
On Spiking Neural P systems

August 29, 2008

Definition 0.1 Given a P system, Π, the computation tree, T (Π), associated with Π
is the rooted labelled tree defined as follows:

• The nodes of the tree are labelled by configurations of Π.

• The label of the root is the initial configuration of Π.

• The children of a node are labelled by the configurations obtained from the con-
figuration labelling the node through a step of transition.

The maximal branches of the computation tree associated with a P system are called
computations of the system.

It is possible to consider a orientation in the computation tree, T (Π), in a natural
way through the parent–child relation, that is, (u, v) is an oriented arc in the tree if
and only if u is the parent of v (or v is a child of u).

Definition 0.2 Given a neural P system, Π, the oriented graph associated with Π is
obtained from the (oriented) computation tree of Π, by identifying the nodes having the
same label.

1 About the SN P system Π from Figure 8

A configuration, C, of Π can be described by a (6 + r)–tuple C = (C(1), . . . , C(6 + r))
where C(j) is the multiset over {a} contained in neuron j, for 1 ≤ j ≤ 6, in neuron
cj−6, for 7 ≤ j ≤ 5 + r, or in neuron c′r−1 for j = 6 + r.

For each configuration C we denote by Cδ (with δ = 0, 1) the configuration obtained
from C applying in neuron 2 the rule a→ a; δ.

It is easy to prove that the only configurations sending a spike to the neighbouring
neurons are C1 and C1

r+3, and that the following equalities hold C00
r+4 = C0

r+2 and
C01

r+4 = C1
r+2. Hence, the oriented graph associated with the SN P system Π can be

depicted as follows:

1

.

.

.

Cr+2
1Cr+2

0
Cr+1

Cr

Cr−1

Cr−2

C1

C0

.
.

.

C

C

C

1

1

1

r+4

2r+1

2r

Cr+3
0

Cr+3
1

From the oriented graph associated with Π it can be observed that there is no
halting computation.

We denote by σ the path C0 → C1 → . . . → Cr → Cr+1 and we denote by τ the
path C1

r+3 → C1
r+4 → . . . → C1

2r+1 → Cr → Cr+1. Then, Length(σ) = r + 1 and
Length(τ) = r.

For each j ≥ 0, we denote by γ(j) the path

Cr+1 → C0
r+2

(j)
←→ C0

r+3 → C1
r+2 → C1

r+3

meaning that the computation goes through C0
r+2 exactly j times (for example, γ(0) is

the path Cr+1 → C1
r+2 → C1

r+3, γ(1) is the path Cr+1 → C0
r+2 → C0

r+3 → C1
r+2 → C1

r+3,
and γ(2) is the path Cr+1 → C0

r+2 → C0
r+3 → C0

r+2 → C0
r+3 → C1

r+2 → C1
r+3). Then,

Length(γ(j)) = 2(j + 1).
Taking into account that the computations of Π are the maximal branches of the

computation tree, for every computation, C, of Π there exists an infinite sequence of
natural numbers {ik : k ≥ 1} such that the computation C can be described through
the following path in the graph associated with Π:

σγ(i1)τγ(i2)τγ(i3)τγ(i4)τγ(i5)

We will denote that computation by C({ik : k ≥ 1}).
Now, we describe the spike train of computation C({ik : k ≥ 1}) ≡ C0 ⇒ C1 ⇒

C2 ⇒ C3 . . ., computing the sequence of steps i such that the configuration Ci sends a
spike out. We have:

t1 = 1; t2 = t1 + r + 2(i1 + 1); t3 = t2 + r + 2(i1 + 1); t4 = t3 + r + 2(i1 + 1); . . .
That is

{

t1 = 1
tk+1 = tk + r + 2(ik + 1)

Hence, Nall(C({ik : k ≥ 1}) = {tk+1 − tk : k ≥ 1} = {r + 2(ik + 1) : k ≥ 1}.

2

Theorem 1.1

(a) For each computation, C of Π we have N(C) ⊆ {r + 2i : i ≥ 1} (correctness).

(b) For each i ≥ 1 there exists a computation, C of Π such that r + 2i ∈ N(C)
(completeness). Moreover, The SN P system Π is weakly ω–coherent.

Proof.

(a) Let C be a computation of Π. Then there exists an infinite sequence of natural
numbers {ik : k ≥ 1} such that C = C({ik : k ≥ 1}). Then, N(C({ik : k ≥
1}) = {r+2(ik +1) : k ≥ 1} ⊆ {r+2i : i ≥ 1}. Hence Nall(Π) ⊆ {r+2i : i ≥ 1}

(b) Let us prove that there exists a computation C of Π such that N(C) = Nall(Π) =
{r + 2i : i ≥ 1}.

Indeed, let s be the infinite sequence {ik : k ≥ 1} such that ik = k − 1, for each
k ≥ 1. Then, N(C(s)) = {r + 2(ik + 1) : k ≥ 1} = {r + 2i : i ≥ 1}. Hence
{r+2i : i ≥ 1} = {r+2(ik+1) : k ≥ 1} = N(C(s)) ⊆ Nall(Π) ⊆ {r+2i : i ≥ 1}.

2

Proposition 1.1 For each q ≥ 2 we denote by Nq∗(Π) the set
{tq − tq−1| st(C) = 〈t1, . . . , tq−1, tq, . . .〉, for some computation C of Π}.

Then we have Nq∗(Π) = Nall(Π) = {r + 2i : i ≥ 1}.

Proof. If {ik : k ≥ 1} is an infinite sequence of natural numbers, then

N(C({ik : k ≥ 1})) = {r + 2(ik + 1) : k ≥ 1}

For each j ≥ 0 let Cj = C({ik : k ≥ 1}, where ik = j, for every k ≥ 1.
Let q ≥ 2. For each j ≥ 0 we have Nq∗(Cj) = {tq − tq−1} = {r + 2(j + 1)}. On one

hand,
{r + 2i : i ≥ 1} = {r + 2(j + 1) : j ≥ 0} = {Nq∗(Cj) : j ≥ 0} ⊆ Nq∗(Π).

On the other hand, Nq∗(Π) ⊆ Nall(Π) = {r + 2i : i ≥ 1}.
Hence, Nq∗(Π) = {r + 2i : i ≥ 1}. 2

2 About the SN P system Π from Figure 9

A configuration, C, of Π can be described by a (n+ r +2)–tuple C = (C(0), . . . , C(n+
r + 1)) where C(j) is the multiset over {a} contained in neuron j, for 0 ≤ j ≤ n, in
neuron dj−n−1, for n + 2 ≤ j ≤ n + r, or in neuron out for j = n + r + 1.

For each configuration C we denote by Cδ (with δ = 0, 1) the configuration obtained
from C applying in neuron 0 the rule a→ a; δ.

3

It is easy to prove that the only configurations sending a spike to the neighbouring
neurons are C1 and C0

r+n+1, and that the following equalities hold C2 = C0
r+n+2 and

C1
r+n+2 = Cr+2. Hence, the oriented graph associated with the SN P system Π can be

depicted as follows:

.

.

.

.

.

.

C

C

C

0

1

C

C

r+1

r+2

C C

C

C

r+n−2

r+n−1

C C
r+n r+n

r+n+1r+n+1

1

10

0

2

Analysing the oriented graph associated with Π we note that there are not any
halting computation.

We denote by σ the path C2 → . . . → Cr+2 and we denote by τ the path Cr+2 →
. . . Cr+n−1 → C0

r+n → C0
r+n+1. Then, Length(σ) = r and Length(τ) = n− 1.

For each i ≥ 0, we denote by γ(i) the path

Cr+2
(i)
−→ . . .→ Cr+n−1 → C1

r+n → C1
r+n+1 → C1

r+2

meaning that the configuration Cr+2 is passed exactly i+1 times (for example, the path
γ(0) contain only the node Cr+2, the path γ(1) is Cr+2 → . . . → Cr+n−1 → C1

r+n →
C1

r+n+1 → C1
r+2). Then, Length(γ(i)) = ni.

Let δ(i) the following path C2
σ
; Cr+2

γ(i)
; Cr+2. That is, through the path δ(i) we

go from node C2 to node Cr+2 without going through node C0
r+2 but passing (i + 1)

times by node Cr+2. Then, Length(δ(i)) = r + ni.
Taking into account that the computations of Π are the maximal branches of the

computation tree, for every computation, C, of Π there exists an infinite sequence of
natural numbers {ik : k ≥ 1} such that the computation C can be described through
the following path in the graph associated with Π:

4

C0 → C1 → C2
δ(i1)
; Cr+2

τ
; C0

r+n+1 → C2
δ(i2)
; Cr+2

τ
; C0

r+n+1 → . . .

We will denote that computation by C({ik : k ≥ 1}).
Now, we describe the spike train of computation C({ik : k ≥ 1}) ≡ C0 ⇒ C1 ⇒

C2 ⇒ C3 . . ., computing the sequence of steps i such that the configuration Ci sends a
spike out. We have:

t1 = 1; t2 = t1 + r + n(i1 + 1); t3 = t2 + r + n(i2 + 1); t4 = t3 + r + n(i1 + 1); . . .
That is

{

t1 = 1
tk+1 = tk + r + n(ik + 1)

Hence, Nall(C({ik : k ≥ 1}) = {tk+1 − tk : k ≥ 1} = {r + n(ik + 1) : k ≥ 1}.

Theorem 2.1 Let n ≥ 2.

(a) For each computation, C of Π we have N(C) ⊆ {r + ni : i ≥ 1} (correctness).

(b) For each i ≥ 1 there exists a computation, C of Π such that r + ni ∈ N(C)
(completeness). Moreover, The SN P system Π is weakly ω–coherent.

(c) Nq∗(Π) = Nall(Π) = {r + ni : i ≥ 1}.

Proof. Similar to proof of Theorem 1.1 and Proposition 1.1 changing r + 2i by r + ni.
2

5

24 Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg

'

&

$

%
�
�
�
��
�
�
�

�
�
�
�

�
�
�
�
�
�
�
�

'

&

$

%
�

�
�

�
�

�
�
� �

�
�
�
�
�
��� B

B
B
B
B
B
B
B
BN

�

B
B

B
B

B
B

B
B

BBM

A
A
A
A
AU

�
�

�
�

�
��

�

�
�

�
�

�
��3

6

6

�
��

@
@I

Q
QQk

1

2
3

6

a2 → a; 0

a → λ

a → a; 0

a → a; 1 a → a; 0

a

a → a; 0

a2 → λ

a → a; 0

c1

. . .

cr−2

a → a; 0

a → a; 0 a → a; 0

c′r−1cr−1

�
�
�
�

�
�
�
�

J
J

J
JĴ

B
B
B
B
B
B
B
BBN

������)

XXXXy

a → a; 0

a → a; 0

4

5

'

&

$

%a3 → λ

Fig. 8. An SN P system computing {r + 2i | i ≥ 1}

Lemma 8.4 (for each SN P system Π there is an equivalent SN P system Π′

containing initially only one spike inside one of its neurons) and Lemma 8.5 (all
families of numbers computed by systems with at least two rules, two consumed or
used spikes, as well as with at least two spikes contained in the neurons, are closed
under union) from [4] are true also for our cases (with the same proofs as in [4]).

Using this “union lemma”, we ensure that all semilinear sets belong to families
of the form Spikβ

αP∗(rulek, consp, forgq, bound∗) with small values of parameters
k, p, q, but not for the case when we consider computations which halt after spiking.
For instance, Lemma 7 ensures only that the system does not send out more than k

spikes, but the computation can continue forever. However, this can be fixed in the
case of bounded computations for any initial SN P system, not only for a particular
one, as was the case in the proof of Theorem 6:

Lemma 12. Given a system Π and a threshold s on the number of spikes in any
neuron, we can construct a system Πk such that:

Spike Trains in Spiking Neural P Systems 25

'

&

$

%

�
�
�
��

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

'

&

$

%
H

HHH
HHH

HHj

?

?

�
�

��

@
@

@
@

@
@

@@

?

A
A
A
A
A
A
A
AAU�

�
�
����

�

A
A

A
A

AK

�
�
�
�
�
�
�
�
��

���

out

�

a3

a3 → a; 0
a2 → a; 0

a → λ

a → a; 0

d1

dr

. . .

a → a; 0

1

a3

a → a; 0

a2 → λ

a4 → λ
2

a → a; 0. . .

n− 2

a → a; 0

a → a; 0

n− 1

n

a → a; ; 0
'

&

$

%

�
�

�
�

�
�
��

0

a → a; 0

a → a; 1

Fig. 9. An SN P system computing {r + ni | i ≥ 1}, for n ≥ 3

(1) for each s-bounded computation γ of Π with st(γ) = 〈t1, t2, . . . , tj〉, j ≤ k, there
is a halting 2s-bounded computation γ′ of Π′ such that st(γ′) = 〈t1 + 2, t2 +
2, . . . , tj + 2〉;

(2) for each s-bounded computation γ of Π with st(γ) = 〈t1, t2, . . . , tk, . . .〉, there
is a halting 2s-bounded computation γ′ of Π′ such that st(γ′) = 〈t1 + 2, t2 +
2, . . . , tk + 2〉;

(3) each computation γ′ of Π′ either (i) never spikes, or (ii) st(γ′) = 〈t1 + 2, t2 +
2, . . . , tj + 2〉 for some computation γ in Π with st(γ) = 〈t1, t2, . . . , tj〉, j ≤ k,
or (iii) st(γ′) = 〈t1 + 2, t2 + 2, . . . , tk + 2〉 for some computation γ in Π with
st(γ) = 〈t1, t2, . . . , tk, . . .〉.

Proof. For a given k ≥ 1 and an SN P system Π we construct the system Π′ as
follows (without loss of generality, we may assume that all rules of Π are of the form
aj → x, for some j ≤ s, because only such rules can be useful in computations –

