has been discussed.
As number generating/accepting devices (Cabarle et al., 2016;
Cavaliere et al., 2009; Ionescu et al., 2006; Pan et al., 2017; Peng,
Yang, et al., 2017; Păun, 2007; Song et al., 2012), language genera-
tors (Chen, Freund, Ionescu, Păun, & Pérez-Jiménez, 2007; Zhang,
Zeng, & Pan, 2008), and function computing devices (Păun & Păun,
2007; Păun & Sidoroff, 2012; Wu et al., 2018), it was proven that
many variants of SNP systems are Turing universal. Some efforts
have been made to apply SNP systems to practical problems,
such as image processing (Díaz-Pernil, Gutiérrez-Naranjo, & Peng,
2019; Díaz-Pernil, Peña-Cantillana, & Gutiérrez-Naranjo, 2013),
fault diagnosis (Peng, Wang, Ming, et al., 2018; Peng, Wang,
Shi, Pérez-Jiménez, & Riscos-Núñez, 2017; Wang et al., 2015),
and combinatorial optimization problems (Zhang, Rong, Neri,
& Pérez-Jiménez, 2014), and a number of other SNP systems
were implemented (Carandang, Villaflores, Cabarle, Adorna, &
Martínez-Del-Amor, 2017; Macías-Ramos, Pérez-Jiménez, Song, &
Pan, 2015).

Spiking neural P systems with rules on synapses (Song, Pan, ,
& Păun, 2014) are an interesting form of neural-like P systems
where the firing and forgetting rules are moved from neurons
to synapses. Thus synapses are regarded as information process-
ing units, while neurons are degenerated into storage units. In
addition, Peng et al. (2018) and Song and Pan (2015) discussed
two distinct spike consumption strategies, and computational
power of the variants as function computing devices and number
generating/accepting devices has been discussed.

Chen, Ishdorj, and Păun (2007) discussed another form of
neural-like P systems, axon P systems, where nodes are placed
in a linear way and each sends spikes only to two neighbors. An
axon P system is executed concurrently and can non-
deterministically process information in nodes. The universality
results of axon P systems as function computing, number gen-
erating and language generating devices, have been discussed
in Zhang, Pan, and Păun (2015), Zhang, Wang, and Pan (2009),
respectively.

A nerve cell consists of dendrites, somata, axons, and synapses.
Each has one or more dendrites, which receive the stimulus and
transmit excitement to somata, but only one axon that trans-
mits excitement between somata. Therefore, we generally believe
that dendrites simply transmit to somata the electrical impulses
received from the synapses. Thus, as in SNP systems or spiking
neural networks, neurons are viewed as information processors,
while dendrites (and axons) are regarded as transmission chan-
nels. However, the conclusion that the dendrites only passively
transmit the current to somata has not been confirmed by ex-
periments. Moore et al. (2017) recently indicated that the den-
drites are not just a passive channel. Their research shows that:
(i) dendrites have an electrical activity, and the generated spike
is 10 times one produced by soma; and (ii) dendrites perform
a mixed computation of analog and digital signals. In our work,
dendrites are abstracted as information processors, while neurons
(somata) degenerate into storage units.

Some new biological features of dendrites, such as dendritic
feedback and delay, have been proven experimentally (London
& Hausser, 2005). It has usually been thought that informa-
tion in the nervous system travels in one direction, from den-
drites to somata, and then to axons. However, for many types
of neurons, the presence of excitable ionic currents in den-
drites supports dendritic action potentials that are transmit-
ted in the opposite direction, from somata to dendrites (Stu-
art, Spruston, Sakmann, & Hausser, 1997). This backpropaga-
tion implies that the neuron possesses an internal feedback
mechanism, and the interaction between dendritic responses
and somatic spikes can be abstracted computationally. In this
work, the dendritic feedback mechanism is abstracted to develop
a new kind of firing rule, called a dendrite rule, of the form
(E1, E2, . . . , Es)/ap ← (ac1 , ac2 , . . . , acs ), whose firing condition is
controlled by its prepositive (source) neurons. The control idea
potentially reflects the feedback mechanism of the dendrites.

We propose a new model of neural-like P systems, den-
drite P (DeP) systems, which consist of several neurons in a
directed graph to form a distributed and parallel computing
system. DeP systems and SNP systems (and SNP systems with
rules on synapses) differ in three aspects:

(1) The neurons in DeP systems simulate the information pro-
cessing mechanism of dendrites instead of that of original
neurons or synapses. However, original neurons are used
only as storage units in DeP systems. Thus the working
mechanism of neurons in DeP systems is a ‘‘firing-storing
process’’, i.e., the spikes in prepositive neurons of a neu-
ron can be handled by its dendrite rule, and then the
generated spikes are stored in the neuron. Conversely, as
mentioned above, SNP systems (and SNP systems with
rules on synapses) adopt a ‘‘storing–firing process’’.

(2) In DeP systems, dendrite rules potentially reflect the
feedback mechanism of dendrites. Therefore, the firing
condition of each dendrite rule only depends on states
of prepositive neurons of the neuron where the rule re-
sides, and it is irrelevant to the state of the neuron itself.
However, in SNP systems (and SNP systems with rules
on synapses), the firing condition of the usual firing rule
depends only on the state of the neuron where the rule
resides, and is unrelated to the states of other neurons.



112 H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120

(3) Since a dendrite rule has several regular expressions, the
firing of the neuron where the rule resides is controlled
by multiple prepositive neurons. Therefore, dendrite rules
provide a collaborative control capability for DeP systems,
i.e., the collaborative firing mechanism of several preposi-
tive neurons. However, SNP systems and those with rules
on synapses lack the collaborative mechanism.

Intuitively, DeP systems provide a stronger control condition
and processing ability and are potentially suitable for solving
some real-life problems. Turing-universality of DeP systems as
function computing and number generating/accepting devices is
discussed.

The proposed DeP systems are defined in Section 2, and an
illustrative example and a comparative example are provided.
Universality of DeP systems as number generating/accepting and
function computing devices is proven in Section 3. Conclusions
and discussion are drawn in Section 4.

2. Dendrite P systems

In this section, DeP systems are introduced, and then illustra-
tive and comparative examples are provided. The notations and
terms similar to those used in SNP systems will be adopted for
clarity and ease of understanding.

2.1. Definition

Definition 1. A dendrite P (DeP) system with degree m ≥ 1 is a
construct,

Π = (O, σ1, σ2, . . . , σm, syn, in, out),

where:

(1) O = {a} is the singleton alphabet (symbol a is known as
the spike);

(2) σ1, . . . , σm denote m neurons with the form σi = (ni, Ri),
1 ≤ i ≤ m, where

(a) ni ≥ 0 is the initial number of spikes in neuron σi;
(b) Ri denotes the finite set of dendrite rules with the

form

(E1, E2, . . . , Es)/ap ← (ac1 , ac2 , . . . , acs )

where Ej is a regular expression, 1 ≤ j ≤ s, p ≥ 0,
and s indicates the number of prepositive (source)
neurons of neuron σi;

(3) syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} with i ̸= j for all
(i, j) ∈ syn, 1 ≤ i, j ≤ m (synapses);

(4) in and out distinguish input and output neurons, respec-
tively, of the system.

As mentioned above, each neuron in SNP systems has two
components, data and rules, as shown in Fig. 1(a), where an de-
notes the data (or state) of a neuron and Ri is the set of firing rules.
Since any neuron in an SNP system performs a ‘‘storing-firing pro-
cess’’ (i.e., the received spikes are first integrated and stored, and
then the neuron fires by some rule), it can also be understood in
the form shown in Fig. 1(b). In contrast, in DeP systems, dendrites
are viewed as information processors (characterized by dendrite
rules) and neurons are degraded as storages, while synapses only
reflect the connection relationships between neurons. Therefore,
any neuron in a DeP system can be illustrated as in Fig. 1(c)
and (d). In DeP systems, each neuron performs a ‘‘firing-storing
process’’: the spikes in the corresponding prepositive neurons are
handled first by dendrite rules, and then the generated spikes are
stored in the neuron.

Fig. 1. Comparison of SNP and DeP systems. (a) and (b): neurons in SNP
systems; (c) and (d): neurons in DeP systems.

From a topological perspective, a DeP system is expressed
by a directed graph, where the nodes are the neurons and the
edges correspond to the synapses. DeP systems differ signifi-
cantly from SNP systems in the use of dendrite rules of the
form (E1, E2, . . . , Es)/ap ← (ac1 , ac2 , . . . , acs ). Note that firing
rules in SNP systems are of the form E/ac → ap, called usual
firing rules in this work. In usual firing rules, the left part of
a firing rule indicates the content (consuming of spikes) in the
neuron where the rule resides, while the right part corresponds
to other (target) neurons. Since the neuron where a dendrite rule
resides is its target, the dendrite rule uses the left arrow ‘‘←’’
instead of the usual right arrow ‘‘→’’. In dendrite rules, the right
part of the arrow ‘‘←’’ indicates the consuming of spikes in its
source neurons. A neuron connects to several prepositive (source)
neurons via its dendrite. Therefore, each dendrite rule has a group
of regular expressions, (E1, E2, . . . , Es). Thus dendrite rules can be
written as: (E1 ∧ E2 ∧ · · · ∧ Es)/ap ← (ac1 , ac2 , . . . , acs ). Note that
the firing condition is given in the form of its prepositive (source)
neurons. The firing condition can be expressed in a conjunction
form, (an1 ∈ L(E1))∧ (an2 ∈ L(E2))∧ · · · ∧ (ans ∈ L(Es)), where nj is
the number of spikes in the ith prepositive neuron, 1 ≤ j ≤ s. For
neuron σi, if the firing condition for all of its prepositive (source)
neurons is satisfied, then the dendrite rule can be applied, where
cj spikes in the jth prepositive (source) neuron are consumed
(1 ≤ j ≤ s) and p spikes are produced and stored in the neuron
where the rule resides. In dendrite rules, if ci = 0 (or p = 0), then
aci (or ap) can be written as λ.

Note that in any neuron, two dendrite rules such as (E11, E21,
. . . , Es1)/ap1 ← (ac11 , ac21 , . . . , acs1 ) and (E12, E22, . . . , Es2)/ap2 ←
(ac12 , ac22 , . . . , acs2 ) may have that (an1 ∈ L(E11))∧ (an2 ∈ L(E21))∧
· · ·∧ (ans ∈ L(Es1)) and (an1 ∈ L(E12))∧ (an2 ∈ L(E22))∧ · · ·∧ (ans ∈
L(Es2)), i.e., the firing conditions of the two rules are true. In
this case, we choose one of them nondeterministically. There is
also the interesting case that dendrite rules in different neurons
share one or more prepositive (source) neurons. For example,
suppose that two rules, (E1i, E2i, . . . , Esi)/api ← (ac1i , ac2i , . . . , acsi )
and (E1j, E2j, . . . , Etj)/apj ← (ac1j , ac2j , . . . , actj ), from neurons σi
and σj, respectively, can be applied simultaneously and share a
prepositive (source) neuron σk. If the number of spikes nk in
neuron σk satisfies max{cki, ckj} ≤ nk < cki + ckj, then this brings
a conflict. In this case, one of the rules is nondeterministically
chosen and applied.

As usual, neurons in the system work with each other in
parallel, but the dendrite rules in each neuron are applied in
sequential way. The configuration of the system at time t is
characterized by the number of spikes stored in each neuron,
i.e., Ct = (n1(t), n2(t), . . . , nm(t)), so the initial configuration is
denoted by C0 = (n1(0), n2(0), . . . , nm(0)) = (n1, n2, . . . , nm). The
transition between configurations can be defined using dendrite
rules. A computation is any sequence of transitions starts from
the initial configuration. The computation halts if a configuration
is reached for which no rule can be applied. The output of a DeP
system is a spike train exported by the output neuron. However,



H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120 113

each neuron in a DeP system only stores the received spikes
and does not send out spikes in a forward direction. To facilitate
the discussion of universality, we assume that the spike train in
a DeP system is received by the output neuron instead of the
environment. Under this assumption, a spike train is expressed
by a binary sequence of 1 and 0: we write 1 if the output neuron
receives a spike, and 0 if no spike is received. Thus the number of
spikes received by the output neuron is the computation result.
The set of numbers computed by Π is denoted by Ngen(Π ), where
the subscript gen means that the system works in the generating
mode. The family of all of the sets Ngen(Π ) generated by DeP
systems containing at most m neurons and at most n rules in
every neuron is denoted by NgenDePn

m.
A DeP system can work in the accepting mode, where an input

neuron is used to receive the spikes from the environment but
the system has no output neuron. The system receives a spike
train from the environment, and then it introduces the number n
in a specified neuron in the form of 2n spikes. It is said that the
number n is accepted by the system when the computation halts.
Denote by Nacc(Π ) the set of numbers accepted by the system Π ,
where acc indicates that the system works in the accepting mode.
Denote by NaccDePn

m the family of all of the sets Nacc(Π ) accepted
by DeP systems containing at most m neurons and at most n rules
in every neuron.

Remark 1. In DeP systems, the constraint p ≤ c1+ c2+· · ·+ cs is
relaxed for dendrite rules. Thus, for a dendrite rule, the number of
generated spikes may be greater than the sum of the consumed
spikes. The main reason for relaxing the constraint is to ensure
that each module in the proof of universality can supply enough
spikes. This is different from the usual firing rules in SNP systems,
and is limited to the study of universality.

2.2. An illustrative example

Fig. 2 shows a simple dendrite P system consisting of four
neurons. Initially, four spikes and two spikes are placed in neu-
rons σ1 and σ2, respectively. Thus the initial configuration is
C0 = (4, 2, 0, 0). Note that no rules can be applied in neu-
ron σ4. Since neuron σ1 has four spikes and neuron σ2 has
two spikes, two rules, (a4, a2)/a2 ← (a2, a2) and (a4, a2)/a ←
(a2, a), can be applied in neuron σ3 at the same time, thus one is
nondeterministically chosen and applied. There are two cases:

(1) If rule (a4, a2)/a2 ← (a2, a2) is chosen, then two spikes
are consumed in neuron σ1, two spikes are consumed in
neuron σ2, and two spikes are generated by the dendrite
rule and stored in neuron σ3. At this time, C1 = (2, 0, 2, 0).
Since neuron σ3 has two spikes and neuron σ2 has none, rule
(λ, a2)/a← (λ, a) can be applied in neuron σ4. Applying this
rule, a spike in neuron σ3 is removed and a spike is gener-
ated and stored in neuron σ4. Therefore, C2 = (2, 0, 1, 1).
Since no rules can be applied, the system halts.

(2) If rule (a4, a2)/a ← (a2, a) is chosen, then two spikes are
consumed in neuron σ1, a spike is consumed in neuron σ2,
and a spike is produced and stored in neuron σ3. Hence
C1 = (2, 1, 1, 0). Because there are two spikes in neuron σ1
and a spike in neuron σ2, rule (a2, a)/a← (a2, a) in neuron
σ3 can be applied. At the same time, a spike in neuron σ2
and a spike in neuron σ3 mean that rule (a, a)/a← (a, a) in
neuron σ4 can also be applied. As a result, a conflict arises
because only one spike is in neuron σ2. Therefore, one rule
is chosen nondeterministically. There are two cases:

(a) If rule (a2, a)/a ← (a2, a) in neuron σ3 is chosen,
then two spikes are consumed in neuron σ1, a spike is
consumed in neuron σ2, and a spike is produced and

Fig. 2. A dendrite P system.

stored in neuron σ3. Thus, neuron σ3 contains three
spikes. At this time, C2 = (0, 0, 3, 0) and the system
halts.

(b) If rule (a, a)/a← (a, a) in neuron σ4 is chosen, then a
spike is removed from neuron σ2, a spike is removed
from neuron σ3, and a spike is produced and stored in
neuron σ4. Thus C2 = (2, 0, 0, 1) and the system halts.

It can be seen from the example that there are two cases
of choosing the rule nondeterministically: (i) as usual in SNP
systems, if several rules can be applied in a neuron at the same
time, then one is nondeterministically chosen; and (ii) in the
conflict case, one of the conflict rules in different neurons is
nondeterministically chosen.

2.3. Compared with other variants

To identify the differences between DeP systems and existing
variants, an example is provided to compare DeP systems with
SNP systems, SNP systems with multiple channels and SNP sys-
tems with rules on synapses. Figs. 3 and 4 show the example,
where each system has three neurons, σ1, σ2 and σ3.

We consider two cases.

Case 1: Assume that in each system, neurons σ1 and σ2 re-
spectively have three and two initial spikes. For a DeP
system, with three spikes in neuron σ1 and two spikes
in neuron σ2, dendrite rule (a3, a2)/a2 ← (a3, a2) can
be applied. Thus two spikes are produced and stored in
neuron σ3. For an SNP system with rules on synapses,
with three spikes in neuron σ1, rule a3/a3 → a2 is
applied to send two spikes to neuron σ3, and with two
spikes in neuron σ2, rule a2/a2 → a2 is applied to
send two spikes to neuron σ3. Hence, neuron σ3 receives
four spikes. For an SNP system, since neuron σ1 contains
three spikes and neuron σ2 contains two spikes, rules
a3/a3 → a2 and a2/a2 → a2 are applied to send
two spikes to neuron σ3. Hence, neuron σ3 contains
four spikes. For an SNP system with multiple channels,
neurons σ1 and σ2 each send two spikes to neuron σ3
via channel (1). Hence, neuron σ3 has four spikes. (See
Fig. 3).

Case 2: Assume that in each system, neurons σ1 and σ2 re-
spectively have three and one initial spikes. For a DeP
system, although neuron σ1 has three spikes, neuron σ2
has only one spike, hence dendrite rule (a3, a2)/a2 ←
(a3, a2) cannot be applied. Note that if neuron σ2 later
has a chance to receive a spike, then the dendrite rule
will be applied. This means that neuron σ1 waits for
neuron σ2 to work together. This indicates an interest-
ing collaborative firing mechanism of neurons in DeP
systems.



114 H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120

Fig. 3. Four variants in Case 1: (a) DeP system; (b) SNP system with rules on synapses; (c) SNP system; (d) SNP system with multiple channels. Left side is in initial
configuration, and right side is in final configuration.

However, in each of the other three systems, with three
spikes in neuron σ1, its rule is applied to send two spikes
to neuron σ3, and since neuron σ2 contains only one
spike, it cannot fire. Therefore, neurons σ1 and σ2 can-
not work collaboratively in SNP systems, SNP systems
with multiple channels, and SNP systems with rules on
synapses (see Fig. 4).

From the above two cases, we can distinguish the following
three distinguishable characteristics in DeP systems.

(1) In DeP systems, the working mechanism of neurons can be
described as a firing–storing process.

(2) In DeP systems, the firing condition of each dendrite rule
only depends on states of source neurons of the neuron
where the rule resides, and is irrelevant to the state of the
neuron where the rule resides.

(3) DeP systems can provide a collaborative firing mechanism
between several neurons.

3. Universality results

We now investigate computational power of DeP systems as
number generating/accepting devices, and discuss a small univer-
sal DeP system for computing functions. By simulating register
machines, DeP systems can generate/accept all recursively enu-
merable sets of numbers (characterized by NRE) and compute all
of the admissible enumerable sets of the unary partial recursive
functions.

A register machine can be denoted by M = (m,H, l0, lh, I),
where m is the number of registers, H is the set of instruction
labels, I is the set of instructions, l0 is the start label, and lh is the
halting label. Each label in H corresponds to an instruction in I .
There are three forms of instructions:

(1) li : (ADD(r), lj, lk) (add 1 to register r and then nonde-
terministically go to one of the instructions with labels lj,
lk).

(2) li : (SUB(r), lj, lk) (if register r is nonzero, then decrease it
by 1 and go to the instruction with label lj; otherwise, go
to the instruction with label lk).

(3) lh : HALT (halting instruction).

3.1. Turing universality of DeP systems as number generating devices

In the generating mode, a register machine can generate the
number n in the following way. Initially, all registers are empty;
the register machine starts from instruction l0, and then it applies
instructions continuously; when it reaches the halting instruc-
tion, the number stored in the first register is regarded as its com-
putation result. As we know, register machines can characterize
the family NRE.

Theorem 1. NgenDeP2
∗
= NRE.

Proof. We must only prove that NRE ⊆ NgenDeP2
∗
, since the con-

verse is obvious (Păun, 2002). For this purpose, we must simulate
register machines in the generating mode based on the charac-
terization of NRE. Without loss of generality, a register machine
M = (m,H, l0, lh, I) is given, and for a halting configuration, all
registers are empty apart from register 1. Moreover, register 1 is
never decremented during the computation. A DeP system Π1 is
designed to simulate the register machine, containing three kinds
of modules: ADD module simulating ADD instruction, shown in
Fig. 5; SUB module simulating SUB instruction, shown in Fig. 6; a
FIN module exporting the computation result, shown in Fig. 7.

Suppose that each register r in M corresponds to a neuron σr
in Π1, and the number in register r is coded: if register r stores



H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120 115

Fig. 4. Four variants in Case 2: (a) DeP system; (b) SNP system with rules on
synapses; (c) SNP system; (d) SNP system with multiple channels. Left side is
in initial configuration, and right side is in final configuration.

Fig. 5. Module ADD of Π1 , simulating the ADD instruction li : (ADD(r), lj, lk).

the number n ≥ 0, then neuron σr contains 2n spikes, vice versa.
A neuron σl is associated with each instruction l in H and some
auxiliary neurons are considered in the modules. Initially, each
auxiliary neuron has no spike, and neuron σl0 receives a spike.

When neuron σli receives a spike, the system Π1 starts to
simulate the instruction li : (OP(r), lj, lk) (OP is an ADD or SUB
operation). Starting from the activated li, the simulation handles
neuron σr as indicated by OP, and then one of neurons σlj and
σlk receives a spike. The system accomplishes the simulation of
register machine M once neuron σlh receives a spike. In the sim-
ulation, output neuron σout applies its dendrite rules to receive a
series of spikes, and the computation result is the number of the
received spikes, i.e., the number in register 1 in M .

To explain that register machine M can be correctly simulated
by system Π1, how the ADD and SUB modules simulate the
ADD and SUB instructions respectively and how the FIN module
exports the computation result will be discussed in detail.

(1) Module ADD (shown in Fig. 5) — simulating an ADD
instruction li : (ADD(r), lj, lk).

To simulate the register machine, the system Π1 starts from
instruction l0 (an ADD instruction). Suppose that an ADD in-
struction li : (ADD(r), lj, lk) is simulated at time t . Neuron σli

Fig. 6. Module SUB of Π1 , Π2 , and Π3 , simulating li : (SUB(r), lj, lk).

Fig. 7. Module FIN of Π1 , ending the computation.

applies rule a/a3 ← a to receive a spike, hence three spikes
are generated. With three spikes in neuron σli , rule a3/a← a in
neurons σc1 , σc2 and σc3 can be applied at time t+1. Consequently,
the three neurons each receive a spike. Since neurons σc2 and σc3
each have a spike, rule (a, a)/a2 ← (a, a) is applied at time t + 2.
Thus neuron σr receives two spikes, indicating that register r is
incremented by 1. Due to a spike in neuron σc1 , rules a/a← a in
σlj and σlk can be applied. Therefore, one of the rules in the two
neurons is chosen nondeterministically. There are two cases:

(1) At time t + 2, if rule a/a← a in neuron σlj is applied, then
it receives a spike, indicating that the system Π starts to
simulate the instruction lj.

(2) At time t+2, if rule a/a← a in neuron σlk is applied, then
it receives a spike. With a spike in neuron σlk , the system
Π starts to simulate the instruction lk.

Consequently, the ADD module correctly simulates the ADD
instruction: starting from neuron σli receiving a spike, the number
of spikes stored in neuron σr is added by 2, and then a spike is
received nondeterministically by neurons σlj or σlk .

(2) Module SUB (shown in Fig. 6) — simulating a SUB instruc-
tion li : (SUB(r), lj, lk).

Assume that a SUB instruction li : (SUB(r), lj, lk) is simulated
at time t , and a spike is received by neuron σli (thus three spikes
are generated by rule a/a3 ← a). Because there are three spikes
in neuron σli , rule a3/a ← a in neuron σr and rule a3/a ← a2
in neuron σc1 can be simultaneously applied at time t + 1. Thus



116 H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120

neurons σr and σc1 each receive a spike. Based on the number of
spikes in neuron σr , the following two cases are considered:

(1) At time t + 2, if neuron σr has 2n + 1 (n ≥ 1) spikes
(at this time, register r stores the number n), then rule
(a(aa)+, a)/a ← (a3, a) in neuron σc2 can be applied, but
rule (a, a)/a ← (a, a) in neuron σc3 cannot be applied.
Thus three spikes are consumed in neuron σr and a spike is
removed from neuron σc1 , and simultaneously neuron σc2
receives a spike. At time t + 3, neuron σlj receives a spike
by its rule a/a ← a, indicating that the system starts to
simulate the instruction lj.

(2) At time t + 2, if neuron cr contains only one spike (at this
time, no number exists in register r), then rule (a, a)/a←
(a, a) in neuron σc3 can be applied, but rule (a(aa)+, a)/a←
(a3, a) in neuron σc2 cannot be applied. The number of
spikes contained in neuron σr becomes 0 by the rule, and
neuron σc3 receives a spike. At time t + 3, neuron σlk
receives a spike by its rule a/a← a. Therefore, the system
Π starts to simulate the instruction lk.

Therefore, the SUB module correctly simulates the SUB in-
struction: the system starts from neuron σli receiving a spike, and
it ends after neuron σlj receives a spike (if a number greater than
zero is contained in register r ) or neuron σlk receives a spike (if
register r has no number).

(3) Module FIN (shown in Fig. 7) — outputting the result of
computation.

Suppose now that at time t , neuron σlh receives a spike, indi-
cating that the register machine stops (i.e., the halting instruction
lh is reached), and neuron σ1 has 2n spikes (i.e., the number
stored in register 1 is n). Because neuron σlh has three spikes,
rule a3/a ← a in neuron σ1 and rule a3/a ← a2 in neuron
σc1 are applied at time t + 1. Neurons σ1 and σc1 each receive a
spike. Thus the number of spikes contained in neuron σ1 becomes
odd. Because there is a spike in neuron σc1 at time t + 2, rule
(a(aa)+, a)/a ← (a2, λ) in neuron σout can be applied to receive
a spike. At this time, two spikes are removed from neuron σ1
(meaning that the number in register 1 is reduced by 1), but
no spike is consumed in neuron σc1 . The process is repeated
until only one spike is contained in neuronσ1, and neuron σout
receives a spike each time. At time t + n + 2, because only one
spike is stored in neuron σ1 and neuronσc1 also has a spike, rule
(a, a)/λ ← (a, a) in neuron σout is applied. Thus the spikes in
neurons σ1 and σc1 are consumed. Consequently, from time t + 2
to time t+n+1, neuron σout receives a total of n spikes, indicating
the number in register 1 when the computation halts.

According to our discussion of the modules, register machine
M is correctly simulated by DeP system Π1, where each neuron
has at most two rules. Consequently, the theorem holds. □

3.2. Turing universality of DeP systems as number-accepting devices

Theorem 2. NaccDeP2
∗
= NRE.

Proof. A DeP system Π2 is designed to simulate determinis-
tic register machine M = (m,H, l0, lh, I) working in accepting
mode. This proof will be accomplished by modifying the proof of
Theorem 1. The system Π2 includes the modules of three types: a
deterministic ADD module, a SUB module, and an INPUT module.

Fig. 8 shows the INPUT module. For convenience, the input
spike train 10n−11 is recoded as 53n−15, where the digits ‘‘5’’
and ‘‘3’’ denote five spikes and three spikes, respectively, to be
imported every time. Note that the interval between the first
and second ‘‘5’’ spikes in the spike train can be determined by
(n+ 1)− 1 = n, indicating that n is the number to be accepted.

Fig. 8. The INPUT Module of Π2 .

Suppose that at time t , the first ‘‘5’’ spikes are received from
the environment by neuron σin. At time t + 1, rule a5/a2 ← a2 in
neuron σc1 , rule a5/a2 ← a2 in neuron σc2 , and rule a5/a← a in
neuron σc3 are applied. Hence neurons σc2 and σc1 each receive
two spikes and neuron σc3 receives a spike. At this time, neuron
σin receives the first ‘‘3’’ spikes.

At time t + 2, rule a3/a← a in neuron σc1 , rule a3/a← a in
neuron σc2 , and rule a3/λ ← a in neuron σc3 are applied. Thus
neurons σc2 and σc1 each have three spikes, while neuron σc3 still
has only one spike. Moreover, neuron σin receives the second ‘‘3’’
spikes.

At time t+3, since neurons σc1 and σc2 each have three spikes,
neurons σc4 and σc5 each receive a spike from neurons σc2 and σc1
by rule a3/a← a. Neurons σc2 and σc1 each receive a spike from
neuron σin by rule a3/a← a. At this time, neuron σin receives the
third ‘‘3’’ spikes.

At time t + 4, neuron σ1 receives two spikes from neurons
σc4 and σc5 by rule (a, a)/a2 ← (a, a). Neurons σc4 and σc5 each
receive a spike from neurons σc2 and σc1 by rule a3/a← a. Each
of neurons σc2 and σc1 receives a spike from neuron σin by rule
a3/a← a. At this time, neuron σin receives the fourth ‘‘3’’ spikes.

The process is repeated until neuron σin receives the second
‘‘5’’ spikes. At time t + n+ 2, neuron σin receives the second ‘‘5’’
spikes. At time t + n + 3, rule a5/a2 ← a2 in neuron σc1 , rule
a5/a2 ← a2 in neuron σc2 , and rule a5/a ← a in neuron σc3 are
applied again, hence neurons σc2 and σc1 each contain four spikes
and neuron σc3 has two spikes. At time t + n + 4, four spikes in
neurons σc1 and σc2 are consumed by rule a4/λ← a4 in neurons
σc4 and σc5 , and neuron σc6 receives a spike from neuron σc3 by
rule a2/a ← a2. At time t + n + 5, neuron σl0 receives a spike
from neuron σc6 , but the rule in neuron σ1 cannot be applied since
neurons σc4 and σc5 have no spike.

Note that from time t + 4 to time t + n + 4, two spikes
are received by neuron σ1 each time. Therefore, 2n spikes are
received in total by neuron σ1 (meaning that the number of spikes
in register 1 is n), and since a spike is received by neuron σl0 , the
system starts to simulate the initial instruction l0.

For accepting mode, deterministic ADD instructions, of the
form li : (ADD(r), lj), are used in the register machine, shown in
Fig. 9. Assume that at time t , neuron σli receives a spike by rule
a/a3 ← a. Thus neuron σli has three spikes. With three spikes
in neuron σli , rule a3/a ← a can be applied at time t + 1 in
neurons σc1 , σc2 , and σc3 . Consequently, each of the three neurons



H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120 117

Fig. 9. Module ADD of Π2 and Π3 , simulating li : (ADD(r), lj).

receives a spike. Since neurons σc2 and σc3 each have a spike,
rule (a, a)/a2 ← (a, a) is applied at time t + 2. Hence two spikes
are received by neuron σr . Because neuron σc1 has a spike, rule
a/a← a in neuron σlj is applied to receive a spike. With a spike
in neuron σlj , the system starts to simulate the instruction lj.

Module SUB has not been changed (see Fig. 6). Module FIN is
removed, but neuron σlh is kept in the system. With the receipt
of a spike by neuron σlh register machine M attains instruction lh
and stops.

According to the discussion above, register machine is cor-
rectly simulated by DeP system Π2 under accepting mode, where
each neuron contains two rules at most. □

3.3. Small universal DeP systems for computing functions

We now design a small universal DeP system for computing
functions. For computing the function f : Nk

→ N , a register
machine M = (m,H, l0, lh, I) can work as follows: k initial
arguments are introduced into k special registers in the register
machine (generally, the first two registers are adopted), and all
other registers are set to be empty; the register machine starts
from instruction l0, and then it works continually until it reaches
halting instruction lh; the number stored in a special register rt is
regarded as the computed value. Denote by (ϕ0, ϕ1, . . .) the fixed
admissible enumeration of the unary partial recursive functions.
If a recursive function g exists such that ϕx(y) = Mu(g(x), y) holds
for all natural numbers x, y, then the register machine is called
universal.

Korec (1996) introduced a known small universal register ma-
chine for computing functions, denoted by Mu = (8,H, l0, lh, I).
The register machine Mu has 23 instructions and 8 registers num-
bered from 0 to 7. By introducing two numbers g(x) and y into
registers 1 and 2, the register machine Mu can compute any ϕx(y);
the number stored in register 0 is the computed function value
when the register machine halts. A DeP system will be designed
to simulate register machine Mu. For the sake of simplicity, the
register machine Mu is changed: a new register 8 is introduced,
and original halting instruction is replaced with three instruc-
tions: l22 : (SUB(0), l23, lh); l23 : (ADD(8), l22); lh : HALT . Denote
by M ′u the modified version of Mu, shown in Fig. 10. Therefore,
register machine M ′u has nine registers, 25 labels, and 24 ADD and
SUB instructions.

Theorem 3. There exists a small universal DeP system having 115
neurons for computing functions.

Proof. We design a DeP system Π3 to simulate the universal
register machine M ′u. The DeP system Π3 consists of an INPUT
module, an OUTPUT module, and ADD and SUB modules. The
ADD and SUB modules are used to simulate the ADD and SUB
instructions of M ′u, respectively. The INPUT module reads a spike

Fig. 10. The universal register machine M ′u .

Fig. 11. INPUT Module of Π3 .

train from the environment, while the OUTPUT module exports
the computation result.

When designing the DeP system Π3, each register r in M ′u
is associated with a neuron σr , and if the number n ≥ 0 is
stored in register r , then 2n spikes are contained in neuron σr .
Moreover, each instruction li in M ′u is associated with a neuron σli
in Π3. If neuron σli receives a spike, then it starts the simulation
of instruction li. If neuron σlh contains a spike, then the system
Π3 completely simulates the computation of M ′u. As a result, the
number of spikes received by the output neuron σout is the result
computed by M ′u (in register 8). Suppose that all of the auxiliary
neurons in the initial configuration are empty.

The INPUT module is shown in Fig. 11. For convenience, the
input spike train 10g(x)10y1 is recoded as 53g(x)53y5, where the
digits ‘‘5’’ and ‘‘3’’ respectively denote five spikes and three spikes
to be imported each time. Note that neuron σ1 has 2g(x) spikes
and neuron σ2 contains 2y spikes.

Suppose that at time t1, neuron σin receives the first ‘‘5’’
spikes from the environment. Similar to the analysis of the INPUT
module in the proof of Theorem 2, at time t1+1, rule a5/a2 ← a2
in neuron σc1 , rule a5/a2 ← a2 in neuron σc2 , and rule a5/a← a
in neuron σc3 are applied, hence neurons σc2 and σc1 each receive



118 H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120

Fig. 12. OUTPUT Module of Π3 .

two spikes and neuron σc3 receives one spike. At this time, neuron
σin receives the first ‘‘3’’ spikes. At time t1 + 2, rule a3/a← a in
neuron σc1 , rule a3/a ← a in neuron σc2 , and rule a3/λ ← a in
neuron σc3 are applied. Thus neurons σc2 and σc1 each contain
three spikes, while neuron σc3 contains only one spike. At time
t1 + 3, because there are three spikes in neurons σc1 and σc2 ,
neurons σc4 and σc6 each receive a spike from neurons σc1 and σc2
by rule a3/a← a. At time t1 + 4, neuron σ1 receives two spikes
from neurons σc4 and σc6 by rule (a, a)/a2 ← (a, a). The process
is repeated until neuron σin receives the second ‘‘5’’ spikes. From
time t1+4 to time t1+ g(x)+4, 2g(x) spikes are received in total
by neuron σ1 (i.e., the number of spikes in register 1 is g(x)). Note
that before time t1 + g(x)+ 2, neuron σc3 has only one spike.

Suppose that the second ‘‘5’’ spikes are received by neuron σin
at time t2 (in fact, t2 = t1 + g(x) + 1). Similarly, at time t2 + 1,
rule a5/a2 ← a2 in neuron σc1 , rule a5/a2 ← a2 in neuron σc2 ,
and rule a5/a← a in neuron σc3 are applied, hence neurons σc2
and σc1 each have five spikes and neuron σc3 has two spikes. At
time t2+2, rule a3/a← a in neuron σc1 , rule a3/a← a in neuron
σc2 , and rule a3/λ ← a in neuron σc3 are applied. Thus neurons
σc2 and σc1 each contain six spikes, while neuron σc3 still has only
two spikes. At time t2+ 3, with six spikes in neurons σc1 and σc2 ,
neurons σc5 and σc7 each receive a spike from neurons σc2 and σc1
by rule a6/a← a. At time t2 + 4, neuron σ2 receives two spikes
from neurons σc5 and σc7 by rule (a, a)/a2 ← (a, a). The process is
repeated until neuron σin receives the third ‘‘5’’ spikes. From time
t2+4 to time t2+ y+4, 2y spikes are received in total by neuron
σ2 (i.e., the number of spikes in register 2 is y). Note that at time
t2 + y+ 1, neuron σc1 receives a spike from neuron σin, so it has
three spikes. At time t2 + y+ 1, rule a3/a← a3 in neuron σc8 is
used to receive a spike. Then neuron σl0 receives a spike, meaning
that the system starts the simulation of initial instruction l0.

From Fig. 10, we can observe that ADD instructions have the
form li : (ADD(r), lj). Hence a deterministic ADD module can
accomplish the simulation of the ADD instruction, as shown in
Fig. 9. The working mechanism of the deterministic ADD module
is illustrated in the proof of Theorem 2.

The SUB module in Fig. 6 can complete the simulation of SUB
instruction li : (SUB(r), lj, lk). The working principle of the SUB
module is explained in the proof of Theorem 1.

Suppose now that the register machine M ′u halts, i.e., the
instruction lh arrives. Register 8 stores the computation result,
which never decreases during the computation. The computation
result will be exported by the OUTPUT module, as shown in
Fig. 12.

Assume now that neuron σlh receives a spike at time t , indi-
cating that M ′u halts (that is, the halting instruction lh is reached),

and neuron σ8 has 2n spikes (i.e., the number n is contained in
register 8). Since neuron σlh has three spikes, rule a3/a ← a in
neuron σ8 and rule a3/a← a2 in neuron σc1 are applied at time
t + 1. Neurons σ8 and σc1 each receive a spike. Thus the number
of spikes in neuron σ8 becomes odd. At time t + 2, because there
is a spike in neuron σc1 , rule (a(aa)+, a)/a ← (a2, λ) in neuron
σout can be applied to receive a spike. At this time, two spikes are
removed from neuron σ8 (meaning that the number in register
8 is decreased by 1), but no spike is consumed in neuron σc1 .
The process is repeated until neuron σ8 has only one spike, and
neuron σout receives a spike each time. At time t+n+2, because
each of neurons σ8 and σc1 has a spike, rule (a, a)/λ ← (a, a) in
neuron σout is applied. Thus the spikes in neurons σ8 and σc1 are
consumed. Consequently, from time t + 2 to time t + n + 1, n
spikes are received in total by neuron σout , indicating exactly the
number in register 8 when M ′u halts.

According to the discussion above, register machine M ′u is
correctly simulated by DeP system Π3. In DeP system Π3, 115
neurons in total are used: (i) nine neurons for nine registers;
(ii) 25 neurons for 25 instructions; (iii) 30 neurons for 10 ADD
instructions; (iv) 42 neurons for 14 SUB instructions; (v) eight
neurons for the INPUT module; (vi) one neuron for the OUTPUT
module. □

4. Conclusions and future work

A new neural-like P system was investigated in this paper,
called dendrite P (DeP) systems, abstracted by two characteristics
of dendrites of nerve cells: (i) dendrites can perform mixed com-
putations of analog and digital signals, and (ii) dendrites have the
feedback characteristic. Based on the first characteristic, dendrites
were regarded as information processors, while the second was
used to develop a new kind of firing rules, dendrite rules. From
the working mechanism, DeP systems differs from SNP systems
in the following aspects:

(1) Neurons in DeP systems use a firing–storing process, i.e., the
spikes in prepositive neurons of each neuron are processed
by its dendrite rules, and then the generated spikes are
stored in the neuron. However, neurons in SNP systems
adopt the opposite process, i.e., storing–firing process.

(2) The firing condition of each dendrite rule depends on states
of prepositive neurons of the neuron where the rule re-
sides, and has nothing to do with the state of the neuron.
However, in SNP systems, the firing condition of the usual
firing rule depends only on the state of the neuron where
the rule resides.

(3) Due to multiple regular expressions of dendrite rules, DeP
systems provide a collaborative control mechanism of sev-
eral neurons. However, SNP systems (and SNP systems with
rules on synapses) lack this mechanism.

We proved that DeP systems can generate/accept any set of
Turing-computable numbers, and constructed a small Turing-
universal DeP system of 115 neurons for computing functions.

DeP systems seem to be more suitable for solving some real-
life problems because of their collaborative control mechanism.
Our future work will attempt to apply DeP systems to solve the
problems, such as supervisory control problems in discrete event
systems. In addition, DeP systems have the interesting feature:
a conflict case exists in DeP systems when dendrite rules in
different neurons share one or more prepositive (source) neurons.
When discussing universality, the conflict case is processed by the
nondeterministic choice strategy. However, the conflict case is
potentially useful for some real-life applications, such as flexible
manufacturing systems (FMSs), because the feature can be used
to characterize the problems related to deadlock avoidance.



H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120 119

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

Bernardini, F., & Gheorghe, M. (2004). Population P systems. Journal of Univer-
sal Computer Science, 10(5), 509–539. http://dx.doi.org/10.3217/jucs-010-05-
0509.

Cabarle, F. G. C., Adorna, H. N., Jiang, M., & Zeng, X. (2016). Spiking neural P
systems with scheduled synapses. IEEE Transactions on Nanobioscience, 27(5),
1337–1347. http://dx.doi.org/10.1109/TNB.2017.2762580.

Carandang, J. P., Villaflores, J. M. B., Cabarle, F. G. C., Adorna, H. N., & Martínez-
Del-Amor, M. A. (2017). CuSNP: Spiking neural P systems simulators in
CUDA. Romanian Journal of Information Science and Technology, 20(1), 57–70.

Cavaliere, M., Ibarra, O. H., Păun, G., Egecioglu, O., Ionescu, M., & Woodworth, S.
(2009). Asynchronous spiking neural P systems. Theoretical Computer Science,
410(24), 2352–2364.

Chen, H., Freund, R., Ionescu, M., Păun, G., & Pérez-Jiménez, M. J. (2007).
On string languages generated by spiking neural P systems. Fundamenta
Informaticae, 75(1), 141–162.

Chen, H. M., Ishdorj, T.-O., & Păun, G. (2007). Computing along the axon. Progress
in Natual Science, 17(4), 417–423.

Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., & Vaszil, G. (2009). Variants of
P colonies with very simple cell structure. International Journal of Computers,
Communications & Control, IV(3), 224–233. http://dx.doi.org/10.15837/ijccc.
2009.3.2430.

Díaz-Pernil, D., Gutiérrez-Naranjo, M. A., & Peng, H. (2019). Membrane comput-
ing and image processing: A short survey. Journal of Membrane Computing,
1, 58–73. http://dx.doi.org/10.1007/s41965-018-00002-x.

Díaz-Pernil, D., Peña-Cantillana, F., & Gutiérrez-Naranjo, M. A. (2013). A parallel
algorithm for skeletonizing images by using spiking neural P systems.
Neurocomputing, 115, 81–91. http://dx.doi.org/10.1016/j.neucom.2012.12.032.

Freund, R., Pǎun, G., & Pérez-Jiménez, M. J. (2005). Tissue-like P systems with
channel-states. Theoretical Computer Science, 330(1), 101–116. http://dx.doi.
org/10.1016/j.tcs.2004.09.013.

Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M. J., Turcanu, A., Valencia-
Cabrera, L., et al. (2013). 3-Col problem modelling using simple kernel
P systems. International Journal of Computational Methods, 90(4), 816–830.
http://dx.doi.org/10.1080/00207160.2012.743712.

Ibarra, O. H., Păun, A., & Rodríguez-Pat́on, A. (2009). Sequential SNP systems
based on min/max spike number. Theoretical Computer Science, 410(30),
2982–2991. http://dx.doi.org/10.1016/j.tcs.2009.03.004.

Ionescu, M., Păun, G., Pérez-Jiménez, M. J., & Yokomori, T. (2011). Spiking neural
dP systems. Fundamenta Information, 111(4), 423–436.

Ionescu, M., Păun, G., & Yokomori, T. (2006). Spiking neural P systems.
Fundamenta Informaticae, 71, 279–308.

Korec, I. (1996). Small universal register machines. Theoretical Computer Science,
168(2), 267–301. http://dx.doi.org/10.1016/S0304-3975(96)00080-1.

London, M., & Hausser, M. (2005). Dentritic computation. Annual Review of
Neuroscience, 28, 503–532.

Macías-Ramos, L. F., Pérez-Jiménez, M. J., Song, T., & Pan, L. (2015). Ex-
tending simulation of asynchronous spiking neural P systems in P–lingua.
Fundamenta Informaticae, 136(3), 253–267.

Martínez-Del-Amor, M. A., Macías-Ramos, L. F., Valencia-Cabrera, L., & Pérez-
Jiménez, M. J. (2016). Parallel simulation of population dynamics P systems:
Updates and roadmap. Natural Computing, 15(4), 565–573.

Moore, A. J., Ravassard, P. M., Ho, D., Acharya, L., Kees, A. L., Vuong, C., et al.
(2017). Dynamics of cortical dendritic membrane potential and spikes in
freely behaving rats. Science, 355(6331), aaj1497.

Pan, L., Păun, G., Zhang, G., & Neri, F. (2017). Spiking neural P systems with
communication on request. International Journal of Neural Systems, 28(8),
1–13. http://dx.doi.org/10.1142/S0129065717500423.

Pan, L., Wang, J., & Hoogeboom, H. J. (2012). Spiking neural P systems with
astrocytes. Neural Computation, 24(3), 805–825. http://dx.doi.org/10.1162/
NECO_a_00238.

Pavel, A. B., & Buiu, C. (2012). Using enzymatic numerical P systems for modeling
mobile robot controllers. Natural Computing, 11(3), 387–393.

Peng, H., Chen, R., Wang, J., Song, X., Wang, T., Yang, F., et al. (2018). Competitive
spiking neural P systems with rules on synapses. IEEE Transactions on
NanoBioscience, 16(8), 888–895. http://dx.doi.org/10.1109/TNB.2017.2783890.

Peng, H., Li, B., Wang, J., Song, X., Wang, T., Valencia-Cabrera, L., et al. (2020).
Spiking neural P systems with inhibitory rules. Knowledge-Based Systems, 188,
1–10. http://dx.doi.org/10.1016/j.knosys.2019.105064, 105064.

Peng, H., Lv, Z., Li, B., Luo, X., Wang, J., Song, X., et al. (2020). Nonlinear spiking
neural P systems. International Journal of Neural Systems, http://dx.doi.org/10.
1142/S0129065720500082.

Peng, H., Shi, P., Wang, J., Riscos-Núñez, A., & Pérez-Jiménez, M. J. (2017).
Multiobjective fuzzy clustering approach based on tissue-like membrane
systems. Knowledge-Based Systems, 125, 74–82. http://dx.doi.org/10.1016/j.
knosys.2017.03.024.

Peng, H., & Wang, J. (2018). Coupled neural P systems. IEEE Transactions on Neural
Networks and Learning Systems, 30(6), 1672–1682.

Peng, H., Wang, J., Ming, J., Shi, P., Pérez-Jiménez, M. J., Yu, W., et al. (2018).
Fault diagnosis of power systems using intuitionistic fuzzy spiking neural P
systems. IEEE Transaction on Smart Grid, 9(5), 4777–4784. http://dx.doi.org/
10.1109/TSG.2017.2670602.

Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2015). An unsu-
pervised learning algorithm for membrane computing. Information Sciences,
304(20), 80–91. http://dx.doi.org/10.1016/j.ins.2015.01.019.

Peng, H., Wang, J., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2019). Dynamic
threshold neural P systems. Knowledge-Based Systems, 163, 875–884.

Peng, H., Wang, J., Pérez-Jiménez, M. J., Wang, H., Shao, J., & Wang, T. (2013).
Fuzzy reasoning spiking neural P system for fault diagnosis. Information
Sciences, 235, 106–116. http://dx.doi.org/10.1016/j.ins.2012.07.015.

Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2016).
An extended membrane system with active membrane to solve automatic
fuzzy clustering problems. International Journal of Neural Systems, 26(3), 1–17.
http://dx.doi.org/10.1142/S0129065716500040.

Peng, H., Wang, J., Shi, P., Pérez-Jiménez, M. J., & Riscos-Núñez, A. (2017). Fault
diagnosis of power systems using fuzzy tissue-like P systems. Integrated
Computer-Aided Engineering, 24(4), 401–411. http://dx.doi.org/10.3233/ICA-
170552.

Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., et al. (2017). Spiking
neural P systems with multiple channels. Neural Networks, 95, 66–71. http:
//dx.doi.org/10.1016/j.neunet.2017.08.003.

Păun, G. (2000). Computing with membranes. Journal of Computer System
Sciences, 61(1), 108–143. http://dx.doi.org/10.1006/jcss.1999.1693.

Păun, G. (2002). Membrane computing: An introduction. Springer.
Păun, G. (2007). Spiking neural P systems with astrocyte-like control. Journal

of Universal Computer Science, 13(11), 1707–1721. http://dx.doi.org/10.3217/
jucs-013-11-1707.

Păun, A., & Păun, G. (2007). Small universal spiking neural P systems. BioSystems,
90(1), 48–60. http://dx.doi.org/10.1016/j.biosystems.2006.06.006.

Păun, G., Rozenberg, G., & Salomaa, A. (2010). The oxford handbook of membrane
computing. Oxford University Press, Inc.

Păun, A., & Sidoroff, M. (2012). Sequentially induced by spike number in SNP
systems: Small universal machines. In Membrane computing (pp. 333–345).
Springer.

Pǎun, G., & Pérez-Jiménez, M. J. (2010). Solving problems in a distributed way in
membrane computing: dP systems. International Journal of Computers, Com-
munications & Control, V(2), 238–250. http://dx.doi.org/10.1080/00207160.
2012.743712.

Pǎun, G., & Pǎun, R. (2006). Membrane computing and economics: Numerical
P systems. Fundamenta Informaticae, 73(1, 2), 213–227. http://dx.doi.org/10.
3217/jucs-010-05-0509.

Song, T., Pan, L., & Păun, G. (2014). Spiking neural P systems with rules on
synapses. Theoretical Computer Science, 529, 82–95. http://dx.doi.org/10.1016/
j.tcs.2014.01.001.

Song, T., & Pan, L. (2015). Spiking neural P systems with rules on synapses
working in maximum spiking strategy. IEEE Transaction on Nanobioscience,
14(4), 465–477.

Song, T., Pan, L., & Păun, G. (2012). Asynchronous spiking neural P systems with
local synchronization. Information Sciences, 219, 197–207. http://dx.doi.org/
10.1016/j.ins.2012.07.023.

Song, X., Wang, J., Peng, H., Ning, G., Sun, Z., Wang, T., et al. (2018). Spiking neu-
ral P systems with multiple channels and anti-spikes. Biosystems, 169–170,
13–19.

Song, B., Zhang, C., & Pan, L. (2016). Tissue-like P systems with evolutional
symport/antiport rules. Information Sciences, 378(C), 177–193. http://dx.doi.
org/10.1016/j.ins.2016.10.046.

Stuart, G., Spruston, N., Sakmann, B., & Hausser, M. (1997). Action potential
initiation and backpropagation in central neurons. Trends in Neurosciences,
20, 125–131.

Wang, J., Hoogeboom, H. J., Pan, L., Păun, G., & Pérez-Jiménez, M. J. (2010).
Spiking neural P systems with weights. Neural Computation, 22, 2615–2646.
http://dx.doi.org/10.1162/NECO_a_00022.

Wang, J., Shi, P., & Peng, H. (2016). Membrane computing model for IIR filter
design. Information Sciences, 329, 164–176. http://dx.doi.org/10.1016/j.ins.
2015.09.011.

Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M. J., & Wang, T. (2013). Weighted
fuzzy spiking neural P systems. IEEE Transactions on Fuzzy Systems, 21(2),
209–220. http://dx.doi.org/10.1109/TFUZZ.2012.2208974.

http://dx.doi.org/10.3217/jucs-010-05-0509
http://dx.doi.org/10.3217/jucs-010-05-0509
http://dx.doi.org/10.3217/jucs-010-05-0509
http://dx.doi.org/10.1109/TNB.2017.2762580
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb3
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb3
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb3
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb3
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb3
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb4
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb4
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb4
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb4
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb4
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb5
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb5
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb5
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb5
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb5
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb6
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb6
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb6
http://dx.doi.org/10.15837/ijccc.2009.3.2430
http://dx.doi.org/10.15837/ijccc.2009.3.2430
http://dx.doi.org/10.15837/ijccc.2009.3.2430
http://dx.doi.org/10.1007/s41965-018-00002-x
http://dx.doi.org/10.1016/j.neucom.2012.12.032
http://dx.doi.org/10.1016/j.tcs.2004.09.013
http://dx.doi.org/10.1016/j.tcs.2004.09.013
http://dx.doi.org/10.1016/j.tcs.2004.09.013
http://dx.doi.org/10.1080/00207160.2012.743712
http://dx.doi.org/10.1016/j.tcs.2009.03.004
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb13
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb13
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb13
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb14
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb14
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb14
http://dx.doi.org/10.1016/S0304-3975(96)00080-1
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb16
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb16
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb16
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb17
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb17
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb17
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb17
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb17
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb18
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb18
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb18
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb18
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb18
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb19
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb19
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb19
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb19
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb19
http://dx.doi.org/10.1142/S0129065717500423
http://dx.doi.org/10.1162/NECO_a_00238
http://dx.doi.org/10.1162/NECO_a_00238
http://dx.doi.org/10.1162/NECO_a_00238
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb22
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb22
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb22
http://dx.doi.org/10.1109/TNB.2017.2783890
http://dx.doi.org/10.1016/j.knosys.2019.105064
http://dx.doi.org/10.1142/S0129065720500082
http://dx.doi.org/10.1142/S0129065720500082
http://dx.doi.org/10.1142/S0129065720500082
http://dx.doi.org/10.1016/j.knosys.2017.03.024
http://dx.doi.org/10.1016/j.knosys.2017.03.024
http://dx.doi.org/10.1016/j.knosys.2017.03.024
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb27
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb27
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb27
http://dx.doi.org/10.1109/TSG.2017.2670602
http://dx.doi.org/10.1109/TSG.2017.2670602
http://dx.doi.org/10.1109/TSG.2017.2670602
http://dx.doi.org/10.1016/j.ins.2015.01.019
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb30
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb30
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb30
http://dx.doi.org/10.1016/j.ins.2012.07.015
http://dx.doi.org/10.1142/S0129065716500040
http://dx.doi.org/10.3233/ICA-170552
http://dx.doi.org/10.3233/ICA-170552
http://dx.doi.org/10.3233/ICA-170552
http://dx.doi.org/10.1016/j.neunet.2017.08.003
http://dx.doi.org/10.1016/j.neunet.2017.08.003
http://dx.doi.org/10.1016/j.neunet.2017.08.003
http://dx.doi.org/10.1006/jcss.1999.1693
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb36
http://dx.doi.org/10.3217/jucs-013-11-1707
http://dx.doi.org/10.3217/jucs-013-11-1707
http://dx.doi.org/10.3217/jucs-013-11-1707
http://dx.doi.org/10.1016/j.biosystems.2006.06.006
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb39
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb39
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb39
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb40
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb40
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb40
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb40
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb40
http://dx.doi.org/10.1080/00207160.2012.743712
http://dx.doi.org/10.1080/00207160.2012.743712
http://dx.doi.org/10.1080/00207160.2012.743712
http://dx.doi.org/10.3217/jucs-010-05-0509
http://dx.doi.org/10.3217/jucs-010-05-0509
http://dx.doi.org/10.3217/jucs-010-05-0509
http://dx.doi.org/10.1016/j.tcs.2014.01.001
http://dx.doi.org/10.1016/j.tcs.2014.01.001
http://dx.doi.org/10.1016/j.tcs.2014.01.001
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb44
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb44
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb44
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb44
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb44
http://dx.doi.org/10.1016/j.ins.2012.07.023
http://dx.doi.org/10.1016/j.ins.2012.07.023
http://dx.doi.org/10.1016/j.ins.2012.07.023
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb46
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb46
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb46
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb46
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb46
http://dx.doi.org/10.1016/j.ins.2016.10.046
http://dx.doi.org/10.1016/j.ins.2016.10.046
http://dx.doi.org/10.1016/j.ins.2016.10.046
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb48
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb48
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb48
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb48
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb48
http://dx.doi.org/10.1162/NECO_a_00022
http://dx.doi.org/10.1016/j.ins.2015.09.011
http://dx.doi.org/10.1016/j.ins.2015.09.011
http://dx.doi.org/10.1016/j.ins.2015.09.011
http://dx.doi.org/10.1109/TFUZZ.2012.2208974


120 H. Peng, T. Bao, X. Luo et al. / Neural Networks 127 (2020) 110–120

Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., & Pérez-Jiménez, M. J. (2015).
Fault diagnosis of electric power systems based on fuzzy reasoning spiking
neural P systems. IEEE Transaction on Power Systems, 30(3), 1182–1194.
http://dx.doi.org/10.1109/TPWRS.2014.2347699.

Wu, T., Păun, A., Zhang, Z., & Pan, L. (2018). Spiking neural P systems with
polarizations. IEEE Transactions on Neural Networks and Learning Systems,
29(8), 3349–3360. http://dx.doi.org/10.1109/TNNLS.2017.2726119.

Xue, J., Camino, A., Bailey, S. T., Liu, X., Li, D., & Jia, Y. (2018). Automatic quantifi-
cation of choroidal neovascularization lesion area on OCT angiography based
on density cell-like P systems with active membranes. Biomedical Optics
Express, 9(7), 3208–3219.

Zeng, X., Zhang, X., Song, T., & Pan, L. (2014). Spiking neural P systems with
thresholds. Neural Computation, 26(7), 1340–1361. http://dx.doi.org/10.1162/
NECO_a_00605.

Zhang, G., Gheorghe, M., Pan, L., & Pérez-Jiménez, M. J. (2014). Evolutionary
membrane computing: A comprehensive survey and new results. Information
Sciences, 279, 528–551.

Zhang, X., Pan, L., & Păun, A. (2015). On the universality of axon P systems. IEEE
Transactions on Neural Networks and Learning Systems, 26(11), 2816–2829.

Zhang, G., Rong, H., Neri, F., & Pérez-Jiménez, M. J. (2014). An optimization spik-
ing neural P system for approximately solving combinatorial optimization
problems. International Journal of Neural Systems, 24(05), 1–16.

Zhang, X., Wang, J., & Pan, L. (2009). A note on the generative power of axon P
systems. International Journal of Computers, Communications & Control, IV(1),
92–98.

Zhang, Z., Wu, T., Pǎun, A., & Pan, L. (2016). Numerical P systems with migrating
variables. Theoretical Computer Science, 641(C), 85–108. http://dx.doi.org/10.
1016/j.tcs.2016.06.004.

Zhang, X., Zeng, X., Luo, B., & Pan, L. (2014). On some classes of sequential
spiking neural P systems. Neural Computation, 26(5), 974–997. http://dx.doi.
org/10.1162/NECO_a_00580.

Zhang, X., Zeng, X., & Pan, L. (2008). On string language generated by spiking
neural P systems with exhaustive use of rules. Natural Computing, 90(1),
535–549. http://dx.doi.org/10.1007/s11047-008-9079-7.

Zhao, Y., Liu, X., & Qu, J. (2012). The k-medoids clustering algorithm by a class of
P system. Journal of Information & Computational Science, 9(18), 5777–5790.

http://dx.doi.org/10.1109/TPWRS.2014.2347699
http://dx.doi.org/10.1109/TNNLS.2017.2726119
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb54
http://dx.doi.org/10.1162/NECO_a_00605
http://dx.doi.org/10.1162/NECO_a_00605
http://dx.doi.org/10.1162/NECO_a_00605
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb56
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb56
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb56
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb56
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb56
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb57
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb57
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb57
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb58
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb58
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb58
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb58
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb58
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb59
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb59
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb59
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb59
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb59
http://dx.doi.org/10.1016/j.tcs.2016.06.004
http://dx.doi.org/10.1016/j.tcs.2016.06.004
http://dx.doi.org/10.1016/j.tcs.2016.06.004
http://dx.doi.org/10.1162/NECO_a_00580
http://dx.doi.org/10.1162/NECO_a_00580
http://dx.doi.org/10.1162/NECO_a_00580
http://dx.doi.org/10.1007/s11047-008-9079-7
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb63
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb63
http://refhub.elsevier.com/S0893-6080(20)30134-9/sb63

	Dendrite P systems
	Introduction
	Dendrite P systems
	Definition
	An illustrative example
	Compared with other variants

	Universality results
	Turing universality of DeP systems as number generating devices
	Turing universality of DeP systems as number-accepting devices
	Small universal DeP systems for computing functions

	Conclusions and future work
	Declaration of competing interest
	References


