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We continue here the study of the recently introduced spiking neural P systems, which
mimic the way that neurons communicate with each other by means of short electrical
impulses, identical in shape (voltage), but emitted at precise moments of time. The
sequence of moments when a neuron emits a spike is called the spike train (of this
neuron); by designating one neuron as the output neuron of a spiking neural P system
I1, one obtains a spike train of II. Given a specific way of assigning sets of numbers to
spike trains of II, we obtain sets of numbers computed by II. In this way, spiking neural
P systems become number computing devices. We consider a number of ways to assign
(code) sets of numbers to (by) spike trains, and prove then computational completeness:
the computed sets of numbers are exactly Turing computable sets. When the number of
spikes present in the system is bounded, a characterization of semilinear sets of numbers
is obtained. A number of research problems is also formulated.
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1. Introduction

The idea of spiking neurons, currently an active research topic in neural computing
(see, e.g., [4], [6], [7]), was recently incorporated in membrane computing (see [5])
— the resulting formal systems are called spiking neural P systems, abbreviated as
SN P systems.

The structure of an SN P system has a form of a directed graph with nodes rep-
resenting neurons, and edges representing synapses. A neuron (node) sends signals
(spikes) along its outgoing synapses (edges). We use a reserved symbol/letter a to
represent a spike. Each neuron has its own rules for either sending spikes (firing
rules) or for internally consuming spikes (forgetting rules). In the initial configura-
tion a neuron ¢ stores the initial number of spikes, and at any time moment the
currently stored number of spikes in ¢ (current contents of o) is determined by the
initial contents of ¢ and the history of functioning of o (the spikes it received from
other neurons, the spikes it sent out, and the spikes it internally consumed /forgot).
For each firing rule r there is a set of numbers, S, enabling this rule: i.e., if the
current contents of ¢ is in S,, then r is enabled. When r is enabled, it can fire,
i.e., initialize the process of transmitting a spike (spiking) by o along all synapses
outgoing from ¢ — as explained below, the spiking can take place either at the same
moment of time as the firing of r or at a later moment. Each firing is coupled with
a consumption of a specific number ¢, of spikes, which is fixed for each firing rule,
where ¢, < z for each z € S,.. Thus, if the current contents of ¢ is n, and n € S,
then rule r fires and consumes ¢, spikes, so that n — ¢, spikes remain in o.

Each firing rule r in ¢ has its delay number d, (a nonnegative integer) which
determines the delay between the firing of r, and the spiking by o.

If d, = 0, then o spikes (using r) at the same time moment ¢ that r fires.
However, if d, > 0, then o will spike (using r) d, moments after r fires. Moreover,
o becomes blocked through the time interval ¢,¢t + 1,...,t + {d, — 1), becoming
unblocked again at time moment ¢ + d, (when it spikes). When o is blocked, no
input spike enters o, i.e., if a neuron ¢’ sends a spike to ¢ along the synapse from
o’ to o, then this spike is “wasted” as it does not enter o.

There is no delay along synapses: if o spikes at a time moment ¢ along a synapse
to a neuron o', then ¢’ (if not blocked) will receive this spike at the same time
moment .

The whole system is timed by a central global clock which determines the same
passage of time mornents for all neurons.

The firing rules are given in the form E/a® — a;d, where E is a regular expres-
sion over {a}. If a neuron ¢ contains such a rule, then E specifies the enabling set
Sr, ¢ specifies the consumption cost, ¢ = ¢, and d specifies the time delay, d = d,.

As mentioned already, besides firing rules, a neuron o can also have forgetting
rules which are of the form a® — A. Such a rule is enabled at a moment of time ¢,
if the current contents of ¢ at ¢ equals s. When an enabled rule is applied, then its
effect is just an “internal consumption” of s spikes, refereed to as forgetting.
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To complete the description of the functioning of an SN P system, we need to
describe the order of activities for any neuron ¢ at a given time moment ¢, which
is as follows. First of all, the current contents of ¢ at ¢, denoted con,(¢), is the
number of spikes determined by the whole “history” of ¢ up to and including the
time moment ¢ — 1 (if ¢t = 0, then con,(¢) is its initial contents).

If o is blocked at ¢, then nothing happens to ¢ at ¢, and so cong(t+1) = con,(t).

If o is not blocked and no rule of ¢ is enabled by con,(t), then neither firing
nor forgetting will take place. Consequently, con,(t + 1) will be equal to con,(t)
increased by the number get,(t), of spikes that ¢ receives during t.

If 0 is not blocked and at least one rule of ¢ is enabled, then (non-
deterministically) exactly one rule r of o is chosen to act. If r is a firing rule
E/a® — a;d with d = 0, then con, (t + 1) = con, (t) — ¢ + get,(t), and o spikes at ¢
(along all outgoing synapses); if d > 0, then con, (t + 1) = con,{t) — ¢, and o spikes
at t 4+ d (along all outgoing synapses).

If r is a forgetting rule a® — A, then con,(t + 1) = con,(t) — s + get,(t).

The reader may have noticed already the similarities between the above de-
scribed structure and the functioning of a network of neurons connected by synapses,
and membrane systems (see, e.g., {9]), or, more specifically, tissue and neural mem-
brane systems. Neurons become just elementary membranes containing evolution
rules (consisting of firing and forgetting rules) and multisets of molecules, where
there is only one molecule, a, in the whole system. The firing rules are used to
send molecules out of elementary membranes into the neighboring elementary mem-
branes, and forgetting rules are purely internal evolution rules. However, there are
also basic differences between tissue membrane systems and our networks of spik-
ing neurons. For instance, we use here only one type of objects (the spike, a), rules
of two particular forms, applied in a sequential manner in each neuron. In con-
trast to this, in tissue membrane systems the rules are used in parallel (maximal
parallelism) and the contents of regions include many kinds of molecules/symbols.
There also are basic differences between neural membrane systems (see, e.g., Chap-
ter 6 of [9]) and our networks of spiking neurons. For instance, in neural membrane
systems there are states associated with neurons, and, also there, many kinds of
molecules/symbols may be used.

Thus, SN P systems should be seen as extending the framework of membrane
computing so as to account for some computational principles present in spiking
neural networks.

SN P systems can be used in many ways for the purpose of computing. Because
of the one letter “spike” alphabet {a}, it is natural to use them as generators of
sets of numbers. This has been done in [5] already, and for this purpose one also
designates one of the neurons as the output neuron by providing it with an “outgoing
edge”: each time that this neuron spikes, a spike is sent to the environment of the
system which is a natural place to collect the output.

In the current paper we continue this line of research by investigating in a
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systematic fashion a number of mechanisms/methodologies that allow to use SN P
systems for computing sets of numbers. The basic notion behind these mechanisms
as well as behind the mechanism considered in [5] is the notion of spike train,
which comes from spiking neural networks. Intuitively speaking, a spike train is the
sequence of spikes emitted by the output neuron, where for each spike the time unit
when it is emitted is indicated. Then, as the set of numbers associated with a spike
train we can consider the times t1,¢2, ... when the spikes are emitted by the output
neuron, or the distances between spikes, to — t1,t3 — ¢, ..., with two possibilities:
considering all spikes of a spike train or only the first k, for a prescribed k. There
also are other possibilities, which we will discuss in Section 4. (It is worth noting
that the idea of considering the number of steps elapsed between two events — here,
sending out of the system a spike — can be considered also for other types of P
systems and, actually, it has been previously investigated, e.g., in [3].)

For all these ways of defining sets of natural numbers computed by an SN P gys-
tem, we prove here two types of results, thus extending the results from [5]: (i) SN P
systems without a bound on the number of spikes present in their neurons charac-
terize the computing power of Turing machines, but, (ii) if such a bound is imposed,
then the computing power decreases drastically - we obtain a characterization of
semilinear sets of numbers.

In the next section we introduce some notions and notations from computation
theory that we need in the sequel. Then, in Section 3 we recall from [5] the definition
of spiking neural P systems and fix the notation we will use in this paper. In Section
4 we introduce various sets of numbers that we associate with an SN P system, and
in Section 5 we illustrate the basic notions using three examples. The equivalence
of SN P systems without a bound on the contents of neurons with Turing machines
used for computing sets of numbers is proved in Section 6, while in Section 7 we
give a characterization of semilinear sets of numbers in terms of SN P systems with
a bound on the contents of neurons. The paper ends with a discussion of open
problems and research topics in Section 8.

2. Prerequisites

We assume the reader to be familiar with basic language and automata theory, as
well as with basic membrane computing. Thus we recall here only some notions that
we will use in order to establish the notation for this paper. For a comprehensive
reference to formal language theory and membrane computing, we refer the reader
to {11} and [9], respectively (and to [12] for the most updated information about
membrane computing).

For an alphabet V', V* denotes the set of all finite strings of symbols from V, the
empty string is denoted by A, and the set of all nonempty strings over V is denoted
by V*. When V = {a} is a singleton, then we write simply a* and a* instead of
{a}*,{a}". The length of a string x € V* is denoted by |x|.

We also consider infinite sequences of symbols over a given alphabet V; their
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set is denoted by V¥. When V' = {a}, we write a* instead of {a}*. Throughout the
paper, we use “string” to refer to finite strings and “infinite strings/sequences” to
refer to the elements of V.

The family of recursively enumerable languages {of finite strings) is denoted by
RE and the family of Turing computable sets of natural numbers is denoted by
NRE (it is the family of length sets of languages in RE). Similarly, the family of
semilinear sets of natural numbers is denoted by NREG (this is the family of the
length sets of regular languages).

A regular expression over an alphabet V is defined by: (i) A and each a € V' is
a regular expression, (ii) if Fy, Ey are regular expressions over V, then (EF1)(E2),
(E1) U (E2), and (E;)7T are regular expressions over V, and (iii) nothing else is a
regular expression over V. Clearly, we assume that the parentheses are not in V;
as a matter of fact, we will often omit “unnecessary parentheses”. Also, Ef U A
can be written as E}. With each expression E we associate its language L(E)
as follows: (1) L(A) = {A}, L(a) = {a}, for a € V, (ii) L((E1)(E?)) = L(E1)L(E2),
L((E))U(E2)) = L(E)UL(E>), and L({E1)T) = L(E1)T, for all regular expressions
E]_, EQ.

The operations used here are the standard union, concatenation, and Kleene +.
We also need below the operation of right derivative of a language L C V* with
respect to a string x € V*, which is defined by

Liz={yeV*|yze L}

The universality proof from [5] uses the characterization of NRE by register
machines (see [8]). We will invoke this proof below, but we do not give here the
definition of a register machine. Instead, we recall that such a machine M has a
finite set of labeled instructions, which can be ADD instructions (increasing the
value of registers by one), SUB instructions (decreasing the value of nonempty
registers by one), or the HALT instruction (for ending the successful computations).
A number n is generated by M if, starting with all registers empty and executing
the instruction with label Iy, the machine reaches the HALT instruction with all
registers being empty again, with the exception of register 1, which holds n.

Also, we do not recall any general concept from the membrane computing area,
although what follows is related to the so-called neural-like P systems - see details
in Chapter 6 of [9].

We close this section by establishing the following convention: when evaluat-
ing the power or comparing two number generating/accepting devices, we ignore
zero; this corresponds to a frequently made convention in grammars and automata
theory, where the empty string A is ignored when comparing two language generat-
ing/accepting devices.
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3. Spiking Neural P Systems

We recall now from [5] the computing device which we investigate here, without
mentioning again the neural motivation, but recalling informally the basic ideas,
those which make an essential difference from usual membrane systems: we work
with only one object, denoting a spike, a “quanta” of energy (an impulse of the
same intensity/shape) sent by a neuron along its axon to all neurons with which it
is linked through a synapse; this means that we have these neurons {single mem-
branes) placed in the nodes of an arbitrary graph, with one of the neurons called
the output one; depending on their contents (number of spikes accumulated), the
neurons either fire — and immediately or at a subsequent step spike, sending a spike
to the neighboring neurons — or forget the spikes they have; as a result, in the
environment we get a sequence of spikes, leaving the system (its output neuron)
at specific moments of times. This is called spike train, and this is the support of
information the computation of the system provides.

Formally, a spiking neural membrane system (abbreviated as SN P system), of
degree m > 1, is a construct of the form

II=(0,01,...,0m,s8yn, %),
where:

(1) O = {a} is the singleton alphabet (a is called spike);
(2) o1,...,0m, are neurons, of the form

g; = (n27R2)71 S 1 S m,

where:

a} n; > 0 is the initial number of spikes contained in o;
b) R; is a finite set of rules of the following two forms:

(1) E/a® — a;d, where E is a regular expression over a, ¢ > 1, and d > 0;
(2) af — A, for some s > 1, with the restriction that for each rule E/a® —
a; d of type (1) from R;, we have a® ¢ L(E);

(3) syn C {1,2,...,m} x {1,2,...,m} with (4,2) ¢ syn for 1 < ¢ < m (synapses
between neurons);
(4) io € {1,2,...,m} indicates the output neuron (i.e., oy, is the output neuron).

The rules of type (1) are firing (we also say spiking) rules, and they are applied
as follows. If the neuron o; contains k spikes, and a* € L(E),k > ¢, then the
rule E/a® — a;d can be applied. The application of this rule means consuming
(removing) ¢ spikes (thus only k¥ — ¢ remain in o;), the neuron is fired, and it
produces a spike after d time units (as usual in membrane computing, a global
clock is assumed, marking the time for the whole system, hence the functioning
of the system is synchronized). If d = 0, then the spike is emitted immediately, if
d = 1, then the spike is emitted in the next step, etc. If the rule is used in step t and
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d>1,theninstepst,t4+1,t+2,...,t+d—1 the neuron is closed (this corresponds
to the refractory period from neurobiology, [1]), so that it cannot receive new spikes
(if a neuron has a synapse to a closed neuron and tries to send a spike along it, then
the spike is lost). In step ¢ + d, the neuron spikes and becomes again open, so that
it can receive spikes (which can be used in step t +d + 1).

The rules of type (2) are forgetting rules, and they are applied as follows: if the
neuron o; contains exactly s spikes, then the rule a® — A from R; can be used,
meaning that all s spikes are removed from o;.

In each time unit, if a neuron o; is enabled (i.e., one of its rules can be used),
then a rule from R, must be used. Since two firing rules, F1/a®t — a;d; and
Ey/a? — a;dy, can have L(E;) N L(E3) # 0, it is possible that two or more rules
can be applied in a neuron, and then one of them is chosen non-deterministically.
Note however that if a firing rule is applicable, then no forgetting rule is applicable,
and vice versa.

Thus, the rules are used in the sequential manner in each neuron, but neurons
function in parallel with each other. It is important to notice that the applicability
of a rule is established based on the total number of spikes contained in the neuron.
Thus, e.g., if a neuron o; contains 5 spikes, and R; contains the rules (aa)*/a — @;0,
a® — a;0, a? — A, then none of these rules can be used: a° is not in L({aa)*) and
not equal to a® or a®. However, if the rule a®/a? — a;0 is in R, then it can be used:
two spikes are consumed (thus three remains in o), and one spike is produced and
sent immediately (d = 0} to all neurons linked by a synapse to o;.

The initial configuration of the system is described by the numbers
71,72, ..., Mm, of spikes present in each neuron. During a computation, the “state”
of the system is described by both by the number of spikes present in each neuron,
and by the open/closed condition of each neuron: if a neuron is closed, then we
have to specify when it will become open again. (Thus, the state of a neuron i is
described by a couple of numbers (n,, ¢;), where n; is the number of spikes present
in the neuron, and ¢; is the number of steps until having the neuron open; if ¢; = 0,
as it is the case initially, then the neuron is open, it can already use rules and receive
spikes from other neurons.)

Using the rules as described above, one can define transitions among configura-
tions. A transition between two configurations C1, Cs is denoted by Cy == C5. Any
sequence of transitions starting in the initial configuration is called a computation.
A computation halts if it reaches a configuration where all neurons are open and
no rule can be used. With any computation (halting or not) we associate a spike
train, the sequence of zeros and ones describing the behavior of the output neuron:
if the output neuron spikes, then we write 1, otherwise we write 0.

In the spirit of spiking neurons, as the result of a computation, in [5] one takes
the number of steps between two spikes sent out by the output neuron, and, for
simplicity, one considers as successful only computations whose spike trains contain
exactly two spikes. We will generalize this in the next section, also giving more
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precise definitions and notations for the result of a computation.

4. Considering Spike Trains

Let us place our discussion in the general framework of SN P systems which can spike
a non-bounded number of times along a computation (in particular, the computation
can be non-halting), and let us take into consideration all spikes emitted by the
output neuron during the computation.

Let II = (O,04,...,0m,8yn,ig) be an SN P system and let v be a computation
inIl,y = Cy = C; = C, = ... (Cy is the initial configuration, and C;_; == C;
is the ith step of v). In some steps a spike exits the (output neuron of the) system,
in other steps it does not. The spike train of computation -y is the sequence of steps 4
such that the system emits a spike out. We denote by st(v) the sequence of emitting
steps, and we write it in the form st(y) = (¢1,%2,...), with 1 <i#; <t2 < .... The
sequence can be finite (this happens if the computation halts, or if it sends out only
a finite number of spikes) or infinite (then, of course, the computation does not
halt). The set of all spike trains (over all computations) of II is denoted by ST(II).
If II is deterministic, that is, in each step at most one rule can be used in each
neuron, then there is only one computation in I, and so ST(I1) is a singleton.

We will use COM (IT) to denote the set of all computations of IT, and HCOM (II)
to denote the set of all halting computations of IT.

Of course, the set ST(II) itself can be considered as the result of the evolution of
I1, thus placing the investigation in the framework of infinite sequence processing,
considering the spike trains as sequences ¢1, {5, ... of natural numbers or as binary
sequences, with 1 written in moments ty,ts, ..., and 0 in all intermediate moments.
This latter possibility is investigated in [10]. Here we adhere to a more classic
framework, considering SN P systems as computing devices, which compute sets of
natural numbers (this was also done in [5]).

One can associate a set of numbers with ST(II) in several ways. Perhaps the
simplest is to take the set of all numbers #,¢2,... from all spike trains. Formally,
we get T(7) = {ti,t2,... | st(y) = (t1,t2,...)} and T(II) = U, T(7), where v
ranges over all computations with respect to II. Then, T"(II) is the subset of T'(II)
resulting from all sets T'(y) such that v is a halting computation. We will not
investigate this case in what follows (interesting connections with so-called time
constructible functions [2] can probably be made).

Then, like in [5], we can consider the intervals between consecutive spikes as
numbers computed by a computation, with several alternatives:

e Taking into account only the first two spikes:
No(Il) = {ta — t1 | vy € COM(II) and st{y) = {t1,t2,...)}.
o Generalizing to the first k > 2 spikes:
Ny(Ih={nln=t,—t;_1, for2<i<k,ye COM),
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st(y) = (t1,%2,...),and v has at least k spikes}.

Clearly, No(II) is a particular case of Ni(IT), but we have formulated it sepa-
rately because it was considered on its own in [5].
e Taking into account all spikes of computations with infinite spike trains:

N, ={n|n=t;—t;_1, fori>2,v€ COM(II)
with st(y) = (t1,%2,...) infinite}.
e Taking into account all intervals of all computations:

Nau(T) = | Ne(M) U N, (TD).
k>2
For N (II) we can consider two cases, the weak one, where, as above, we take into
consideration all computations having at least k spikes, or the strong case, where we
take into consideration only the computations having exactly k spikes. In the strong
case we underline the subscript k, thus writing N (II) for denoting the respective
set of numbers computed by II.
Two subsets of (some of) these sets are also of interest:

e Taking only halting computations; this makes sense only for Ng(II),k > 2,
and for N,yu(II) — the respective subsets are denoted by N}(II) and N[, (II),
respectively.

e Considering alternately the intervals:

Ne(ID) = {n| n=tap—tog_1, for k > 1,y € COM(I), and st(v) = (t1,t2,...)}.

This means that every second interval is “ignored”, we take the first one, we
skip the second interval, we take the third, we skip the fourth interval, and so
on. This is a useful strategy for computing outputs, because each “ignored”
interval can be used for performing “auxiliary checks”. This strategy can be
used for all types of sets, hence we get N2 (I}, N2(IT), N3, (II), as subsets of
N (I), N, (I1), N,y (I1), respectively.

Finally, we can combine the halting restriction with the alternate selection of in-
tervals, obtaining the sets N2(IT), for all o € {w,all} U {k | k > 2}, as well as
Npe(Il), for k > 2.

5. Three Examples

Before investigating the sets defined above, we will consider some examples.

The first example is rather simple — it is the system II; presented in a pictorial
way in Figure 1.

As already introduced in [5], we will represent SN P systems as graphs, whose
nodes represent neurons, and edges represent synapses. Then in each node we specify
all rules as well as the current number of spikes in the neuron represented by this
node. We also attach an outgoing arrow to the output neuron. Moreover, we will
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use the following simplification in specifying the firing rules of a neuron. If a firing
rule is of the form E/a® — a;d where L(E) = {a°}, then we write this rule in the
form a® — a;d.

With this convention, our first example is given in Figure 1.

Fig. 1. A simple SN P system with an infinite spike train.

Thus, there are two identical neurons, each one firing and spiking at each mo-
ment of time and sending the spike to the other neuron, thus “reloading” each
other continuously. Moreover, each time that neuron 2 sends a spike to neuron 1, it
also emits a spike to the environment. Therefore, the functioning of the system is

deterministic, only one spike train is produced.
Thus,

ST(IL) = {(1,2,3,4,.. )},
NEM,) = {1}, for all o € {w,all} U{k | k > 2},
and either 8 = a or 3 is omitted,
NE() =0, for all @ € {w,all}U {k| k > 2}, and B € {h,ha}.

The pair of neurons from Figure 1 will be used as a “sub-system” in many of the
systems given in this paper, as a step by step supplier of spikes to other neurons. We
use them already in the following example, given in Figure 2, and formally defined
as follows:

II; = (0, 01,02,03,04, 05, syn, i),
0= {a},
o1 = (1,{a — a;0}),
og =(1,{a — a;0, a— a;1}),
o3 = (0,{a — a;0, a® — A}),
o4 = (1,{a — a;0}),
os = (1, {a — a;0}),
syn = {(1,2),(2,1),(1,3),(2,3),(3,4),(3,5), (4,5), (5,4)},
i0 = 4.

This system contains two “modules” consisting of pairs of neurons which sustain

each other: neurons 4 and 5 are exactly as the two neurons from II;, while neurons
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Fig. 2. A non-deterministic SN P system with an infinite spike train.

1 and 2 behave like the two neurons from II; as long as neuron 2 fires by means
of the first rule, a — a;0 (thus, this neuron behaves non-deterministically, and it
is the only non-deterministic neuron in II). Let us analyze the functioning of Il
beginning with the output. As long as (the output) neuron 4 contains exactly one
spike, it fires and sends out a spike. This happens already in the initial moment,
hence all spike trains begin with a sequence of 1’s. The spiking of neurons 4 and 5
halts only when they get spikes from neuron 3. In turn, neuron 3 spikes only if it
contains only one spike, but as long as both neurons 1 and 2 send a spike to neuron
3, it will contain two spikes and use the forgetting rule a®> — . Neurons 1 and 2
send two spikes to neuron 3 as long as both of them use the rule a — «;0.

However, at any moment, starting with the first step, already neuron 2 can use
the rule a — a;1. When this happens, then at this step neuron 2 sends no spike to
neurons 1 and 3, and moreover it gets blocked. But then none of neurons 1 and 2
will spike in the next moment, while neuron 3 has only one spike and so it will fire.
In the next step, neuron 3 uses the rule a — a;0, and so it sends a spike to each
of neurons 4 and 5. From now on these two neurons are idle, because they do not
have rules for more than one spike. Thus, neuron 4 does not emit spikes anymore,
and the spike train continues to infinity with 0’s.

Note that the internal functioning of IIs does not stop after neurons 4, 5 get
blocked: the spike of neuron 2, produced by the rule a — a;1, will be sent in the
next step to both neurons 1 and 3, and both these neurons fire again; neuron 1
sends spikes to both neurons 2 and 3, which also fire, and the process continues
forever, sending spikes to neurons 4 and 5, which never fire again.

Even if neuron 2 fires in the first step by using the rule a — a; 1, neurons 4 and
5 are blocked only from step 3 on, hence all spike trains start with at least two 1’s.
Consequently,
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ST(Ily) = {(1,2,3,...,k) | k > 2}.

Note that a spike emitted by a neuron can branch into two or more spikes, if
there are several synapses leading out of the neuron: the number of branched spikes
equals the number of outgoing synapses. Such a branching is present in II; for
neurons 1, 2, 3 (also for neuron 4 we have a branching where one spike is emitted

as an output).

Let us also consider now the SN P system II3 given in Figure 3.

Fig. 3. An SN P system computing an arithmetical progression.

In the initial configuration there are spikes in neurons 1 and 6 (neuron 6 is
the output neuron). Neuron 1 cannot use any rule, while neuron 6 fires and spikes
immediately. Its spike exits the system and it also reaches neuron 1, which now can
fire using the rule a* — a;0. The spike of neuron 1 reaches both neurons 2 and 3.

If neuron 2 uses the rule a — q; 0, then neuron 6 does not fire again, because it
has to forget the two spikes (from neurons 2 and 3), but neuron 1 fires and spikes
again. The spike of neuron 3 is also sent to neurons 4 and 5, which pass the spikes
to neuron 6, which forgets them. The process is repeated an even number of steps.



Spike Trains in Spiking Neural P Systems 987

If neuron 2 uses instead the rule a — a; 1, then in the next step neuron 1 receives
only one spike, from neuron 3, and forgets it. In turn, neuron 6 fires, using the spike
received from neuron 3; besides the spike sent out, it also sends a spike to neuron
1. In the next step, also the spike of neuron 2 reaches neurons 1 and 6, but neuron
6 receives at the same time the two spikes from neurons 4 and 5. This means that
now neuron 1 has two spikes, and neuron 6 has three (it also gets two spikes from
neurons 4 and 5). While neuron 1 fires and spikes, neuron 6 forgets its two spikes.
This means that the process can be repeated, starting with the spike of neuron 1,
which happens in the next step after neuron 6 spikes. But this is exactly as in the
initial configuration.

It is easy to see that exactly 2¢ + 1 steps, for some i > 1, elapse between two
consecutive spikes of neuron 6. Thus, all computations v of I3 last forever and
NA(Ms) = {1+2i | i > 1}, for all @ € {w,all} U {k | k£ > 2}, and for 3 either
missing or equal to a (not for halting cases).

Table 1. A computation of the system from Fig. 3.

Neuron 1 2 3 4 5 6 env
initial a® — — — — a
Step 1 — — — — — a—a0| a
a3a6 — — _— —_ —_—
Step 2 | a* — ;0 — — — — —
_ ay a; _ — _
Step 3 — a—a;0 | a—a;0 — — —
asa3 —_ - as as asa3
Step 4 | a? — a;0 - — a—a0|a—a0]| a®— )\
- ay ai — - ayas
Step 5 — a—al|a—a0 — — a’ — A
as — — as as as
Step 6 a— A spiking — a—a;0a—a;0 | a—aq0 | a
a2Q¢ — — — — asa4as
Step 7 | a® — a;0 — — — — a® — A
_ a; a; _ — _
Step 8 — a—a;l | a—a0 — — —
as — — as as as
Step 9 a— A spiking — a—a;0la—a0]|a—a0] a
as20a¢ — — - —_ asa40asy
Step 10| a® — a;0 — — — — a® > A
_ a; a3 _ _ .

Because the work of the system Il3 is rather intricate to follow, we also provide a




988 (. Pdun, M. J. Pérez-Jiménez & G. Rozenberg

step by step analysis of a possible computation in Table 1. Ten steps are considered
here, with spikes sent out in steps 1, 6, and 9 (hence in-between the three spikes we
compute numbers 5 and 3, respectively). In each row of the table, we give for each
neuron the used rule and below it the spikes present in that neuron after completing
the step, with recently received spikes having subscripts which indicate the origin
of those spikes; if no rule is used, or no spike remains, then we use a dash. Note
that the configuration of the system is the same at the end of steps 2, 7, 10, hence
immediately after spiking, which confirms the observation made above about the
possibility of iterating indefinitely this behavior of IIs.
We will return to this example in Section 7.

6. Universality Results in the General Case

As expected (in view of [5]), also when we consider sets NZ(IT), defined in Section
4, we obtain characterizations of Turing computability.

In Table 2 we synthesize all the results we know about the families of sets N2 (II)
(“univ” means “universality”, with the indication of the theorem where the respec-
tive case is settled, and a line stands for a case which does not make sense). The
notations for the respective families are as follows: Spik2 P, (rulex, consy, forgy) is
the family of sets NS(II), for all systems II with at most m neurons, each neuron
having at most k rules, each of the spiking rules consuming at most p spikes, and
each forgetting rule removing at most ¢ spikes; then, o € {all,w}U{k,k | k > 2}, and
[ either omitted or belonging to the set {h,a, ha}. As usual, a parameter m, k,p, ¢
is replaced with # if it is not bounded. Note that in Table 2 we do not give the
specific parameters m, k, p, ¢ for families of the form Spik? P, (rulek, cons,, forg,),
but these parameters can be found in the statements of the appropriate theorems.

Table 2. Results known about families Spikng(rulek, consp, forgy).

B | arbitrary halting alternate | halting & alternate

a

2 univ [Th. 1] [ univ [Th. 1] | univ [Th. 1] univ [Th. 1]

2 univ [Th. 1] | univ [Th. 1] | univ [Th. 1] univ {Th. 1]

k univ [Th. 5] | univ [Th. 6] | univ {Th. 5] univ [Th. 3]

k univ [Th. 8] | univ [Th. 6] | univ [Th. 8] univ [Th. 3]

w univ [Th. 5 — univ [Th. 2] —

all univ {Th. 1] | univ [Th. 1] | univ [Th. 1] univ {Th. 1]

Several of the results mentioned in Table 2 are a direct consequence of the
universality result from [5], of the proof of this result in [5], and of the previous
definitions.
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Indeed, in the notation of the present paper, the universality result from [5] is
written in the following form:

Theorem 1. Spikgp*(rulek, consy, forgy) = NRE forallk >2,p>3,q> 3, and
etther 3 = h or B is omitted.

Then, in the proof of this equality from [5] one constructs an SN P system II
which simulates a register machine M; the computations of II either never halt
(when they correspond to non-halting computations in M), or spike exactly twice,
and then halt. This means that for IT we have

No(I) = Np(II) = N§(II) = NS(II), for all 8 € {h,a, ha}.

This fills in the first two lines from the table (that is why we mention Theorem 1
as the source of these results).

Since for the system II constructed in the proof from [5] we have N, (II) =
N&(11) = B, the arguments above also imply the last row of Table 2.

Let us now consider the two universality results mentioned in the w line. The
simplest case is that of the alternate sets of numbers.

Theorem 2. Spik? P, (ruley,consy, forgy) = NRE for allk > 2,p > 3,q > 3.

Proof. This is again a consequence of the proof of Theorem 1 from {5]. Take the
system II constructed there for simulating a register machine M (its work starts
from the neuron labeled by g, the initial label of M, and it ends with the output
neuron, g, spiking twice, at an interval of length n for some n € N(M)). We add
two new neurons with labels ¢;, ¢o as indicated in Figure 4. They have no spikes at
the beginning and contain the rule a? — ;0. Each of these neurons receives the
spikes emitted by neuron iy and sends spikes to the neuron . When iy spikes first
time, the new neurons do not fire, they keep the spike until iy spikes again. At that
moment (the computation in I halts, and) both ¢; and ¢, spike, and this fires again
the initial neuron of Il. In this way, another computation of M is simulated.

Let II' be this new system. Of course, if a computation in the register machine
M does not halt, then the computation in I1’ does not halt, but it spikes only
a finite number of times, hence does not contributes to N%(II'). However, there
is a computation in II'’ where we always “guess correctly” and we always start a
new computation in M which halts — maybe we start again and again the same
computation. Hence it suffices to have N(M) non-empty, and it is not necessary
that N(M) is infinite. For such a computation v, st(v) is infinite and the alternate
distances between spikes give exactly the set N(M) = NI(II), that is, N*(IT') =

N(M).
The observation that the new neurons have rules of the complexity required by
the parameters in the statement of the theorem completes the proof. 0

The previous construction can be supplemented with a module which can stop
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l
0 a? = a0 I

a— A

Fig. 4. The idea of the construction from the proof of Theorem 2.

the computation after a given number of spikes, thus also covering the cases N/¢(II)
fora e {k,k| k> 2}.

Theorem 3. Spik!®P,(rulen,consy, forgy) = NRE for all h > 2,p > max(3, k),
g>3, andae{kk|k>2}.

Proof. As in the previous proof, we start again from the system II constructed in
the proof of Theorem 1 from [5], making the observation that the output neuron of
IT has only the rule a — a;0. Now, the idea is to collect the spikes sent from this
neuron in a new neuron, dj, counting to k; when k spikes are collected, this neuron
will fire, its spike will be multiplied by the three neighboring neurons, dg,ds, ds,
which spike and send their spikes to neurons c¢;, ¢z, which are used as in Figure 4
to restart the work of II; moreover, ds and ds send spikes also to the output neuron
of II. In this way, neurons ¢y, ¢s, and ip can never use again a rule, because they
collected too many spikes insides, which means that II halts after sending out k
spikes. The suggested construction is illustrated in Figure 5.

It is instructive to note that the fact that neuron ig gets “flooded” three steps
after the kth spike does not cause problems for the system, because also IT needs at
least three steps before spiking again: one step when ig fires and sends the spikes
to ¢y, ca, one step when ¢; and ¢ spike and send their spikes to neuron ly, and one
step when neuron ly spikes, restarting the work of IT (we also have Iy # o). O

The above construction does not work for the halting non-alternating case, which
we will discuss later.

We give now a technical lemma which will be useful in settling three more cases
from Table 2.

Lemma 4. Let II be an SN P system such that each computation -y of II has st(y)
either empty or st(y) = (t,t + n). There is an SN P system II' with the following
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Fig. 5. The idea of the construction from the proof of Theorem 3.

properties:

(1) for each computation v of I with st(y) = (¢,t -+ n), there is a computation '
of IU' such that st(y') = (t,t + (n+1),t+2(n+1),...);

(2) each computation ' of Il either never spikes, or has st(v') = (t,t+ (n+1),t+
2(n+1),...) for {t,t + n) being the spike train of a computation of II.

Proof. We will sketch (somewhat informally) the construction behind the proof —
it is illustrated in Figure 6. To the given system IT with the output neuron 4o, we
add 13 further neurons, grouped in three modules of four neurons each, as well as
a new output neuron, out. The three modules, indicated by dashed boxes in Figure
6, work as follows.

The module Initialize loads 2n+1 spikes in neuron m, provided that the system
IT spikes at times ¢ and t + n, for some n > 1. This happens in the following way.
All new neurons are empty at the beginning. When the system II spikes first time
(moment t), a spike arrives in each of the neurons e;, ¢z, c3. Then ¢z and c3 fire
and spike immediately; their spikes are sent both to neuron m; and to each other.
Therefore, in the next step, both ¢z and c3 spike again, and the process is repeated
as long as II does not spike for the second time.

Neuron ¢; keeps the first spike until II spikes again — this happens at the moment
t + n. Simultaneously, c2 and c3 spike, hence in the next step they have to use the
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Fig. 6. The idea of the proof of Lemma 4.

forgetting rule a®> — X, because both of them contain two spikes. At the same time,
neuron c; fires for the first (and the only) time. This means that altogether neuron
my receives 2n + 1 spikes.
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During all this processing, neuron m; contains an even number of spikes, except
for the last moment, when it gets an odd number of spikes. When neuron m; receives
a spike from c¢1, also ¢4 receives a spike at the same step.

This initiates the module Move m; to m}. This module moves the contents of
neuron m; into neuron mj, and in the final step of this moving process it sends a
spike to the output neuron cut. This causes system II’ to spike, and also initiates
the module Move m} to m;.

This whole process is carried out in the following way. At some moment, both
neuron m; and neuron ¢4 spike. This means that both neurons meo, m3 get two
spikes each. They fire and spike, which results in sending two spikes to neuron m/,
as well as in sending one spike to each other. This happens simultaneously with the
firing of neuron m; — which fires as long as at least three spikes are inside (note
that after each use of the rule a(aa)®/a? — a;0 the number of spikes in neuron
my remains odd, hence the rule can be used again). The process is repeated, and
in each step the contents of m; decreases by 2 and that of neuron m/ increases by
two.

When the contents of neuron m, is exhausted, hence the rule a® — a;0 is used,
two more spikes are sent to neuron mj, but in the next step only neuron mg fires
{both mq and mg contain one spike, and my has to forget it). In this way, neuron
m} gets 2n + 1 spikes, and this happens exactly at the moment when also neuron
my is ready to spike: as long as both m; and mg spike, neuron my forgets the two
spikes it receives, but when only mg spikes, neuron my fires. The spike of m4 reaches
both the output neuron out — hence the system spikes, and the neurons mj, mj of
the module Move m) to m;.

The task of this module is analogous to that of the module Move m; to m}: the
contents of m} is moved to neuron m; and at the end a spike is sent to the output
neuron.

Note that in the same way as neuron ¢4 has sent spikes to mo and ms3 when
initiating the module Move m; to m{, now my sends spikes to neurons mj, mj%, thus
initiating the module Move m] to m;. Similarly, on completion of the task of this
module, its neuron m) sends spikes to neurons ms, mg, triggering again the module
Move my to mj.

The computation in II' never stops, and between any two consecutive spikes we
have n + 1 steps: in n steps we use the rules of either m; or of m}, hence both mo
and mg, or mj5 and mj, respectively, are fired (thus 2n spikes are moved), and one
further step is necessary for sending the last spike from mg or mj, to m} or my,
respectively.

It should be clear from the above explanations that each computation v of I,
with st(II) = {¢,t + n), is “prolonged” to an infinite computation in IT', spiking
repeatedly, and, conversely, each computation in I’ corresponds to a computation
in IT in the way stated in the lemma. 0
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This lemma can be used to obtain again universality results for the cases we
consider as consequences of Theorem 1 (the case of Spik®P.(...) is covered again):

Theorem 5. SpikgP*(rulek,consp,forgq) = NRFE forallk >2,p> 3,9 >3, and
forae {w}U{k|k>3},8=a orp is omitted.

Proof. Let Q € NRE be an arbitrary set and let @' = {n — 1| n € Q}; clearly,
also Q' € NRE. According to Theorem 1 there is an SN P system II such that
NXMTI) = Q'. Applying Lemma 4 to II we get a system II’ as in the statement of
Lemma 4. Clearly, N,(IT') = Ni(IT') = {n+1 | n € N}(II)} = Q — {1} for all
k> 2. -

If 1 ¢ Q, then we have Q = Q — {1} € SpikB P.(rule, cons,, forg,) with k,p, q
and «, 8 as in the theorem, and we are done.

If 1 € @, then we also consider the system II; from Figure 1, for which we
have N, (I1;) = Ni(II;) = {1}. Now, we just observe that the families of the form
Spikf P, (ruley, cons,, forgg) are closed under union: the proof of the corresponding
result from [5] (carried out there for Spik% P.(ruleg,cons,, forg,)) is valid also in
our cases. Then, we perform the union construction from [5] for I’ and II;, obtaining
a system II” which computes exactly @, both as N,(II") and as Ni(I1"), and in
both cases also for the alternating mode.

Thus, the theorem holds. |

We can now combine the constructions from the proofs of Theorem 3 and of
Lemma 4: a “flooding” module, like the one composed of neurons di,ds,ds, ds in
Figure 5, is added to the construction from Figure 6, sending three spikes to neurons
my, my, and out. In this way, both “triggering” neurons my4 and m/ get blocked after
k spikes, hence the system halts. Consequently, we also obtain the following result,
which completes the result from Theorem 3:

Theorem 6. SpikZP*(ruleh,consp,forgq) = NRE for all h > 2,p > max(3, k),
q>3, and e {k,k|k>2}.

Somewhat conversely to Lemma 4, the following auxiliary result ensures the
passage from infinite spike trains to trains of a specified length.

Lemma 7. Given an SN P system Il we can construct an SN P system Il such
that:

(1) for each computation v of II with st(y) = (t1,t2,...,t5), j < k, there is a
computation ' of I' such that st(y') = (t1 + 2,t2 +2,...,t; +2);

(2) for each computation v of Il with st(y) = {(t1,t2,...,tk,...), there is a compu-
tation ' of II' such that st(v') = (t; + 2,12+ 2,... 1k + 2);

(8) each computation v of II' either (i) never spikes, or (i) has st(v') = (t1 +
2,ty +2, ...,t; +2) for some computation v in II with st(vy) = (t1,t2,...,t;),
J <k, or (i) has st(v') = (t1 + 2,t2 + 2,...,tx + 2) for some computation vy
in 11 with st(y) = (t1,t2, ..« thy-. o).
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Proof. For a given £ > 1 and an SN P system II, we construct the SN P system
Il in the way indicated in Figure 7. The spikes of ig, the output neuron of I, are
sent to both new neurons ¢; and ¢;. While ¢; fires and spikes immediately, thus
just delaying by two steps the moments when II spikes, neuron ¢g accumulates the
spikes until it collects k + 1 spikes. Then cq starts to fire, hence in the new output
neuron, out, we get two spikes at each moment that II spikes, which means that
the neuron out forgets all spikes beginning with the (k + 1)th spike. Thus, if the
computation in II had a spike train of less than k spikes, then all these spikes are
sent out, but if there are more than k spikes, then they are truncated to the first k&
ones. O

11
)
1 / C2

a— a;0

a® — A
out

Fig. 7. The idea of the proof of Lemma 7.

Theorem 8. SpikgP*(rulek, consy, forgg) = NRE for allk > 2,p > 3,¢ > 3, and
for B =a or B is omitted.

Proof. This is a direct consequence of Lemma 4, Lemma 7, and of Theorem 1.
Indeed, take a system II such that NJ(II) is a given set from NRE. We apply
Lemma 4 to this system as well as the ﬁossible completion by union as in the proof
of Theorem 5 obtaining a system II’ whose computations just repeat spiking at
identical intervals. Now, to II’ we apply the construction from Lemma 7, obtaining
a system II"” with all spike trains truncated at exactly & spikes (this is the case,
because the spike trains of II' are all infinite). Then, it is clear that in both the
arbitrary and the alternate modes we compute the same set of numbers. O
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The construction from the proof of Lemma 7 does not stop the functioning of
IT', but only the emission of spikes, hence we do not get the universality also for
the halting cases (alternating or not). In turn, the construction from the proof of
Lemma 4 simply prolongs the computation indefinitely. It is for this reason that in
the halting case we had to use a different technique, viz., the one from the proofs
of Theorems 3 and 6.

In some sense, the above proofs for the w cases based on Lemma 4 are not “fair”,
because although the computations are infinite, the intervals between consecutive
spikes are identical, each computation contributes only one number to the computed
set. This motivates the following notions of fairness (we call this “coherence”):

e A system II is said to be strongly w-coherent if for all computations 3, vz in IT
we have N(v1) = N(¥2), where for any computation v with st(y) = (t1,%2,...),
N(y) = {t; —ti-1 | © > 2}. (Note that this does not mean that the two
computations have the same spike trains, but only that the sets of intervals
between consecutive spikes are the same.)

e A gsystem II is said to be weakly w-coherent if there is a computation v in IT
such that N(y) = Nyy(II) (that is, there is a computation which provides all
numbers which all other computations can provide).

Of course, the strong coherence implies the weak coherence: in a strongly w-
coherent system all computations fulfill the property of weak coherence.

The proofs above do not take care of these properties; extending the results in
Table 2 to weakly and strongly coherent systems remains an open problem.

7. Spike Trains in the Case of Bounded Systems

We will investigate now only sets of numbers which can be computed by com-
putations with a bounded number of spikes in any neuron. Thus, we will con-
sider families Spik? P, (ruleg, consg, forgy,bound,), which correspond to families
SpikB P, (ruleg, consq, forgp), with the additional restriction that for an SN P
system II we consider sets of numbers of the form N, (11, s), resulting from compu-
tations where each neuron can contain at most s spikes (if a computation reaches a
configuration where a neuron has more that s spikes, then this computation aborts
and provides no result) — such computations are called s-bounded.
The following characterization of semilinear sets of numbers was proved in [5]:

Theorem 9. NREG = S’pikgP*(rulek,consq, forgy, bound,), for allk > 3, ¢ > 3,
p>3, and s > 3, with = h or 3 is omitted.

The proof of the inclusion sz’kg P, (ruleg,consy, forgy,bound;) C NREG in
[5], can be extended in a direct way to a proof for the inclusion SpikP P, (rule.,
Ccons., forg.,bound,) C NREG for all a and 3 as considered here.

Unfortunately, we cannot use the technique from the previous section in order
to extend the proof of the converse inclusion, NREG C Spikg P, (ruleg, consg,
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forgp, bound), from the case a = 2,5 = h to other cases, because the proof of
Lemma 4 introduces an unbounded number of spikes in the neurons. However, the
steps used in [5] for proving this inclusion (for @ = 2 and 3 = h) can be modified,
for cases k, k, and w, also for the alternating definition of the computed set, so a
result as that in Theorem 9 is true also for other cases than those covered by the
theorem.

Let us consider now each of these steps.

By Lemma 8.2 from [5], singleton sets {n},n > 1, are in Spik}Pi(rules,
consy, forge,bound;). Now, Lemma 4 applies, growing the number of spikes to
2n + 1, hence to a bounded amount. Therefore, singleton sets are in the family
SpikB P4(ruleq, conss, forga, boundan1).

Lemma 8.3 from [5] proves that each arithmetical progression {ni | i > 1} with
n > 3 is in Spikl P, o(rules, conss, forgs,bounds). The computation of the SN P
system II used in the proof in [5] halts after the second spiking, but this can be
avoided by replacing the rule a® — X from neuron 1 of II with the rule ¢® — ;0. In
this way, after any spike the system is “re-initialized” and will spike again after a
number of steps of the form ni for some ¢ > 1. Thus, each arithmetical progression
of the above form belongs to all our families Spik:gpm(rulek, consg, forgy, bound,)
with 8 ¢ {h, ha}.

However, the passage from “pure” arithmetical progressions, of the form {ni |
i > 1}, to arbitrary progressions, of the form {r + ni | ¢ > 1}, for some r > 1, is
based in [5] on a lemma saying that to the elements of a set Q € Spik} P, (ruley,
consy, forgg, bounds) we can add a constant r, thus obtaining the set {_j +r|je
@} which belongs to the same family. We do not see how to extend this lemma
also to systems with infinite spike trains — therefore we will prove directly that all
arithmetical progressions are in our new families.

This has been already shown for a particular case (r = 1, not covered by the
next lemma), in the example from Figure 3. The construction from this example
can be generalized in order to obtain the following result.

Lemma 10. Each arithmetical progression of the form {r +2i | i > 1}, r > 2, is
in Spik? P 4(rules, conss, forgs, bounds), for all o € {w,all} U {k | k > 2} and
either B = a or 3 omitted.

Proof. For a given r as in the statement of the lemma, we consider the SN P
system from Figure 8.

This system function in a way similar to the SN P system from Figure 3, with
one important difference: neuron 1 is “loaded” with two spikes only r steps after
the spiking of neuron 6. Therefore, the distance between any two consecutive spikes
which exit the system is of the form r + 24,7 > 1. The computation never stops. O

A similar assertion is valid for arithmetical progressions with the step greater
than 2.
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Fig. 8. An SN P system computing {r 4 2i | ¢ > 1}.

Lemma 11. Each arithmetical progression of the form {r+ni |i > 1}, r > 1,n >
3, is in SpikB Pryry2(rules, conss, forgs, bounds), for all o € {w,all}U{k | k > 2}
and B = a or 3 is omitted.

Proof. Let n,r be as in the statement of the lemma, and consider the SN P system
IT from Figure 9.

The functioning of II is somewhat similar to the functioning of the SN P system
from Figure 8, with the output neuron “loading” neuron 1 after r time units, and

with the cycle through neurons 1,2,...,n—2,n—1,n repeated an arbitrary number
of times, ensuring in this way that the distance between any two consecutive spikes
is of the form r + ni, for some 7 > 1. O

Lemma 8.4 (for each SN P system II there is an equivalent SN P system II'
containing initially only one spike inside one of its neurons) and Lemma 8.5 (all
families of numbers computed by systems with at least two rules, two consumed or
used spikes, as well as with at least two spikes contained in the neurons, are closed
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Fig. 9. An SN P system computing {r + ni | ¢ > 1}, for n > 3.

under union) from [5] are true also for our cases (with the same proofs as in [5]).

Using this “union lemma”, we ensure that all semilinear sets belong to families
of the form SpikZ P, (rulek,cons,, forgy, bound,) with small values of parameters
k, p, g, but not for the case when we consider computations which halt after spiking.
For instance, Lemma 7 ensures only that the system does not send out more than k
spikes, but the computation can continue forever. However, this can be fixed in the
case of bounded computations for any initial SN P system, not only for a particular
one, as was the case in the proof of Theorem 6:

Lemma 12. Given a system Il and a threshold s on the number of spikes in any
neuron, we can construct a system Il such that:

(1) for each s-bounded computation y of Il with st(y) = (t1,t2,...,t;), 7 < k, there
is a halting 2s-bounded computation ' of Il such that st(v') = (t1 +2,t2 +
2, .t +2);
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(2) for each s-bounded computation v of I with st(y) = (t1,t2,...,tx,...}, there
is a halting 2s-bounded computation v of II' such that st(y') = (t; + 2,y +
2.tk +2);

(3) each computation ' of II' either (i) never spikes, or (ii) st(y') = {t1 + 2,2 +
2,...,t; +2) for some computation vy in II with st(v) = (t1,¢2,...,t;), § <k,
or (i) st(y') = (t1 + 2,t2 + 2,... ¢k + 2) for some computation vy in I1 with
St(")’) = <t1,t2, PN ,tk, .. >

Proof. For a given £ > 1 and an SN P system II we construct the system II’ as
follows (without loss of generality, we may assume that all rules of IT are of the form
a’ — x, for some j < s, because only such rules can be useful in computations —
hence we can discard all rules dealing with more than s spikes, also keeping from
the languages of regular expressions only the strings of length at most s).

— We add the neurons with the labels out (the output neuron of IT') and
1,2,...,s,5+ 1, where all of them are empty in the beginning.

— Neuron out contains the rule a — a;0, and each neuron 7 € {1,2,...,s + 1}
contains the rule a*/a — a;0.

— We add the following synapses:
(ig,0ut) and (ig,1),1 <1 <s+1,
(t,1) for all 1 < i < s+1, for | = out, and for all | which are labels of neurons
in II.

— To each neuron of II as well as to the neuron out we add the rules
astt o )\ forall 1 <i<s+1.

The so constructed system II' functions exactly as II, except that after spiking k
times all neurons of IT as well as the neuron out are “flooded” by s + 1 spikes, and,
irrespectively of the number of spikes contained in each neuron (from 0 to at most
s), they have to forget all of them. Note that the rules a*** — X cannot be used
before spiking & times, and that no initial rule of IT can be used in the presence of
more than s + 1 spikes. Clearly, the system II’ halts after k spikes. 0

Using this lemma, results about the sets Ni(II) can be transferred to the sets
Ni(II) — in case that computations are bounded.

Combining all the results from this section, we can state the following charac-
terization of semilinear sets of numbers.

Theorem 13. NREG = SpikgP*(rule*,consq,forgp,bound*), forallg > 3,p >
3, and for all a € {w,all} U{k,k | k > 2}, and 8 € {h,a,ha} or B is omitted.

This time we cannot bound the number of rules, because of the proof of Lemma
12, neither give a precise upper bound on the number of spikes present in neurons,
because of the way that singleton sets are computed.
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8. Discussion

In this paper we have continued to investigate SN P systems introduced in [5].

Although we have settled here all questions about the sets of numbers that we
have considered (universality as in Table 2, characterizations of semilinear sets of
numbers as in Theorem 13), we believe that this is only the beginning of a systematic
study of SN P systems. A lot of questions must be answered, even if we consider
only the issue of computing sets of numbers by SN P systems.

To begin with, one can consider various alternative definitions of (various fea-
tures of) SN P systems. Here is an example of a possible change in the basic defin-
ition which can be easily handled. Instead of (or in combination with) considering
a time interval between firing and spiking (hence a delay in emitting the spike),
it is also natural to consider a delay in transmitting a spike along a synapse. This
can be easily formalized by associating natural numbers (delays) to synapses, and
assuming that a spike reaches the destination with a given delay. However, it is
easily seen that this feature can be handled by SN P systems. A way to do it is to
consider intermediate neurons: if it takes &k time units for a spike to get from neuron
o to neuron o’, then we add k& — 1 intermediate neurons, each one with the single
rule a — a;0, thus only “forwarding” the spike ahead, which takes one time unit.

Not so clear is a way to address some other issues. For example, one can require
various kinds of “structuring” the neurons/synapses graph. What is the power of SN
P systems with this graph being, e.g., acyclic, or being “almost a tree” (in the sense
that the neurons are arranged in the nodes of a tree, but we also allow additional
synapses between neurons at the same depth level of the tree). Then, what is the
effect of imposing bounds on the in-degree and/or the out-degree of the graph? In
many of the examples and the proofs from this paper we deal with systems that
have a limited in- or out-degree; still the problem whether we can have these degrees
bounded by 2 (without losing the computing power) remains open.

A number of technical problems concerning the current model remain still open.
For example: Can the forgetting rules be avoided? Can the delay in spiking be
avoided (i.e., can we consider only rules with delay 0)? Note that the forgetting rules
provide ways of “cleaning” the neurons without spiking, while the delay between
firing and spiking does not only keeps a spike “hidden”, but it also keeps a neuron
closed (so that all spikes sent to this neuron “disappear”). Then, what restrictions
can be imposed on the regular expressions used in firing rules, without restricting
the computing power?

A number of modifications of the SN P model, motivated either by compu-
tational or by biological considerations, seem to be interesting to consider. For
example: producing several spikes at the same time (hence using rules of the form
E/a® — a%d), considering also “anti-spikes” (besides a, to have also @, which, sent
to any neuron, will “annihilate” one local a), allowing also self-synapses (synapses
from a neuron to itself), providing ways to change the synapses graph during com-
putations.
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Finally, it is natural to consider infinite (sequences of symbols 0 and 1 associated

with) spike trains, which we do in a forthcoming paper ([10]).

Note. A careful reading of the paper by two anonymous referees is gratefully ac-

knowledged.
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