
Computing a Partial Mapping

by a P System: Design and Verification

Antonio PÉREZ-JIMÉNEZ, Mario J. PÉREZ–JIMÉNEZ,

Fernando SANCHO–CAPARRINI

Dpt. Computer Science and Artificial Intelligence
University of Seville

Avda. Reina Mercedes s/n. 41012, Seville, Spain

E-mail: {Antonio.Perez, Mario.Perez, Fernando.Sancho}@cs.us.es

Abstract. Computing with membranes is a new computability model and it
is basically a non imperative and procedural model. For that reason it is very
hard to establish the verification of the P systems. In this paper a computing P
system (according to the definition given in section 2) which computes the set
{12, 22, . . . , n2} for a given n ≥ 1, is presented. A formalization of its syntax
is given and the verification of this computing P system is established through
the characterization of its successful computations.

1 Introduction

In October 1998, Gheorghe Păun ([1]) introduces a new computability model, of a dis-
tributed parallel type, based on the notion of membrane structure. This model, called
transition P-systems, start from the observation that the processes which take place in the
complex structure of a living cell can be considered computations.

The membrane structure of a P system is a hierarchical arrangement of membranes
(understood as vesicles in a space), embedded in a skin membrane that separates the
system from the environment. When a membrane has not any membrane inside, it is
called elementary. Each membrane encloses a space between it and the membranes directly
included in it (if any). This space (the region of the membrane) can contain a multiset
(a set where the elements can be repeated) of objects (represented by symbols of a given
alphabet) and a set of (evolution) rules for them. Each membrane defines an unique
region; that is, each region is delimited (from the outside) by an unique membrane.

In [1], Gh. Păun illustrates the way of working of this new model giving an example of
a transition P system generating exactly all squares of natural numbers greater or equal
to 1. In [4] a formal verification of that P system has been given. In this paper we present
a computing P system Π (according to the definition given in Section 2) such that for
every natural number n ≥ 1, the P system Π with input n returns the set of squares
{12, 22, . . . , n2}.

The paper is organized as follows: Section 2 briefly presents some basic concepts about
computing transition P systems. Section 3 gives a computing P system Π, formalizing its
syntaxis according to [3]. In section 4 some properties of this P system are studied in order

247

to characterize the successful computations of it. In Section 5, this P system is shown to
be able to compute the partial function f : N− → P (N) defined as follows:

f(n) =

{

↑ if n = 0
{12, 22, . . . , n2} if n 6= 0

2 Preliminaries about transition P systems

Following [3], a membrane structure is a rooted tree, where the nodes are called mem-
branes, the root is called skin, and the leaves are called elementary membranes. A cell (or
super-cell) over an alphabet, A, is a pair (µ,M), where µ = (V (µ), E(µ)) is a membrane
structure, and M is an application, M : V (µ) −→ M(A) (the set of multisets over A).
Over the elements of E(µ) a directionality, E∗(µ) can be considered induced from the
node root.

Let (µ,M) be a cell over an alphabet, A. Let x ∈ V (µ). An evolution rule associated
to x is a 3-tuple r = (~dr, ~vr, δr) where

– ~dr is a multiset over A.

– ~vr is a function from V (µ) ∪ {here, out} to M(A) where here, out /∈ V (µ) (here 6=
out).

– δr ∈ {¬δ, δ}, with ¬δ, δ /∈ A (¬δ 6= δ).

A collection R of evolution rules associated to C is a function with domain V (µ) such
that for every membrane x ∈ V (µ), Rx = {rx

1 , . . . , rx
sx
} is a finite set (possibly empty) of

(evolution) rules associated to x. A priority relation over R is a function, ρ, with domain
V (µ) such that for every membrane x ∈ V (µ), ρx is a strict partial order over Rx (possibly
empty).

A transition P-system is a 4-tuple Π = (A,C0,R, i0), where:

• A is a non-empty finite set (usually called base alphabet).

• C0 = (µ0,M0) is a cell over A.

• R is an ordered pair (R, ρ) where R is a collection of (evolution) rules associated to
C0, and ρ is a priority relation over R.

• i0 is a node of µ0, which specifies the output membrane of Π.

A configuration, C, of a P system, Π = (A,C0,R, i0) with C0 = (µ0,M0), is a cell
C = (µ,M) over A, where V (µ) ⊆ V (µ0), and µ has the same root as µ0. The configuration
C0 will be called the initial configuration of Π. Let x ∈ V (µ0), we say that the (evolution)
rule r ∈ Rx is semi-applicable to C if:

• The membrane associated to node x exists in C, that is, x ∈ V (µ).

• Dissolution is not allowed in root node, that is, if x is the root node of µ, then
δr = ¬δ.

• The membrane associated to x has all the necessary objects to apply the rule, that
is, ~dr ≤ M(x).

248

• Nodes where the rule tries to send objects (by means of iny) are children of x, that
is, ∀ y ∈ V (µ)(~vr(y) 6= ~0 → (x, y) ∈ E∗(µ))

We say that the rule r ∈ Rx is applicable to C, if it is semi-applicable to C and there is
no semi-applicable rules in Rx with higher priority. That is to say:

¬∃ r′ (r′ ∈ Rx ∧ ρx(r′, r) ∧ r′ semi-applicable to C)
We will say that ~p ∈ NN is an applicability vector over x ∈ V (µ) for C, and we will

denote it as ~p ∈ Ap(x,C), if:

• The node is still alive, that is, ~p 6= ~0 ⇒ x ∈ V (µ).

• It has correct size, that is, ∀ j (j > sx → ~p(j) = 0), (where sx is the number of rules
associated to x).

• Every rule can be applied as many times as the vector ~p indicates, that is,

∀ j (1 ≤ j ≤ sx → ~p(j) ≤ NAp(r
x
j , C, x))

• All the rules can be applied simultaneously, that is,

sx
∑

j=1

~p(j) ⊗ ~drx
j
≤ M(x).

• It is maximal, that is, ¬∃~v ∈ NN (~p < ~v ∧ ~v ∈ Ap(x,C)).

We will say that P : V (µ0) −→ NN is an applicability matrix over C, denoted P ∈
MAp(C), if for every x ∈ V (µ0) we have that P (x) ∈ Ap(x,C). We define ∆(P,C) =
{x : x ∈ V (µ) ∧ ∃ j (1 ≤ j ≤ sx ∧ Px(j) 6= 0 ∧ δrx

j
= δ)}. For each node x ∈ V (µ), we

define the donors of x for C in the application of P as follows:

Don(x, P,C) =

∅ , if x ∈ ∆(P,C)

{y ∈ V (µ) : y ∈ ∆(P,C) ∧ x µ y ∧

∧ ∀ z ∈ V (µ)(x µ z µ y → z ∈ ∆(P,C))}
, if x /∈ ∆(P,C)

We define the execution of P over C, denoted P (C), as the configuration of Π, C ′ =
(µ′,M ′), where:

• µ′ is the rooted tree obtained from µ by means of:

– V (µ′) = V (µ) − ∆(P,C)

– If x, y ∈ V (µ′), then:

(x, y) ∈ E∗(µ′) ⇔ ∃x0, . . . , xn ∈ V (µ)(x1, . . . , xn−1 ∈ ∆(P,C) ∧ x0 = x∧
xn = y ∧ ∀ i (0 ≤ i < n → (xi, xi+1) ∈ E∗(µ)))

• M ′(x) =

M ′′(x) ∪
⋃

y∈Don(x,P,C)

M ′′(y) , if x /∈ ∆(P,C)

∅ , if x ∈ ∆(P,C)

We will say that a configuration C1 of a P system Π yields a configuration C2 by a
transition in one step of Π, denoted C1 ⇒Π C2, if there exists a non–zero applicability
matrix over C1, P, such that P (C1) = C2.

The computation tree of a P system Π, denoted Comp(Π), is a rooted labeled maximal
tree defined as follows: the root of the tree is the initial configuration, C0, of Π. The

249

children of a node are the configurations that follow in one step of transition. Nodes and
edges are labeled by configurations and applicability matrices, respectively, in such way
that two labeled nodes C,C ′ are adjacent in Comp(Π), by means an edge labeled with
P, if and only if P ∈ MAp(C) − {0} ∧ C ′ = P (C). The maximal branches of Comp(Π)
will be called computations of Π. We will say that a computation of Π halts if it is a finite
branch. The configurations verifying MAp(C) = {0} will be called halting configurations.

We say that a computation C0 ⇒Π C1 ⇒Π . . . ⇒Π Cn, where Cn = (µn,Mn), of a
P system Π = (A,C0,R, i0) is successful if it halts and i0 is a leaf of the rooted tree µn

(also, we will say that Cn is successful). We will denote as S(Π) the set of the successful
configurations of Π. The numerical output of a successful computation, C, is O(C) =
|MCn(i0)| where Cn is the last configuration of C. The output of a P system Π is O(Π) =
{|MCn(i0)| : Cn ∈ S(Π)} = {O(C) : C is a successful computation of Π}.

A computing P system of order k is a 6–tuple Π = (A,B,C0,R, i0, j0) such that

• The 4-tuple Π′ = (A,C0,R, i0) is a P system.

• B = (a1, . . . , ak) is a k-tuple of elements of A, pairwise distinct (distinguished ele-
ments of the base alphabet to encode the input data).

• j0 is a node of µ0 which specifies the input membrane of Π.

A computing P system Π = (A,B,C0,R, i0, j0) of order k computes the partial map
f : Nk− → P (N) if for every (n1, . . . , nk) ∈ Nk we have that

• ∀t (1 ≤ t ≤ k → (MC0(j0))(at) = nt), with B = (a1, . . . , ak); that is, the input
membrane of the initial configuration of the P system encodes (n1, . . . , nk).

• For every (n1, . . . , nk) ∈ Nk, f(n1, . . . , nk) halts if and only if the P system with input
(n1, . . . , nk) halts (there are successful configurations) and, also, f(n1, . . . , nk) =
{|MC(i0)| : C ∈ S(Π′) ∧ C = (µC ,MC)}.

Note that a partial map, f : Nk− → P (N), is not computed by one P system but by
a collection of similar P systems, where, in their definition, only the multiset of objects of
the input membrane differs.

3 A computing P system that computes squares

In this section we present a computing P system, Π, of order 1 that computes the partial
function f : N− → P (N) defined as follows:

f(n) =

{

↑ if n = 0
{12, 22, . . . , n2} if n 6= 0

The computing P system Π we present here can be graphically described as follows:

250

4

3
2

1

b b
4

a δ>

5

a c
a c b c

b c δ
f f f

a c f

gf f δ

g g g g

(e , in)

n

P system Π with input n

where membrane 4 is the output one, and n ∈ N is an input data.
Now, according to the paper [3], we formalize the syntax of Π.
The computing P system Π is a 6–tuple (A,B,C0,R, i0, j0), where:

(a) The base alphabet is A = {a, b, c, e, f, g} and B = (a).

(b) The initial configuration, C0 = (µ0,M0), is defined as follows:

µ0 = (1, ((1, 2), (2, 1, 3, 4), (3, 2, 5), (4, 2), (5, 3))). That is, µ0 is the membrane struc-
ture given by means of the following rooted tree (with nodes labeled by natural
numbers):

1

2

43

5

M0 is the application from {1, 2, 3, 4, 5} to M(A) defined as follows: M0(1) =
M0(2) = M0(3) = M0(4) = ∅ and M0(5) = {anf}, for the input data n ∈ N.

(c) R = (R, ρ), where:

• R is the application with the domain {1, 2, 3, 4, 5} defined as: R(1) = R(4) = ∅,
R(2) = {r2

1, r
2
2 , r

2
3, }, R(3) = {r3

1} and R(5) = {r5
1, r

5
2 , r

5
3}, where:

251

Rule dr vr(here) vr(here) δ

r2
1 b b e −

r2
2 gg g − −

r2
3 g a − +

r3
1 ff g − +

r5
1 ac bc − −

r5
2 ac bc − +

r5
3 f ff − −

• ρ is the application with domain {1, 2, 3, 4, 5} defined as: ρ(1) = ρ(3) = ρ(4) =
ρ(5) = ∅ and ρ(2) = {(r2

2 , r
2
3)}.

(d) The output membrane is i0 = 4 and the input membrane is j0 = 5.

Given n ∈ N, we will denote by Π(n) the P system Π with input data n.

4 Characterizing successful configurations of Π(n)

The main goal of this paper is to present a formal proof of the fact that the computing
P system Π presented in the previous section actually computes the partial function f :
N− → P (N) defined as follows:

f(n) =

{

↑ if n = 0
{12, 22, . . . , n2} if n 6= 0

To establish the verification of Π(n) in relation to the function f(n), we consider a predicate
over Comp(Π(n))×N) being, in some way, an invariant of the process of computation in
the P system Π(n). That is, this predicate will be true for every computation, C, of Π(n)
and for every natural number. Also, from the truthfulness of the predicate over all the
configurations of Π(n) must extract relevant information to establish the soundness and
completeness of Π(n) related to the computing of f(n).

The process of verification of a P system Π(n) is based on the analysis of the content of
every membrane in every computation that can be obtained in Π(n). Given a computation,
C, of Π(n) we will denote by Ck the configuration obtained after the execution of k steps in
the computation C. In a natural way, a partial function STEP : Comp(Π)×N×V (µ0)− →
M(A) can be defined to assign to every computation, C, of Π(n), every natural number, k,
and every membrane, i, of the P system Π(n), the content of the i-th membrane after the
execution of k steps in the computation C. In this moment, if the i-th membrane has been
dissolved then the value of STEP(C, k, i) is not defined, and we will note STEP(C, k, i) ↑.
Otherwise, we denote STEP(C, k, i) ↓. In general, we denote STEP(C, k, i) = Ck(i). Also,
we denote by |C| the length of the computation C, that could be, eventually, infinite.

Definition 4.1 For every membrane i and every computation C of Π(n), we define
δ(C, i) = min{m : Cm(i) ↑}.

Since no membrane is dissolved in the initial configuration of a P system, we have
δ(C, i) ≥ 1, for every C ∈ Comp(Π(n)) and every membrane i of Π(n).

252

As first result, we will prove that there is only one computation of the P system Π
with data input n = 0. Moreover, this computation does not halt (and, therefore, it is not
successful).

To shorten notation the applicability vector will be expressed with a finite number of
components (as many as rules the membrane has). We denote by 0 the vector with all
null components, irrespectively which is its size.

If C = (µ,M) is a cell, where V (µ) = {a1, . . . , an} ⊂ N with a1 < · · · < an, we denote
M = (M(a1), . . . ,M(an)). For simplicity of notation, we represent the multisets by means
of the associated word, and ∅ will be the empty multiset.

Proposition 4.1 Let C be a computation of Π(0). Then, for every k ≥ 0, we have Ck =

(µ0, (∅, ∅, ∅, ∅, cf
2k

)), and the only applicability matrix over Ck is ~p = (0,0,0,0, (0, 0, 2k)).

Proof. Let us prove the result by induction on k. For the base case, k = 0, we note
that the initial configuration of Π(0) is C0 = (µ0, (∅, ∅, ∅, ∅, cf)), where µ0 is the membrane
structure associated to Π. Also, r3

5 ≡ f → ff is the only rule to be applied and, for this
reason, the only applicability matrix of C0 is ~p = (0,0,0,0, (0, 0, 1)).

Assume the result holds for k ≥ 0. Then Ck = (µ0, (∅, ∅, ∅, ∅, cf
2k

)) and the only
applicability matrix over Ck is ~p = (0,0,0,0, (0, 0, 2k)). Consequently, Ck+1 = ~p(Ck) =

(µ0, (∅, ∅, ∅, ∅, cf
2k+1

)). It is clear that the only applicability matrix over Ck+1 is ~p =
(0,0,0,0, (0, 0, 2k+1)). ✷

Corollary 4.1 There exists an unique computation of Π(0). Furthermore, that computa-
tion does not halt.

Proof. To prove the existence, we consider the initial configuration of Π(0), C0 =
(µ0, (∅, ∅, ∅, ∅, cf)). From Proposition 1 C1 = ~p(C0), where ~p = (0,0,0,0, (0, 0, 1)).

In general, if Ck = (µ0, (∅, ∅, ∅, ∅, cf
2k

)) then we consider Ck+1 = ~p(Ck), where ~p =
(0,0,0,0, (0, 0, 2k)). The uniqueness of the computation follows directly from Proposi-
tion 1.

Moreover, we have proved that C does not halt, since for each k ≥ 0 there exists an
applicability matrix over Ck to apply. ✷

To characterize the successful computation of the P system Π(n), with n ≥ 1, we study
what happens when membrane 5 is dissolved. We first determine the content of membrane
5 in each moment of the computation when it is not dissolved.

Proposition 4.2 Let n ≥ 1. For every m ∈ N (m ≤ n) and every computation C of Π(n)
such that m < δ(C, 5) we have Cm = (µ0, (∅, ∅, ∅, ∅, a

n−mcbmf2m

)).

Proof. Let n ≥ 1. We consider the P system Π(n) with input data n. The proof is by
induction on m. For the base case, m = 0, it is enough to note that the initial configuration
of Π(n) is C0 = (µ0, (∅, ∅, ∅, ∅, a

ncf)).
Let m ∈ N be such that m < n and let us suppose that the result holds for m. Let

C be a computation of Π(n) such that m + 1 < δ(C, 5). Then m < δ(C, 5) holds, and
consequently, Cm = (µ0, (∅, ∅, ∅, ∅, a

n−mcbmf2m

)). Since m + 1 < δ(C, 5) and m < n, we
conclude that that the only applicability matrix over Cm is ~p = (0,0,0,0, (1, 0, 2m)), and
finally

253

Cm+1 = ~p(Cm) = (µ0, (∅, ∅, ∅, ∅, a
n−m−1cbbmf2m+1

)) =
= (µ0, (∅, ∅, ∅, ∅, a

n−(m+1)cbm+1f2m+1
)) ✷

Next we present a predicate over the configurations of Π(n) to be an invariant along
the execution of the P system Π(n). Let us consider the formula:

θ(C, p, n) ≡ C ∈ Comp(Π(n)) ∧ 1 ≤ p ≤ n ∧ p = δ(C, 5) → C successful ∧ O(C) = p2

Now, the task is to establish a necessary condition for the computation C of Π(n) (with
n ≥ 1) to be successful.

Proposition 4.3 For every n ≥ 1 there exists an unique computation, C, of Π(n) such
that δ(C, 5) > n. Furthermore, δ(C, 5) = ∞ and, therefore, the computation C does not
halt.

Proof. Let n ≥ 1. Let us first prove the existence. Let C0 be the initial configuration of
Π(n). For every k ∈ N such that 1 ≤ k ≤ n we denote ~pk = (0,0,0,0, (1, 0, 2k−1)) and

Dk = (µ0, (∅, ∅, ∅, ∅, a
n−kcbkf2k

)).

Lemma 1: For every k such that 1 ≤ k ≤ n we have ~pk is an applicability
matrix over Dk−1 and Ck = ~pk(Ck−1) = Dk.

Proof. The proof is by induction on k.
To prove the case k = 1, since ~p1 = (0,0,0,0, (1, 0, 1)) is an applicability
matrix over D0, hence C1 = ~p1(C0) = (µ0, (∅, ∅, ∅, ∅, a

n−1cbf2)) = D1.
Let k be such that 1 ≤ k < n and let us suppose that the result holds
for k. Since ~pk = (0,0,0,0, (1, 0, 2k−1)) is an applicability matrix over

Dk−1, hence Ck = ~pk(Ck−1) = (µ0, (∅, ∅, ∅, ∅, a
n−kcbkf2k

)) = Dk. Then
~pk+1 = (0,0,0,0, (1, 0, 2k)) is an applicability matrix over Dk. Also, Ck+1 =

~pk+1(Ck) = (µ0, (∅, ∅, ∅, ∅, a
n−k−1cbk+1f2k+1

)) = Dk+1. ✷

From lemma 1 we deduce that Cn = (µ0, (∅, ∅, ∅, ∅, cb
nf2n

)) = Dn. For every
q ∈ N such that q ≥ 1, we denote ~pn+q = (0,0,0,0, (1, 0, 2n+q−1)) and Dn+q =

(µ0, (∅, ∅, ∅, ∅, cb
nf2n+q

)).

Lemma 2: For every q ≥ 1 we have ~pn+q is an applicability matrix over
Dn+q−1 and, also, Cn+q = ~pn+q(Cn+q−1) = Dn+q.

Proof. By induction on q.
To prove the base case, q = 1, it suffices to have in mind that ~pn+1 =
(0,0,0,0, (0, 0, 2n)) is an applicability matrix over Dn. Also, Cn+1 =
~pn+1(Cn) = (µ0, (∅, ∅, ∅, ∅, cb

nf2n+1
)) = Dn+1.

Let q ≥ 1 and let us suppose the result holds for q. We have Cn+q =

Dn+q = (µ0, (∅, ∅, ∅, ∅, cb
nf2n+q

)). Then ~pn+q+q = (0,0,0,0, (1, 0, 2n+q))
is an applicability matrix over Dn+q. Also, Cn+q+q = ~pn+q+q(Cn+q) =

(µ0, (∅, ∅, ∅, ∅, cb
nf2n+q+1

)) = Dn+q+1. ✷

The computation C of Π(n) built as above verifies that δ(Cn, 5) = ∞ and, therefore, it
does not halt.

254

Finally we establish the uniqueness. For it, let us suppose that C, C′ are computations
of Π(n) such that δ(C, 5) > n and δ(C′, 5) > n. From Proposition 2 we deduce that for ev-
ery m ∈ N such that m ≤ n is is verified that Cm = (µ0, (∅, ∅, ∅, ∅, a

n−mcbmf2m

)) =
C′

m. Since Cn = (µ0, (∅, ∅, ∅, ∅, cb
nf2n

)), it results for every q ≥ 1 that Cn+q =

(µ0, (∅, ∅, ∅, ∅, cb
nf2n+q

)) = C′

n+q. Therefore, the computation C does not halt. ✷

Corollary 4.2 Let n ≥ 1. Let C be a successful computation of Π(n). Then ∀k (k <
δ(C, 5) → k < n).

Proof. Let n ≥ 1. Let C be a computation of Π(n) such that there exists k ≥ n verifying
that k < δ(C, 5). Then, n < δ(Cn, 5) and, therefore, from Proposition 4.3 we deduce that
the computation C does not halt, which is impossible. ✷

Next, let us see that for every n ≥ 1 a successful computation of Π(n) whose output is 1

can be built.

Proposition 4.4 Let n ≥ 1. There exists an unique computation, C, of Π(n) such that
δ(C, 5) = 1. Furthermore, this computation is successful, its length is 3 and its output is
O(C) = 1.

Proof. Let n ≥ 1. To build a computation, C, of Π(n) such that δ(C, 5) = 1, we note
that C0(5) ↓, and therefore, in the first step of the computation C the rules r5

2 ≡ ac → bcδ
and r5

3 ≡ f → ff must be applied (in a maximal manner). That is, to get δ(C, 5) = 1, the
only applicability matrix that can be applied over C0 is ~p1 = (0,0,0,0, (1, 0, 1)). Hence,
C1 = ~p1(C0) = (µ1, (∅, ∅, ∅, ∅, a

n−1cbf2)), where µ1 = (1, ((1, 2), (2, 3, 4), (3, 2), (4, 2))).
But, the only applicability matrix over C1 is ~p2 = (0,0, (1),0). Therefore, C2 = ~p1(C1) =
(µ2, (∅, a

n−1cbg, ∅)), where µ2 = (1, ((1, 2), (2, 1, 4), (4, 2))). Then, the only applicabil-
ity matrix over C2 is ~p2 = (0, (1, 0, 1),0). Hence, C3 = ~p1(C2) = (µ3, (a

ncb, e)), where
µ3 = (1, ((1, 4), (4, 1))).

Having in mind that membranes 1 and 4 have no rules, it results that the configuration
C3 halts. Moreover, we deduce that C3 is a successful configuration, because i0 = 4 ∈ µ3.
Therefore, |C| = 3 and the output of the computation C is O(C) = |C3(4)| = |{e}| = 1.

The uniqueness of such a computation C of Π(n) verifying C1(5) ↑ follows from the
above construction. ✷

We now proceed to prove that the critical point of the computations of the P system

Π(n), with n ≥ 1, is the dissolution of membrane 5.

Proposition 4.5 Let n ≥ 1. Let m be such that 2 ≤ m ≤ n. For every computation, C,
of Π(n) such that δ(C, 5) = m we have:

1. Cm = (µ′, (∅, ∅, an−mcbmf2m

, ∅)), where µ′ is the rooted tree:

(1, ((1, 2), (2, 1, 3, 4), (3, 2), (4, 2)))

2. For every k (0 ≤ k ≤ m − 1), Cm+1+k = (µ′′, (∅, an−mcbmg2m−1−k

, ekm)), where
µ′′ = (1, ((1, 2), (2, 1, 4), (4, 2))).

3. C2m+1 = (µ′′′, (an−m+1cbm, em2
)), where µ′′′ = (1, ((1, 4), (4, 1))).

255

4. The computation C is successful, its length is |C| = 2m+1, and its output is O(C) =
m2.

Proof. (1) The proof is by induction on m. To prove the base case, m = 2 ≤ n, we consider
a computation, C, of Π(n) such that δ(C, 5) = 2. Since 1 < δ(C, 5), from Proposition 4.2
it follows that C1 = (µ0, (∅, ∅, ∅, a

n−1cbf2)). Since δ(C, 5) = 2 ≤ n, it results that in the
second step of the computation C the rules r5

2 ≡ ac → bcδ and r5
3 ≡ f → ff must be

applied (in a maximal manner). Therefore, C2 = ~p(C1) = (µ′, (∅, ∅, an−2cb2f22
, ∅)), where

µ′ = (1, ((1, 2), (2, 1, 3, 4), (3, 2), (4, 2))) and ~p = (0,0,0,0, (0, 1, 2)).
Let m ∈ N such that 2 ≤ m < n and let us suppose that the result holds for m. Let

C be a computation of Π(n) such that δ(C, 5) = m + 1. Since m < δ(C, 5) and m < n,
from Proposition 4.2 it follows that Cm = ~p(C − 1) = (µ0, (∅, ∅, ∅, a

n−mcbmf2m

)). Since
δ(C, 5) = m + 1, in the (m + 1)–th step of the computation C, the membrane 5 must be
dissolved. Hence, the rules r5

2 ≡ ac → bcδ and r5
3 ≡ f → ff must be applied (in a maximal

manner). Therefore,
Cm+1 = ~p(Cm) = (µ′, (∅, ∅, an−m−1cbm+1f2m+1

, ∅))
where µ′ = (1, ((1, 2), (2, 1, 3, 4), (3, 2), (4, 2))) and ~p = (0,0,0,0, (0, 1, 2m)).
(2) Let n ≥ 1. Let m ∈ N such that 2 ≤ m ≤ n. Let C be a computation of Π(n)
such that δ(C, 5) = m. Let us first prove that for every k such that 0 ≤ k ≤ m − 1

we have Cm+1+k = (µ′′, (∅, an−mcbmg2m−1−k

, ekm)), where µ′′ = (1, ((1, 2), (2, 1, 4), (4, 2))).
The proof is by induction on k. To prove the base case, k = 0, from (1) it follows that
Cm = (µ′, (∅, ∅, an−mcbmf2m

, ∅)), where µ′ = (1, ((1, 2), (2, 1, 3, 4), (3, 2), (4, 2))), hence, the
only applicability matrix over Cm is ~p = (0,0, (2m−1),0), and finally

Cm+1 = ~p(Cm) = (µ′′, (∅, an−mcbmg2m−1
, ∅))

where µ′′ = (1, ((1, 2), (2, 1, 4), (4, 2))).
For each k ≥ 0 such that k < n − 1 assume that the result holds for k. The in-

duction hypothesis states that Cm+1+k = (µ′′, (∅, an−mcbmg2m−1−k

, ekm)), where µ′′ =
(1, ((1, 2), (2, 1, 4), (4, 2))). Since m − 1 − k > 0 and m > 0, the only applicability matrix
over Cm+1+k is ~p = (0, (m, 2m−1−k−1, 0),0). Hence

Cm+1+k+1 = ~p(Cm+1+k) = (µ′′, (∅, an−mcbmg2m−1−k−1
, emekm)) =

= (µ′′, (∅, an−mcbmg2m−1−(k+1)
, e(k+1)m))

(3) Let n ≥ 1. Let m ∈ N such that 2 ≤ m ≤ n. Let C be a computa-
tion of Π(n) such that δ(C, 5) = m. From (2), C2m = (µ′′, (∅, an−mcbmg, e(m−1)m)),
where µ′′ = (1, ((1, 2), (2, 1, 4), (4, 2))). Hence, the only applicability matrix over C2m

is ~p = (0, (m, 0, 1),0), and, consequently,
C2m+1 = ~p(C2m) = (µ′′′, (∅, an−m+1cbm, eme(m−1)m)) =

= (µ′′′, (∅, an−m+1cbm, em2
))

where µ′′′ = (1, ((1, 4), (4, 1))).
(4) Let n ≥ 1. Let m ∈ N such that 2 ≤ m ≤ n. Let C be a computation of Π(n)
such that δ(C, 5) = m. From (3), we deduce that C2m+1 is a halting configuration, since
the only non empty membrane are 1 and 4, and both of them have no rules. Therefore,
|C| = 2m + 1. Moreover, the computation C is successful, and its output is O(C) =
|C2m+1(4)| = |{{em2

}} = m2. ✷

Corollary 4.3 Let n ≥ 1. For every p such that 1 ≤ p ≤ n there exists at most one
computation, C, of Π(n) such that δ(C, 5) = p.

256

Proof. Let n ≥ 1. If p = 1, from Proposition 4.4 it follows that there exists an unique
computation, C, of Π(n) such that δ(C, 5) = p.

Let p be such that 2 ≤ p ≤ n. Let C, C′ be computations of Π(n) such that δ(C, 5) =
δ(C′, 5) = p. From (4) in Proposition 4.5 we deduce that |C| = |C′| = 2p + 1. Also,
Proposition 4.2 shows that ∀k (0 ≤ k < p → Ck = C′

k). Let us see that ∀k (p ≤ k ≤
2p + 1 → Ck = C′

k).

• The case k = p follows from (1) in Proposition 4.5.

• The case p + 1 ≤ k ≤ 2p follows from (2) in Proposition 4.5.

• The case k = 2p + 1 follows from (3) in Proposition 4.5.

Consequently, C = C′. ✷

Now we can characterize the successful computations of Π through the moment when
membrane 5 is dissolved.

Corollary 4.4 Let n ≥ 1. Let C be a computation of Π(n). The following conditions are
equivalent:

(a) C is a successful computation.

(b) 1 ≤ δ(C, 5) ≤ n.

(c) 1 ≤ δ(C, 5) ≤ n ∧ |C| = 2δ(C, 5) + 1 ∧ O(C) = δ(C, 5)2.

Proof. Let n ≥ 1. Let C be a successful computation of Π(n). From proposition 4.3 we
deduce that δ(C, 5) ≤ n.

Let C a successful computation of Π(n) such that 1 ≤ δ(C, 5) ≤ n. If δ(C, 5) = 1, then
from Proposition 4.5 we deduce that |C| = 3 and O(C) = 1. If 2 ≤ δ(C, 5) ≤ n, then from
(4) of Proposition 4.5 we deduce that |C| = 2δ(C, 5) + 1 ∧ O(C) = δ(C, 5)2.

Let C be a successful computation of Π(n) such that 1 ≤ δ(C, 5) ≤ n∧|C| = 2δ(C, 5)+1∧
O(C) = δ(C, 5)2. If δ(C, 5) = 1 then from Proposition 4.4 it is deduced that C is successful.
If 2 ≤ δ(C, 5) ≤ n then from (4) of Proposition 4.5 we deduce that the computation C is
successful. ✷

Corollary 4.5 For every n ≥ 1 there exists an unique non halting computation of Π(n).

Proof. Let n ≥ 1. If C is a computation of Π(n) that it does not halt, than it is not
successful and, hence, δ(C, 5) > n. From Proposition 4.3 we deduce that it is unique. ✷

5 Soundness and Completeness of the computing P sys-

tem Π

To establish that the computing P system Π described in section 3 actually computes the
partial function f : N− → P (N) defined by

f(n) =

{

↑ if n = 0
{12, 22, . . . , n2} if n 6= 0

257

we must to prove that:

(a) No computation of Π(0) is successful.

(b) For every n ≥ 1 we have:

• For every successful computation, C, of Π(n) there is p ∈ N such that 1 ≤ p ≤ n
and the output of the computation C is p2 (soundness).

• For every p ∈ N such that 1 ≤ p ≤ n, there exists at least one successful
computation, C, of Π(n) whith the output O(C) = p2 (completeness).

In other words, we must to prove that no computation of Π(0) is a halting one and,
also, that ∀n ≥ 1 (O(Π(n)) ⊆ f(n)) (soundness) and that ∀n ≥ 1 (f(n) ⊆ O(Π(n)))
(completeness).

Theorem 5.1 (Soundness) For every n ≥ 1 and every successful computation, C, of
Π(n), there is p ∈ N such that 1 ≤ p ≤ n and O(C) = p2. That is to say, ∀n ≥
1 (O(Π(n)) ⊆ f(n)).

Proof. Let n ≥ 1. Let C be a successful computation of Π(n). From Corollary 4.5 it
follows that 1 ≤ δ(C, 5) ≤ n∧|C| = 2δ(C, 5)+1∧O(C) = δ(C, 5)2. If δ(C, 5) = 1, Proposition
4.4 shows that O(C) = 1, and if δ(C, 5) = m (2 ≤ m ≤ n), from (4) in Proposition 4.4 it
follows that O(C) = m2. ✷

To establish the completeness of Π we consider the following formula
ϕ(n, p) ≡ ∃C ∈ Comp(Π(n)) (p = δ(C, 5))

Proposition 5.1 Let n ≥ 1. For every p ∈ N such that 1 ≤ p ≤ n there exists an unique
computation, C, of Π(n) such that δ(C, 5) = p.

Proof. Let n ≥ 1. We begin by proving the existence by induction on p. The base case,
p = 1, follows directly from Proposition 4.4. For each p be such that 1 ≤ p < n assume that
the result holds for p. Let C a computation of Π(n) such that δ(C, 5) = p. Since 0 ≤ p−1 <
p = δ(C, 5), from Proposition 4.2 it follows that Cp−1 = (µ0, (∅, ∅, ∅, ∅, a

n−p+1cbp−1f2p1)).
Since ~p1 = (0,0,0,0, (1, 0, 2p−1)) is an applicability matrix over Cp−1, we define

C′

p = ~p1(Cp−1) = (µ0, (∅, ∅, ∅, ∅, a
n−pcbpf2p

))
Since ~p2 = (0,0,0,0, (0, 1, 2p)) is an applicability matrix over C′

p, we define C′

p+1 =

~p2(C
′

p) = (µ′, (∅, ∅, ∅, an−p−1cbp+1f2p+1
, ∅), where the membrane structure µ′ =

(1, ((1, 2), (2, 1, 3, 4), (3, 2), (4, 2))). Therefore, the computation of Π(n): C0 ⇒Π C1 ⇒Π

. . . ⇒Π C′

p ⇒Π C′

p+1 ⇒Π . . . , verifies that δ(C, 5) = p + 1, which proves the result holds for
p + 1.

The uniqueness of such a computation C, of Π(n) verifying δ(C, 5) = p, follows from
Corollary 4.3. ✷

Corollary 5.1 For every n ≥ 1 it is verified that ∀p (1 ≤ p ≤ n → ϕ(n, p)).

Theorem 5.2 (Completeness) Let n ≥ 1. For every p ∈ N such that 1 ≤ p ≤ n, there
exists a computation, C, of Π(n) such that C is successful and its output is O(C) = p2.
That is, ∀n ≥ 1 (f(n) ⊆ O(Π(n))).

258

Proof. Let n ≥ 1. Let p be such that 1 ≤ p ≤ n. From Proposition 5.1 it follows that
there is an unique computation, C, of Π(n) such that δ(C, 5) = p. If p = 1 the result
follows from Proposition 4.4. If 2 ≤ p ≤ n the result follows from (4) of Proposition 4.5.

✷

Summarizing, we can describe the set of all computations of the P system Π(n), for
every n ≥ 1, as follows:

δ

δ

δ

δ

(C,5)=

(C,5)=

(C,5)=

(C,5)=

1

2

3

n

1

2

3

n

2

2

2

2

n+1

∞

Note that for every n ≥ 1, the P system Π(n) has exactly n + 1 computations, where
only one does not halt (and, therefore, it is not successful).

6 Conclusions

The formal verification of mechanical procedures in a computing model use to be a complex
task. If the mechanical procedures of the model are not described through an imperative
language then this task gets harder. As it is known, the P systems are, basically, of a
procedural kind and, consequently, the task to give formal verification of a P system is
very complicated.

In this work the problem of formal verification of a computing P system to compute a
partial function that for every n ≥ 1 returns the set {12, . . . , n2} has been studied. For it,
the critical points of the computations of the system (the instants where some important
fact happens) are established and characteristic properties of successful computations are
obtained.

The study of formal verification of P systems can represent an important step through
the treatment of them with reasoning automated systems. Also, together with the obtained
formalization in [3], this paper can be useful for a possible implementation of P systems
into conventional electronic computers.

259

Acknowledgement

Support for this research through the project TIC2002-04220-C03-01 of the Ministerio de
Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER funds, is gratefully acknowledged.

References

[1] Gh. Păun, Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No 208,
1998 (www.tucs.fi).

[2] Gh. Păun; G. Rozenberg, A guide to membrane computing, Theoretical Computer
Science, 287 (2002), 73–100.

[3] M.J. Pérez–Jiménez; F. Sancho-Caparrini. A formalization of transition P systems.
Fundamenta Informaticae, vol. 49 (2002), 261–272.

[4] M.J. Pérez–Jiménez; F. Sancho-Caparrini. Verifying a P system generating squares.
Romanian Journal of Information Science and Technology, vol. 5, núm, 2–3 (2002),
181–191.

260

