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Abstract

In this paper we study how to generate pairwise disjoint fam-
ilies from a finite collection of given sets in a molecular model
with random access memory: the sticker model. We analyze prob-
lems related to the formal verification of a molecular program in
this kind of models. The invariant techniques we use are based
on a labelling of tubes and followed by a detailed study of the
evolution of each molecule from the initial tube along the execu-
tion. The results are applied to obtain molecular solutions of two
well-known numerical NP-complete problems: the Exact Cover
problem and the Set Packing problem.
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1 Introduction

The computational solvability of NP-complete problems in practice has
achieved a quantitative improvement with the born of DNA comput-
ing at the end of 1994. The arise of the first molecular models, in the
beginning of 1995, and the universality of these models (i.e., with the
computational power of Turing Machines) allow, at least in a theoretical
way, to deal with the solvability of any NP-complete problem through
DNA computations in an efficient manner.

Solving a problem,X , in a molecular model consists in the design of
a program, P , within this model, that can solve it in the following sense:
for each instance, E, of the problem X , the execution of the program P
over an initial tube encoding all possible solutions associated with E,
produces a tube (or a set of tubes) encoding the solutions to the problem
P respect to the input data E. Verifying (X,P ) consists in proving that
the program P solves, in fact, the problem X ; that is, to verify (X,P )
we have to follow two steps: (a) to prove that every molecule of the
output tube encodes a correct solution of the problem (Soundness of the
program); (b) to prove that every molecule of the input tube encoding
a correct solution of the problem is in the output tube (Completeness of
the program).

The goal of this paper is the design, analysis and formal verification
of a molecular program within the sticker model solving the problem
of generating pairwise disjoint subfamilies of a finite collection of finite
sets. The paper begins by briefly introducing a sticker based model for
DNA computations. In section 3 we outline a problem, then a molecu-
lar program is designed in this model to solve the problem and finally
we analyze the time complexity (number of molecular operations) and
the space complexity (size of the input tube and total number of tubes
used along the execution) of the program. The main contribution of
this work is presented in section 4, where a formal verification of the
designed program is given. In section 5 we apply the above results
to solve two well-known NP-complete numerical problems: the Exact
Cover problem and the Set Packing problem [1].
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2 A Sticker-Based Model

The sticker model was introduced by S. Roweis et al [3] as a model of
molecular computation making use of DNA strands as the physical
substrate in which information is represented. This model has a ran-
dom access memory, where no strand extension is required, and uses
no enzymes. The materials are reusable, at least in theory.

We first describe a way, based on complementarity, of representing
information by DNA molecules. The sticker model uses two basic groups
of single stranded DNA molecules in its representation of a bit string,
referred to as memory strands and sticker strands.

An (n, k,m)-memory strand, with n ≥ k · m, consists of a strand of
n bases subdivided into k non-overlapping substrands each of which
is m bases long. The substrands should be significantly different from
one another: any two of them should differ with respect to several base
positions.

A sticker associated with an (n, k,m)-memory strand ism bases long
and complementary to exactly one of the k substrands in the memory
strand. A specific substrand of a memory strand can be either on or off.
If a sticker is annealed to its matching substrand on a memory strand,
then the particular substrand is said to be on, if not it is said to be off.

An (n, k,m)-memory complex is an (n, k,m)-memory strand along
with its annealed stickers (if any). Memory complexes are DNA strands
that are partially complemented, and represent binary numbers, where
a substring being on (respectively, off) represents the bit 1 (respectively,
0). So, (n, k,m)-memory complexes can represent bit strings of {0, 1}k,
for this reason, it is usual to identify them either as binary functions (σ :
{1, ..., k} −→ {0, 1}, such that σ(i) = 1 if and only if the ith substrand is
on), or as subsets of {1, ..., k} by means of their characteristic functions.

We are now ready to introduce the basic operations used in the sticker
model. A test tube or shortly a tube, is a finite multiset (a collection
where elements can be repeated) of memory complexes. The opera-
tions over tubes in the sticker model we consider in this paper are the
following:

• Combine (T1, T2): given two test tubes T1 and T2 this operation
produces a new tube, T1 ∪ T2, being the multiset union of T1 and
T2. Thus, by this operation two test tubes are combined into one.
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• Separate (T, i): given a test tube T and a natural number i, with
1 ≤ i ≤ k, this operation produces two new tubes, +(T, i) =
{{σ ∈ T : σ(i) = 1}} and −(T, i) = {{σ ∈ T : σ(i) = 0}}.
That is, the test tube +(T, i) (respectively, −(T, i)) consists of all
the memory complexes in the original tube T where the ith sub-
strand is on (respectively, off).

We usually write (T1, T2) ← separate(T, i) to indicate that T1 =
+(T, i) and T2 = −(T, i).

• Set (T, i): given a test tube T and a natural number i, with 1 ≤
i ≤ k, this operation produces a new tube, Set (T, i), where the
ith substrand of each memory complex in T is turned on. That is,
an appropriate sticker is annealed to it if the ith substrand is off in
the memory complex, but the ith substrand is left unchanged if it
is already annealed.

• Read(T ): given a test tube T this operation reads the content of
tube T . To achieve that, one memory complex has to be isolated
from T and its annealed stickers determined, or else it has to be
reported that the tube T contains no memory complexes.

Note that, in this model, the operations Separate and Set are the
only ones implementing a massive parallelism. Also, only operation
Set can modify the inner structure of the molecules of a tube.

The input or initial test tube will be a library of memory complexes.
In particular, a (k, l)-library, with 1 ≤ l ≤ k, consists of memory com-
plexes with k substrands, where the first l substrands are either on or
off, in all possible ways, whereas the last k − l substrands are off.

Computations in the sticker model consist of a finite sequence of
the operations mentioned above, that can be written in a simple way
by means of robotic operations (such as loops, conditionals, etc.).

If a molecular program P has a main loop FOR or WHILE, then
we can establish the soundness and completeness of it by means of
searching invariant formulas (over the variables in the program) of
the loop with inductive techniques. First, we proceed to a labelling
of the tubes to individualize them along the execution. Second, having
in mind that the inner structure can be modified in the sticker model,
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an itemized study of the evolution of every molecule along the execu-
tion of the program will be indispensable. This will be implemented
through a function, denoted by STEP .

3 Pairwise Disjoint Families

The Pairwise Disjoint Families problem is the following: Let A = {1, . . . ,
p}. Let F = {B1, . . . , Bq} a finite family of subsets of A. Determine all
pairwise disjoint subfamilies of F .

We will denote ri = |Bi| and Bi = {x1
i , . . . , x

ri
i }, for each i such that

1 ≤ i ≤ q. The design of the program can be summarized as follows:
start from an initial test tube, T0, whose molecules encode all possible
subfamilies of F (for example, T0 is a (p + q, q)-library); we separate
all molecules of T0 with respect to the position 1 to produce the tubes
T+ and T−; from tube T+ we remove the molecules with the (q+xj

1)th
position set to 1 (for some xj

1 ∈ B1), and we set to 1 all (q + xj
1)th

positions, for each j such that 1 ≤ j ≤ r1, in the remaining molecules;
we make T0 = T ∗r1

∪ T− and repeat the process for positions from 2 to q
(with respect to the sets B2 to Bq, respectively).

Keeping in mind the above idea we design the following molecu-
lar program within the sticker model, for finding a pairwise disjoint
subfamilie in any finite family:

Procedure Disjoint
Input: T0 (a (p+ q, q)-library)

for i = 1 to q do
(T+, T−)← separate (T0, i)
T ∗0 ← T+

for j = 1 to ri do

(T trash, T )← separate (T ∗j−1, q + xj
i )

T ∗j ← set (T, q + xj
i )

end for
T0 ← combine (T ∗ri

, T−)
end for

This program executes q + r separate operations, r set operations
and q combine operations, where r = r1 + · · ·+ rq. Hence the number
of molecular operations of this program is 2q+2r ∈ O(q·p). The number
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of used tubes is of the order of O(p). The number of molecules of the
input tube is of the order of 2q.

4 Formal Verification

In order to establish a formal verification of this program we begin with
a procedure for the labelling of the tubes:

Procedure Disjoint
Input: T0

for i = 1 to q do
(T+

i , T
−
i )← separate (Ti−1, i)

T ∗i,0 ← T+
i

for j = 1 to ri do

(T trash
i,j , T •i,j)← separate (T ∗i,j−1, q + xj

i )
T ∗i,j ← set (T •i,j , q + xj

i )
end for
Ti ← combine (T ∗i,ri

, T−i )
end for

Notation: Let σ ∈ T0. Then the molecule σ is represented by a binary
string of 0’s and 1’s with length q + p. Hence we can consider σ as the
range of the characteristic function of a subset B(σ) (we write B for
short) of {1, . . . , q+ p}. That is, we can identify the molecule σ with the
subset

B = {i : 1 ≤ i ≤ q + p ∧ σ(i) = 1}
For each i such that 1 ≤ i ≤ q, let Bi = {x1

i , . . . , x
ri
i }. We denote by

q+Bi the set {q+ xj
i : 1 ≤ j ≤ ri}. That is, σ ∩ (q+Bi) = ∅means that

∀j (1 ≤ j ≤ ri ⇒ σ(q + xj
i ) = 0).

If σ ∈ T0 then we denote by σq the substring σ(1) . . . σ(q) and we
denote by σp the substring σ(q + 1) . . . σ(q + p). That is, the string σq

encodes a subset of {1, . . . , q} that we can identify with a subfamily of
F = {B1, . . . , Bq}, and the string σp encodes a subset of A = {1, . . . , p}.
That is,

σq ≡ {Bi ∈ F : 1 ≤ i ≤ q ∧ σ(i) = 1}

σp ≡ {j : 1 ≤ j ≤ p ∧ σ(j) = 1}
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Next we define a function, namely STEP , that captures the evolu-
tion of each molecule after the execution of one step of the main loop.
Note that there are molecules removed after the execution of some steps
in the main loop (they go into tube T trash

i,j ). So, in general, the function
STEP is not necessarily a total function.

Definition 1. Let i be such that 1 ≤ i ≤ q. Let ρ ∈ Ti−1. We define

STEP (ρ, i) =


ρ if i /∈ ρ
ρ ∪ (q +Bi) if i ∈ ρ and ρ ∩ (q +Bi) = ∅
↑ otherwise

In the first two cases we will write STEP (ρ, i) ↓ . Besides, we define
STEPi(ρ) = STEP (ρ, i).

Note that if STEP (ρ, i) ↓, then ρ ⊆ STEP (ρ, i) and that STEPi is
the identity function on T−i . Now, let us see that STEPi is a partial
function from Ti−1 to Ti.

Lemma 1. Let i be such that 1 ≤ i ≤ q. Then for every molecule ρ ∈ Ti−1

such that STEP (ρ, i) ↓ we have STEP (ρ, i) ∈ Ti.

Proof. Let i be such that 1 ≤ i ≤ q. Let ρ ∈ Ti−1 such that STEP (ρ, i) ↓.
If i /∈ ρ, then ρ ∈ −(Ti−1, i) = T−i ⊆ Ti, and the result follows from

the definition of STEP . If i ∈ ρ and ρ∩ (q+Bi) = ∅, then we can define
recursively ρ(j), for each j such that 0 ≤ j ≤ ri, as follows:{

ρ(0) = ρ

ρ(j+1) = ρ(j) ∪ {q + xj+1
i }

Let us see that ∀ j (0 ≤ j ≤ ri ⇒ ρ(j) ∈ T ∗i,j), by induction on j.

• We have ρ(0) = ρ ∈ +(Ti−1, i) = T+
i = T ∗i,0. Let j < ri such

that ρ(j) ∈ T ∗i,j . From definition of ρ(j) it follows that ∀ t (j < t ≤
ri ⇒ ρ(j)(t) = ρ(t)). Hence, ρ(j)(q + xj+1

i ) = ρ(q + xj+1
i ) = 0.

That is, ρ(j) ∈ −(T ∗i,j , q + xj+1
i ) = T ∗i,j+1. But ρ(j+1) = ρ(j) except

by ρ(j)(q + xj+1
i ) = 0 and ρ(j+1)(q + xj+1

i ) = 1. Then ρ(j+1) ∈
set (T •i,j+1, q + xj+1

i ) = T ∗i,j+1.

Taking into account that ρ(ri) = STEP (ρ, i) from the above definition,
we conclude that STEP (ρ, i) ∈ T ∗i,ri

⊆ Ti.
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The execution of the designed molecular program can be interpre-
ted as the evolution over time of a population consisting, at the begin-
ning, of a multiset of molecules in the input tube (every molecule rep-
resents an element, thus, in the original population cloned members
can exist). Every step of the main loop takes one unit of time. Hence,
throughout the execution an element of the population can die (that is,
it can be thrown away) or it can survive. If the molecular computing
model has random access memory (that is, if the inner structure of the
molecules can be modified) then the molecules surviving all the steps
can be of two kinds: those whose inner structure have been modified
and those that remain with no modifications.

The above Lemma allows us to define the history of every molecule
in the input tube T0.

Definition 2. For every molecule σ ∈ T0 we define{
σ0 = σ
σi+1 = STEP (σi, i+ 1), if 0 ≤ i < q

Let σ ∈ T0 such that there exists i, with 1 ≤ i ≤ q, verifying σi ↓ .
Then we will say that the molecule σ has survived after the execution of
ith step of the main loop.

Next, we provide a technical lemma that will allow us to make a
formal verification, with a short outline of its proof. Let us recall that
for each i such that 1 ≤ i ≤ q,Bi = {x1

i , . . . , x
ri
i }. Then, for each i, j such

that 1 ≤ i ≤ q and 1 ≤ j ≤ ri, we denote by Bj
i the set {x1

i , . . . , x
j
i}.

Lemma 2. ∀ i (0 ≤ i ≤ q → ∀σ ∈ T0 (σi ↓ → σi ∈ Ti)).

Proof. By induction on i. The case i = 0 is obvious. Let i be such that
i < q and assume that ∀σ ∈ T0 (σi ↓ → σi ∈ Ti) holds. Then we will
prove the result for i + 1. For that, let σ ∈ T0 such that σi+1 ↓ . Then
STEP (σi, i + 1) ↓ . So, σi ↓ . From the induction hypothesis we have
σi ∈ Ti. Then, we conclude from Lemma 1 that STEP (σi, i+1) ∈ Ti+1.
Hence, σi+1 ∈ Ti+1.

Lemma 3. For each i, j such that 1 ≤ i ≤ q and 1 ≤ j ≤ ri we have the
following:

∀ τ ∈ T ∗i,j ∃ ρ ∈ T+
i (τ = ρ ∪ (q +Bj

i ) ∧ ρ ∩ (q +Bj
i ) = ∅))
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Proof. Let i be such that 1 ≤ i ≤ q. Let us see that

∀ j (1 ≤ j ≤ ri → ∀ τ ∈ T ∗i,j ∃ ρ ∈ T+
i (τ = ρ∪(q+Bj

i ) ∧ ρ∩(q+Bj
i ) = ∅))

By induction on j. Let τ ∈ T ∗i,1 = set(T •i,1, q + x1
i ). Then there exists

ρ ∈ T •i,1 such that ρ = τ ∪ (q + B1
i ). Since ρ ∈ T •i,1 = −(T ∗i,0, q + x1

i ), it
follows that ρ ∈ T ∗i,0 = T+

i , and ρ(q + x1
i ) = 0. That is, the result holds

for j = 1.
Let us assume the result holds for j such that j ≥ 1 and j < ri. Let

τ ∈ T ∗i,j+1 = set(T •i,j+1, q+xj+1
i ). Then there exists ρ′ ∈ T •i,j+1 such that

ρ′ = τ ∪ (q +Bj+1
i ). Since ρ′ ∈ T •i,j+1 = −(T ∗i,j , q + xj+1

i ), it follows that
ρ′ ∈ T ∗i,j = T+

i , and ρ′(q + xj+1
i ) = 0.

Taking into account that ρ′ ∈ T ∗i,j , from the induction hypothesis we
deduce that there exists ρ ∈ T+

i such that ρ′ = ρ∪(q+Bj
i )∧ ρ∩(q+Bj

i ) =
∅. So, we conclude that τ = ρ ∪ (q +Bj

i ) ∧ ρ ∩ (q +Bj+1
i ) = ∅.

Lemma 4. For each i such that 1 ≤ i ≤ q we have the following: for every
molecule τ ∈ T ∗i,ri

there exists a molecule ρ ∈ Ti−1 verifying i ∈ ρ ∧ ρ 6=
τ ∧ STEP (ρ, i) = τ .

Proof. Let i be such that 1 ≤ i ≤ q. Let τ ∈ T ∗i,ri
. From Lemma 3, with

j = ri, we deduce that there exists ρ ∈ T+
i such that τ = ρ ∪ (q +Bj

i ) ∧
ρ ∩ (q +Bj

i ) = ∅. Then ρ 6= τ and ρ ∈ T+
i = +(Ti−1, i). That is, ρ ∈ Ti−1

and i ∈ ρ. Hence, STEP (ρ, i) = τ .

Lemma 5. ∀ i ∀ j (1 ≤ i ≤ q ∧ 1 ≤ j ≤ ri =⇒ T ∗i,j ∩ T
−
i = ∅).

Proof. Let i, j be such that 1 ≤ i ≤ q and 1 ≤ j ≤ ri. Let τ ∈ T ∗i,j . From
Lemma 3, we deduce that there exists ρ ∈ T+

i = +(Ti−1, i) such that
τ = ρ∪ (q+Bj

i ) and ρ∩ (q+Bj
i ) = ∅. Then ρ ∈ Ti−1, i ∈ ρ, and τq = ρq.

Hence, τ /∈ −(Ti−1, i). That is, τ /∈ T−i .

Lemma 6. For each i such that 1 ≤ i ≤ q, and for every molecule τ ∈ T−i we
have τ ∈ Ti−1 and STEP (τ, i) = τ .

Proof. It follows easily from the definition of function STEP, and taking
into account that T−i = −(Ti−1, i).

Lemma 7. For each i such that 1 ≤ i ≤ q, and for every molecule ρ, τ ∈ Ti−1

such that STEP (ρ, i) ↓= STEP (τ, i), we have ρ = τ .
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Proof. Let i be such that 1 ≤ i ≤ q and let ρ, τ ∈ Ti−1 be such that
STEP (ρ, i) ↓= STEP (τ, i). Then ρq = (STEP (ρ, i))q = (STEP (τ, i))q

= τq.

• If i /∈ ρ then i /∈ τ . Thus ρ = STEP (ρ, i) = STEP (τ, i) = τ .

• If i ∈ ρ and ρ ∩ (q + Bi) = ∅ then i ∈ τ and τ ∩ (q + Bi) = ∅. Let
ρ′ = STEP (ρ, i) and τ ′ = STEP (τ, i). Then ρ′ = ρ∪ (q+Bi) and
τ ′ = τ ∪ (q +Bi). From ρ′ = τ ′ it follows that ρ = τ .

Lemma 8. ∀ i (0 ≤ i ≤ q → ∀σ ∀ ρ ∈ T0 (σi ↓= ρi → σ = ρ)).

Proof. Let us prove the result by induction on i. The result is obviously
true for i = 0. Assume that it is true for i < q. Let σ, ρ ∈ T0 such that
σi+1 ↓= ρi+1. Then STEP (σi, i+ 1) ↓= STEP (ρi, i+ 1). From Lemma
7 we obtain σi ↓= ρi. Finally, from the induction hypothesis it follows
that σ = ρ.

Lemma 9. ∀ i (0 ≤ i ≤ q → ∀ τ ∈ Ti ∃ !σ ∈ T0 (σi = τ)).

Proof. Let us first prove the existence by induction on i. The case i = 0
is obvious.

Let us assume the result holds for i < q. Let τ ∈ Ti+1 = T ∗i+1,ri+1
∪

T−i+1. If τ ∈ T ∗i+1,ri+1
, from Lemma 4 it follows that there exists a

molecule ρ ∈ Ti such that i + 1 ∈ ρ ∧ ρ 6= τ ∧ STEP (ρ, i + 1) = τ .
As ρ ∈ Ti, from the induction hypothesis we deduce that there exists
σ ∈ T0 such that ρ = σi. Hence, τ = STEP (ρ, i+1) = STEP (σi, i+1) =
σi+1.

If τ ∈ T−i+1, from Lemma 6 we have τ ∈ Ti and STEP (τ, i+ 1) = τ .
As τ ∈ Ti, from the induction hypothesis we deduce that there exists
a molecule σ ∈ T0 such that τ = σi. Hence, τ = STEP (τ, i + 1) =
STEP (σi, i+ 1) = σi+1.

The uniqueness of such a molecule is obtained from Lemma 8.

Lemma 10. ∀ i (0 ≤ i ≤ q → ∀σ ∈ T0 (σi+1 ↓→ σi
q = σi+1

q ∧ σi
p ⊆ σi+1

p )).

Proof. Let i be such that 1 ≤ i ≤ q. Let σ ∈ T0 such that σi+1 ↓.
From Lemma 2 we have σi+1 ⊆ Ti+1. Taking into account that Ti+1 =
T ∗i+1,ri+1

∪ T−i+1, we distinguish two cases.
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• If σi+1 ∈ T ∗i+1,ri+1
, from Lemma 4 we deduce that there exists

ρ ∈ Ti verifying i+1 ∈ ρ ∧ ρ 6= σi+1 ∧ STEP (ρ, i+1) = σi+1. So,
σi+1 = STEP (σi, i+ 1) ↓ , σi+1 = STEP (ρ, i+ 1), σi ∈ Ti, ρ ∈ Ti,
and i + 1 ≤ q. Therefore σi = ρ by Lemma 7. From definition
of STEP, σi+1 = σi ∪ (q + Bi+1) and σi ∪ (q + Bi+1) = ∅. Hence
σi

p ⊆ σi+1
p and σi

q = σi+1
q .

• If σi+1 ∈ T−i+1 = −(Ti, i + 1), then i + 1 /∈ σi+1 ∧ σi+1
q = σi

q.
Therefore i+1 /∈ σi. But σi ∈ Ti by Lemma 2. As STEP (σi, i+1) ↓
and i + 1 /∈ σ, we deduce that STEP (σ, i + 1) = σi. That is,
σi+1 = σi. Hence, in this case, we have σi

p = σi+1
p and σi

q = σi+1
q .

Lemma 11. For each i, k such that 1 ≤ i ≤ q and 0 ≤ k < i, and for every
molecule σ ∈ T0 such that σi ↓ , we have σk

q = σi
q and σk

p ⊆ σi
p.

Proof. Let us prove the result by induction on i. The case i = 1 is trivial
because there is no k such that 1 ≤ k < i = 1.

Let us assume the result holds for i such that i ≥ 1 and i < q. Let k
be such that 1 ≤ k < i+ 1. Let σ ∈ T0 such that σi+1 ↓ .

If k < i we have σi ↓ , because σi+1 ↓ and σi+1 = STEP (σi, i + 1).
From de induction hypothesis we deduce that σk

q = σi
q and σk

p ⊆ σi
p. But

σi
q = σi+1

q and σi
p ⊆ σi+1

p by Lemma 10. Therefore, σk
q = σi+1

q ∧ σk
p ⊆

σi+1
p .

The case k = i directly follows from Lemma 10.

4.1 Soundness of the Program

To establish the soundness of the program above designed, we consider
the formula:

θ(i) ≡ ∀ τ ∈ Ti ∀ k, k′ ∈ τ (1 ≤ k < k′ ≤ i→ Bk ∩Bk′ = ∅)

That is, the formula θ(i) means that every molecule of tube Ti encodes
a subfamily of F where the sets with indexes less or equal to i are pair-
wise disjoint.

Theorem 1. The formula θ(i) is an invariant of the main loop. That is, for
each i such that 1 ≤ i ≤ q we have the formula θ(i) is true.
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Proof. By induction on i. The case i = 1 is trivial.
Let i be such that i ≥ 1 and i < q. Let us assume that the formula

θ(i) is true. Let τ ∈ Ti+1 and k, k′ ∈ τ such that 1 ≤ k < k′ ≤ i+1. Since
τ ∈ Ti+1 and i+ 1 ≤ q, applying Lemma 9 there exists σ ∈ T0 such that
σi+1 = τ .

If k′ < i + 1, since k, k′ ∈ τ = σi+1, 1 ≤ k < k′ ≤ q and σi+1
q = σi

q,
we obtain that k, k′ ∈ σi. From σi+1 ↓ and σi+1 = STEP (σi, i + 1), we
have σi ↓. From Lemma 2, it can be deduced that σi ∈ Ti. Therefore
k, k′ ∈ σi, 1 ≤ k < k′ ≤ i, and σi ∈ Ti. As formula θ(i) is true by
induction hypothesis, we conclude that Bk ∩Bk′ = ∅.

If k′ = i+1, we must prove thatBk∩Bi+1 = ∅. Since k, k′ ∈ σi, from
Lemma 2 we obtain σi ∈ Ti. Hence, σi ∈ +(Ti, k

′) = +(Ti, i+1) = T+
i+1.

Now we can prove that Bk ∩ Bi+1 = ∅; that is, it does not exist any
u such that 1 ≤ u ≤ ri+1 ∧ xu

i+1 ∈ Bk.

• Let us suppose the opposite, that is, there exists u such that 1 ≤
u ≤ ri+1 and xu

i+1 ∈ Bk. Then, there would exist v such that
1 ≤ v ≤ rk and xv

k = xu
i+1. In this case, we have k ∈ σi, 1 ≤

k ≤ q, σi
q = σk−1

q and k ∈ σk−1. Since σk = STEP (σk−1, k) and
k ∈ σk−1, from the definition of function STEP we obtain that
σk = σk−1 ∪ (q + Bk) and σk−1 ∩ (q + Bk) = ∅. As 1 ≤ v ≤ rk we
have (q + xv

k) ∈ σk. Since k < k′ = i+ 1, it holds k ≤ i. Applying
Lemma 11 we deduce that σk

p ⊆ σi
p. Therefore (q + xv

k) ∈ σi, or,
similarly, (q + xu

i+1) ∈ σi. As σi+1 ↓ and i + 1 ∈ σi, from the
definition of function STEP we conclude that σi∩(q+Bi+1) = ∅.
In particular, (q + xu

i+1) /∈ σi, which is impossible.

Corollary 1 (Soundness). Every molecule of the output tube encodes a pair-
wise disjoint subfamily of F .

Proof. From Theorem 1 it follows that the formula θ(q) is true. Hence,

∀ τ ∈ Tq ∀ k, k′ ∈ τ (1 ≤ k < k′ ≤ q → Bk ∩Bk′ = ∅)
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4.2 Completeness of the Program

To establish the completeness of the designed program we consider the
formula

δ(i) ≡ ∀σ ∈ T0 ((∀ k, k′ ∈ σ (1 ≤ k < k′ ≤ q → Bk ∩Bk′ = ∅))→ σi ∈ Ti)

That is, the formula δ(i) means that for every molecule of the input
tube encoding a pairwise disjoint subfamily of F , the molecule ob-
tained from it after ith step will be in tube Ti.

Theorem 2. The formula δ(i) is an invariant of main loop. That is, for each i
such that 1 ≤ i ≤ q we have the formula δ(i) is true.

Proof. By induction on i. Let σ ∈ T0 be such that ∀ k, k′ ∈ σ (1 ≤ k <
k′ ≤ q → Bk ∩Bk′ = ∅).

• If 1 /∈ σ, then σ1 ↓ . From Lemma 2 we deduce that σ1 ∈ T1.

• If 1 ∈ σ, then σp ≡ 0 . In particular, ∀ j (1 ≤ j ≤ r1 → σ(q + xj
1) =

0). Hence σ1 ↓ . From Lemma 2 we obtain σ1 ∈ T1.

So, the result is true for i = 1.
Let us assume the result holds for i such that i ≥ 1 and i < q. Let

σ ∈ T0 such that ∀ k, k′ ∈ σ (1 ≤ k < k′ ≤ q → Bk ∩ Bk′ = ∅).
From the induction hypothesis, we have σi ∈ Ti. If i + 1 /∈ σi then
STEP (σi, i + 1) = σi. So, σi+1 ↓ . From Lemma 2 we deduce that
σi+1 ∈ Ti+1.

Let us suppose that i + 1 ∈ σi. From the definition of the function
STEP and taking into account that σi ↓, it suffices to show that σi ∩ (q+
Bi+1) = ∅. On the contrary, there must be j0 = min{j : 1 ≤ j ≤
ri+1 ∧ (q + xj

i+1) ∈ σi}. In this case we would have (q + xj0
i+1) ∈ σi−1.

• Indeed: if (q + xj0
i+1) /∈ σi−1, then σi−1 6= σi. Taking into account

that σi = STEP (σi−1, i), we have

i ∈ σi−1 ∧ σi = σi−1 ∪ (q +Bi) ∧ σi ∩ (q +Bi) = ∅

So, there would be u such that 1 ≤ u ≤ ri ∧ xu
i = xj0

i+1. Hence we
would obtain Bi ∩Bi+1 6= ∅.
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If (q + xj0
i+1) ∈ σi−1, then there exists k0 = min{k : (q + xj0

i+1) ∈ σk}.
As tube T0 is a (p + q, q)-library, we would have k0 > 0 (because σp ≡
0). Taking into account that σk0 = STEP (σk0−1, k0), and (q + xj0

i+1) /∈
σk0−1, we would deduce that σk0 6= σk0−1. Hence, we have k0 ∈ σk0−1,
σk0 = σk0−1 ∪ (q +Bk0) and σk0−1 ∩ (q +Bk0) = ∅. That is, there exist v
such that 1 ≤ v ≤ rk0 and xj0

i+1 = xv
k0

. Therefore, Bi+1 ∩ Bk0 6= ∅, with
k0 6= i+ 1. This contradicts our assumption.

Corollary 2 (Completeness). Every molecule of the input tube encoding a
pairwise disjoint subfamily of F survives all the steps of main loop and will be
in the output tube, Tq.

Proof. From Theorem 2 it follows that the formula δ(q) is true. Hence,

∀σ ∈ T0 ((∀ k, k′ ∈ σ (1 ≤ k < k′ ≤ q → Bk ∩Bk′ = ∅))→ σq ∈ Tq)

5 Applications

In this section we apply the above results to give efficient molecular so-
lutions of two well-known numerical NP-complete problems, the Exact
Cover problem and the Set Packing problem, within the sticker model.

The Exact Cover problem is the following: Let A = {1, . . . , p} a finite set,
and let F = {B1, . . . , Bq} a finite family of subsets of A. Determine whether
there exist i1, . . . , ik such that {Bi1 , . . . , Bik} is a partition of A.

A molecular program within the sticker model solving the Exact Cover
problem is the following one:

Procedure Exact_Cover
Input: T0 (a (p+ q, q)-library)

T0 ← Disjoint (T0)
for i = 1 to p do

T0 ← +(T0, q + i)
end for

The number of molecular operations of this program is of the order
of O(q · p). The number of used tubes is of the order of O(p). The
number of molecules of the input tube is of the order of 2q.
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The soundness and the completeness of this molecular program di-
rectly follows from the formal verification of the Disjoint procedure.

The Set Packing problem is the following: Let A = {1, . . . , p} a finite set,
letF = {B1, . . . , Bq} a finite family of subsets ofA, and let k ∈ N. Determine
whether a pairwise disjoint subfamily of F with cardinal k exists.

A molecular program within the sticker model solving the Set Pack-
ing problem is the following one:

Procedure Set_Packing
Input: (T0, k) (where T0 is a (p+ q, q)-library)

T1 ← Disjoint (T0)
Tout ← Cardinal_Sort (T1, 1, q)[k]
Read(Tout)

In this program the Cardinal_Sort subroutine is used, which al-
lows us to sort, according to their cardinality, the elements of the family
encoded by T1 (see [2] for further details).

The number of molecular operations of this program is of the order
ofO(q·p+q2). The number of used tubes is of the order ofO(max{p, q}).
The number of molecules of the input tube is of the order of 2q.

The soundness and the completeness of this molecular program
directly follows from the formal verification of the Disjoint and the
Cardinal_Sort procedures (see [2] for further details).

6 Conclusions

In this paper, a molecular program generating pairwise disjoint fami-
lies has been presented within the sticker model. Using this program
as a subroutine we have given molecular solutions of two well-known
numerical NP-complete problems: the Exact Cover problem and the Set
Packing problem. Moreover, we present a detailed study of the formal
verification process of a program within a molecular model with mem-
ory, proving the soundness and completeness of the designed program.
For that, invariant formulas (in the variables that appear in the pro-
gram) of the main loop have been searched through the semantics of
the program and the problem, using inductive techniques.

The study of the formal aspects of molecular programs is a neces-
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sary first step for the automatic processing of them by means of reason-
ing systems (we are currently working on ACL2 and PVS). The produc-
tion of prototypes which are able to be executed regarding to molecular
computational models within the framework of theorem provers, will
allow to automate both, the soundness and completeness, of molecular
programs.
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