Computación Bio-inspirada

Tema 4: Modelos de computación molecular basados en ADN

David Orellana Martín Mario de J. Pérez Jiménez

Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

dorellana@us.es (http://www.cs.us.es/~dorellana/)
marper@us.es (http://www.cs.us.es/~marper/)

Máster Universitario en Lógica, Computación e Inteligencia Artificial
Curso 2025-2026

Índice

- . Preliminares.
- . Modelos de computación molecular basados en ADN.
- . Modelo no restringido de Adleman.
- . Modelo restringido de Adleman.
- . Modelo débil de Amos.
- . Modelo sticker de Roweis.

Preliminares

Un multiconjunto m sobre un alfabeto (conjunto no vacío) Σ es una aplicación de Σ en el conjunto N de los números naturales.

• Para cada $x \in \Sigma$, $\mathbf{m}(x)$ es la multiplicidad del símbolo x en \mathbf{m} .

Soporte de un multiconjunto m sobre Σ : $\{x \in \Sigma \mid \mathbf{m}(x) > 0\}$.

Multiconjunto finito (resp. vacío): soporte finito (resp. vacío): .

 Se puede <u>formalizar</u> un tubo de ensayo de un laboratorio como un conjunto finito de moléculas (repetidas o no): un <u>multiconjunto finito</u> de <u>moléculas</u>.

Cardinal de un multiconjunto finito sobre Σ : Suma de las multiplicidades de todos los símbolos de Σ .

Preliminares

Un agregado sobre un alfabeto Σ es un multiconjunto finito de elementos de Σ .

- Las moléculas que no tienen "orientación" pueden ser representadas por agregados sobre un alfabeto.
- Las moléculas que tienen "orientación" (ej. ADN) pueden ser representadas por cadenas sobre un alfabeto (ej. {A, C, G, T}).

Formalización de un tubo de ensayo de un laboratorio que contiene un conjunto finito de moléculas:

- Si las moléculas <u>no</u> están "orientadas": <u>multiconjunto finito</u> de agregados sobre un alfabeto.
- Si las moléculas <u>sí</u> están "orientadas": multiconjunto finito de cadenas sobre un alfabeto.

Unión de dos multiconjuntos \mathbf{m}_1 y \mathbf{m}_2 sobre Σ : Es el multiconjunto $\mathbf{m}_1 \cup \mathbf{m}_2$ sobre Σ definido por $(\mathbf{m}_1 \cup \mathbf{m}_2)(x) = \mathbf{m}_1(x) + \mathbf{m}_2(x)$, para cada $x \in \Sigma$.

• A veces, notaremos el multiconjunto unión por $m_1 + m_2$.

Modelos de computación molecular basados en ADN

Modelos de computación orientados a programas.

- Estructura de datos (tubos).
 - Los tubos representan multiconjuntos finitos de moléculas.
- * Sintaxis:
 - Operaciones básicas (moleculares).
 - Programas moleculares (sucesiones finitas de operaciones moleculares).
- * Semántica:
 - Función que trata de capturar, formalmente, la implementación real de las operaciones moleculares en el laboratorio.

Programas moleculares

Un programa molecular va a usar tubos (que formalizan los tubos de ensayo):

- * A través de unas operaciones moleculares (formalmente definidas).
- * Cada programa molecular posee un tubo de entrada y otro de salida.

Verificación formal de un programa molecular (diseñado para resolver un problema abstracto):

- (a) Corrección ("son todos los que están").
 - Toda molécula del <u>tubo de salida</u> representa una solución correcta del problema.
- (b) Completitud ("están todos los que son").
 - Toda molécula del <u>tubo inicial</u> que representa una solución correcta del problema, debe estar en el tubo de salida.

Modelos restringido y no restringido de Adleman

L.M. Adleman. On constructing a molecular computer. En R.J. Lipton, E.B. Baum, eds. *DNA based computers*, American Mathematical Society, 1996, pp. 1-22 (draft, 8 de enero de 1995).

Modelo no restringido de Adleman

Es un modelo de computación:

- Sustrato computacional: moléculas de ADN.
- * Basado en procedimientos de filtrado.
- * Sin memoria de acceso aleatorio.

Alfabeto de trabajo: $\Sigma_{ADN} = \{\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{T}\}.$

• Toda cadena sobre el alfabeto Σ_{ADN} se puede identificar con una hebra simple de ADN (con su orientación natural 5' - 3').

Definición: En el modelo no restringido de Adleman, un tubo es un <u>multicon</u>junto de cadenas sobre Σ_{ADN} .

★ Colección de moléculas de ADN, eventualmente repetidas.

Instrucciones moleculares básicas modelo no restringido de Adleman

 \blacktriangle Extraer (T, γ) .

Entrada: un tubo T y una <u>cadena</u> γ sobre Σ_{ADN} .

Salida: dos tubos $+(T, \gamma) = \{ \sigma \in T \mid \gamma \text{ es una subcadena de } \sigma \}$, y $-(T, \gamma) = \{ \sigma \in T \mid \gamma \text{ no es una subcadena de } \sigma \}$.

 \triangle Mezclar (T_1, T_2)

Entrada: dos tubos T_1 y T_2 .

<u>Salida</u>: un tubo $T_1 \cup T_2$ (unión de ambos, como multiconjuntos)

• Amplificar $(T, \{T_1, T_2\})$.

Entrada: un tubo T.

<u>Salida</u>: dos tubos T_1 y T_2 que son copias exactas de T.

♠ Detectar (T).

Entrada: un tubo T.

Salida: SÍ, en el caso $T \neq \emptyset$, y NO, en caso contrario.

Es un modelo de computación universal (D. Beaver, 1995).

Modelo restringido de Adleman

Es un modelo de computación:

- * Sustrato computacional: moléculas arbitrarias.
- Basado en procedimientos de filtrado.
- * Sin memoria de acceso aleatorio

Definición: En el modelo restringido de Adleman, un tubo sobre un alfabeto Σ es un multiconjunto finito de agregados sobre Σ .

 Colección de moléculas (no necesariamente "orientadas") eventualmente repetidas.

Instrucciones moleculares básicas modelo restringido de Adleman

 \triangle Extraer(T, s).

Entrada: un tubo T y un un símbolo $s \in \Sigma$.

Salida: dos tubos $+(T, s) = \{ \sigma \in T \mid s \in \sigma \}; -(T, s) = \{ \sigma \in T \mid s \notin \sigma \}.$

 \land Mezclar(T_1, T_2).

Entrada: dos tubos T_1 y T_2 .

<u>Salida</u>: un tubo $T_1 \cup T_2$ (unión de ambos, como multiconjuntos)

Detectar(T).

Entrada: un tubo T.

<u>Salida</u>: **SÍ**, en el caso $T \neq \emptyset$, y **NO**, en caso contrario.

Es un modelo de computación universal (D. Beaver, 1995).

Modelo débil de Amos

Martyn Amos (1971 - ...)

M. Amos. DNA computation, PhD thesis, The University of Warwick, 1997.

Modelo débil de Amos

Es un modelo de computación:

- * Sustrato computacional: moléculas de ADN.
- * Basado en procedimientos de filtrado.
- * Sin memoria de acceso aleatorio.

Definición: En el modelo débil de Amos, un tubo es un <u>multiconjunto</u> finito de cadenas sobre Σ_{ADN} .

* Colección de moléculas de ADN, eventualmente repetidas.

Instrucciones moleculares básicas modelo débil de Amos

• Quitar(T, { γ_1 , ..., γ_k }), con $k \ge 1$. Entrada: un tubo T y unas cadenas γ_1 , ..., γ_k sobre Σ_{ADN} . Salida: un tubo T' obtenido de T eliminando aquellas moléculas que contenga alguna de esas cadenas.

Copiar(T, {T₁, ..., T_k}), con $k \ge 1$. <u>Entrada</u>: un tubo T. <u>Salida</u>: k tubos T₁, ..., T_k que son copias exactas de T.

Unión({T₁, ..., T_k}, T), con k ≥ 1.
 Entrada: k tubos T₁, ..., T_k.
 Salida: un tubo T que es la unión de T₁, ..., T_k como multiconjuntos.

Selección(T).

Entrada: un tubo T.

<u>Salida</u>: un elemento de T, seleccionado aleatoriamente, en el caso $T \neq \emptyset$, y **NO**, en caso contrario.

Es un modelo de computación universal (D. Beaver, 1995).

Sam Roweis (abril de 1972- enero de 2010)

S. Roweis, E. Winfree, R. Burgoyne, N.V. Chelyapov., M.F. Goodman, P.W.K. Rothemund, L.M. Adleman. *A sticker-based model for DNA computation.* **Journal of Computational Biology**, 5, 4 (1998), 615-629.

Es un modelo de computación:

- Sustrato computacional: moléculas de ADN.
- Basado en procedimientos de filtrado.
- * Con memoria de acceso aleatorio.

La diferencia con los modelos anteriores radica en la forma de representar la información

Representación de la información:

* Cadena de memoria del tipo (n, p, m), $n \ge p \cdot m$: hebra simple de ADN de longitud n que contiene p subcadenas (regiones) de longitud m.

Cadena del tipo (20,4,5)

 Stickers asociados a una cadena de memoria: cadena simple de longitud m complementaria con una región.

Stickers asociado a la cadena anterior


- * Región activada: está complementada por el sticker asociado.
- * Región desactivada: no está complementada por el sticker asociado.
- * Complejo de memoria, del tipo (n, p, m) $n \ge p \cdot m$: doble hebra formada por una cadena de memoria del tipo (n, p, m) complementada por algunos stickers.

Codificación binaria de la información:

* Dos complejos de memoria del tipo (30, 6, 5).

Conveniencia de disponer de una "frontera" natural entre las regiones de una cadena: evitar situaciones no deseadas.

Una forma de evitarlo:

* Regiones impares: sólo purinas (A, G); regiones pares: sólo pirimidinas (C, T).

Otra forma:

* La "frontera" está formada por una cadena "especial".

Definición: En el modelo sticker de Roweis, un tubo es un <u>multiconjunto</u> finito de complejos de memoria del mismo tipo.

- Colección finita de complejos de memoria del mismo tipo, eventualmente repetidos.
- ★ Codifica sucesiones finitas de 0's y 1's.

Comparación de los mecanismos de representación de la información en el paradigma Adleman y en el modelo sticker:

- Ambos están basados en la direccionalidad y en la complementariedad de Watson-Crick.
- * En el paradigma Adleman se parte de cadenas simples y cortas que pueden formar doble hebras, con voladizos pero sin huecos.
- En el modelo sticker se parte de cadenas largas (complejos) y cortas (stickers) formando dobles hebras con voladizos y posibles huecos.
- * Densidad de almacenamiento de información:
 - ★ En el paradigma Adleman: $\frac{1}{20}$.
 - ★ En el modelo sticker: $\frac{1}{m}$ (m es la longitud de las regiones).

Instrucciones moleculares básicas modelo sticker de Roweis

 \triangle Extraer (T, j).

Entrada: un tubo T de complejos del tipo (n,p,m) y una región j, $1 \le j \le p$. Salida: dos tubos +(T,j) que contiene los complejos de T con la región j-ésima activada, y -(T,j) que contiene los complejos restantes de T.

 \triangle Activar (T, j).

<u>Entrada</u>: un tubo T de complejos del tipo (n, p, m) y una región j, $1 \le j \le p$. <u>Salida</u>: un tubo T' obtenido de T <u>activando</u>, si procede, la región j-ésima de los complejos.

 \triangle Desactivar (T, j).

Entrada: un tubo T de complejos del tipo (n,p,m) y una región j, $1 \le j \le p$. Salida: un tubo T' obtenido de T desactivando, si procede, la región j-ésima de los complejos.

 \land Mezclar(T_1, T_2).

Entrada: dos tubos T_1 y T_2 .

 $\underline{\mathsf{Salida}}$: un tubo $T_1 \cup T_2$ (unión de ambos, como multiconjuntos)

 \triangle Leer(T).

Entrada: un tubo T.

<u>Salida</u>: un elemento de T, seleccionado aleatoriamente, en el caso $T \neq \emptyset$, y **NO**, en caso contrario.

Es un modelo de computación universal (D. Beaver, 1995).

Tubo de entrada del modelo sticker:

- * Biblioteca de orden (n, p, q, m), $n \ge p \cdot m$; $1 \le q \le p$:
 - * Consta de **todos** los posibles complejos de memoria del tipo (n, p, m) con las últimas p q regiones desactivadas.
 - ★ Contiene 2^q complejos de memoria.

Hablaremos, simplemente, de una (p, q)-biblioteca:

* Una (p, q)-biblioteca codifica todos los números binarios con p dígitos tales que son nulos los últimos p-q dígitos.

