Computación Bio-inspirada

Tema 5: Resolución eficiente de problemas NP-completos en modelos moleculares

David Orellana Martín Mario de J. Pérez Jiménez

Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

dorellana@us.es (http://www.cs.us.es/~dorellana/)
marper@us.es (http://www.cs.us.es/~marper/)

Máster Universitario en Lógica, Computación e Inteligencia Artificial
Curso 2025-2026

Índice

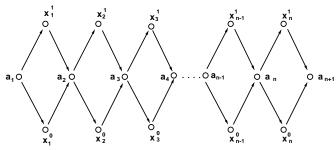
- El problema SAT de la satisfactibilidad de la Lógica Proposicional:
 - * Una solución en el modelo no restringido de Adleman.
- . El problema 3-COL:
 - * Una solución en el modelo restringido de Adleman.
 - Una solución en el modelo débil de Amos.
- El problema de las familias disjuntas:
 - * Una solución en el modelo sticker de Roweis.

Una solución de SAT en el modelo no restringido

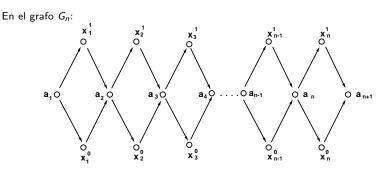
Sea $\varphi \equiv c_1 \wedge ... \wedge c_p$, con $c_i = l_{i,1} \vee ... \vee l_{i,r_i}$ una fórmula proposicional en FNC cuyo conjunto de variables es $Var(\varphi) = \{x_1, ..., x_n\}$.

A la fórmula φ se le asocia el grafo dirigido $G_n = (V_n, E_n)$, definido como sigue:

- $V_n = \{a_i, x_i^j, a_{n+1} : 1 \le i \le n, 0 \le j \le 1\}.$
- $E_n = \{(a_i, x_i^j), (x_i^j, a_{i+1}): 1 \leq i \leq n, 0 \leq j \leq 1\}.$



Una solución de SAT en el modelo no restringido



- ★ Existen 2^n caminos desde a_1 hasta a_{n+1} .
- * Cada camino $a_1x_1^{i_1}a_2x_2^{i_2}\dots a_nx_n^{i_n}a_{n+1}$ desde a_1 hasta a_{n+1} , tiene asociado la valoración σ definida por: $\sigma(x_i)=j_i$ $(1\leq i\leq n)$.

A efectos de una implementación biológica, con el grafo G_n se procedería como en el experimento de Adleman.

Un programa molecular en el modelo no restringido

Alfabeto:
$$\Sigma = \{a_i, x_i^{j_i}, a_{n+1}: 1 \leq i \leq n \land \forall i \ (1 \leq i \leq n \rightarrow (j_i = 0 \lor j_i = 1))\}.$$

Tubo de entrada, $T_0 = \{a_1 x_1^{j_1} a_2 x_2^{j_2} \dots a_n x_n^{j_n} a_{n+1} : \forall i (1 \le i \le n \to (j_i = 0 \lor j_i = 1))\}$

- ▶ Cadenas de Σ de longitud 2n + 1.
- \triangleright Cada "molécula" de T_0 representa/codifica una valoración relevante para la fórmula φ .

Para cada literal, Ii, que aparece en la fórmula:

- \triangleright Si $l_{i,j} = x_m$, entonces notaremos $l_{i,j}^1 = x_m^1$, $l_{i,j}^0 = x_m^0$.
- \triangleright Si $l_{i,j} = \overline{x}_m$, entonces notaremos $l_{i,j}^1 = x_m^0$, $l_{i,j}^0 = x_m^1$.

Es decir, si una molécula contiene $l_{i,j}^1$ (resp. $l_{i,j}^0$), entonces el literal $l_{i,j}$ tiene asignado el valor 1 (resp. 0) por la valoración que codifica dicha molécula.

Consideremos el siguiente programa molecular que resuelve el problema SAT:

Entrada:
$$T_0$$

Para $i \leftarrow 1$ hasta p hacer

 $T_1 \leftarrow T_0$; $T_0 \leftarrow \emptyset$

Para $j \leftarrow 1$ hasta r_i hacer

 $T' \leftarrow +(T_1, l_{i,j}^1)$
 $T_1 \leftarrow -(T_1, l_{i,j}^1)$
 $T_0 \leftarrow T_0 \cup T'$

Detectar (T_0)

```
\begin{array}{ll} \text{Entrada:} & T_0 \\ & \text{Para } i \leftarrow 1 \text{ hasta } \rho \text{ hacer} \\ & T_1 \leftarrow T_0; \quad T_0 \leftarrow \emptyset \\ & \text{Para } j \leftarrow 1 \text{ hasta } r_i \text{ hacer} \\ & T' \leftarrow + (T_1, l_{i,j}^1) \\ & T_1 \leftarrow - (T_1, l_{i,j}^1) \\ & T_0 \leftarrow T_0 \cup T' \\ & \text{Detectar}(T_0) \end{array}
```

 $\frac{ldea}{de}$ del programa molecular: a partir del tubo inicial, T_0 , que representa/codifica todas las valoraciones relevantes para la fórmula de entrada, se procede como sigue:

- Se elabora un nuevo tubo, T_1 , seleccionando de T_0 todas las valoraciones que hacen verdadera c_1 :
 - ★ Se eligen las que hacen verdadero el literal l_{1,1}.
 - \star De las que hacen falso $l_{1,1}$, se eligen las que hacen verdadero el literal $l_{1,2}$.
 - \star De las que hacen falso $l_{1,1} \vee l_{1,2}$, se eligen las que hacen verdadero el literal $l_{1,3}$.
 - ★ Y así sucesivamente con todos los literales de c1.
- Se elabora un nuevo tubo, T₂, seleccionando de T₁ todas las valoraciones que hacen verdadera c₂:
 - ★ Se eligen las que hacen verdadero el literal l_{2,1}.
 - \star De las que hacen falso $l_{2,1}$, se eligen las que hacen verdadero el literal $l_{2,2}$.
 - \star De las que hacen falso $l_{2,1} \vee l_{2,2}$, se eligen las que hacen verdadero el literal $l_{2,3}$.
 - ★ Y así sucesivamente con todos los literales de c₂.
- El proceso se reitera p veces hasta obtener el tubo de salida T_p , a partir de T_{p-1} , que contiene todas las valoraciones que hacen verdadera la fórmula $c_1 \wedge \cdots \wedge c_p$.

Una metodología para demostrar que un programa con un bucle principal satisface una propiedad

Búsquese una fórmula que satisfaga las condiciones siguientes:

- ▶ Está expresada en función de la variable del bucle.
- Es un invariante de dicho bucle.
 - Tras la ejecución de cada paso del bucle, la fórmula ha de ser verdadera (suele probarse por inducción acotada).
- De la veracidad de la fórmula tras la ejecución del bucle, se debe inferir que el programa verifica la propiedad requerida.

Importante: Para verificar formalmente un programa molecular (de un modelo basado en filtrados) hay que probar la corrección y completitud del mismo.

Verificación formal: Reetiquetado

Se etiquetan los tubos que se obtienen a lo largo de la ejecución, reescribiendo el programa molecular como sigue:

```
\begin{array}{ll} \text{Entrada:} & \mathcal{T}_0 \\ & \text{Para } i \leftarrow 1 \text{ hasta } p \text{ hacer} \\ & \mathcal{T}_1 \leftarrow \mathcal{T}_0; \quad \mathcal{T}_0 \leftarrow \emptyset \\ & \text{Para } j \leftarrow 1 \text{ hasta } r_i \text{ hacer} \\ & \mathcal{T}' \leftarrow + (\mathcal{T}_1, I_{i,j}^l) \\ & \mathcal{T}_1 \leftarrow - (\mathcal{T}_1, I_{i,j}^l) \\ & \mathcal{T}_0 \leftarrow \mathcal{T}_0 \cup \mathcal{T}' \\ & \text{Detectar}(\mathcal{T}_0) \end{array}
```

```
\begin{array}{ll} \text{Entrada:} & T_0 \\ & \text{Para } i \leftarrow 1 \text{ hasta } p \text{ hacer} \\ & T_{i,0} \leftarrow \emptyset; \quad T''_{i,0} \leftarrow T_{i-1} \\ & \text{Para } j \leftarrow 1 \text{ hasta } r_i \text{ hacer} \\ & T'_{i,j} \leftarrow + (T''_{i,j-1}, l^1_{i,j}) \\ & T''_{i,j} \leftarrow - (T''_{i,j-1}, l^1_{i,j}) \\ & T_{i,j} \leftarrow T_{i,j-1} \cup T'_{i,j} \\ & T_i \leftarrow T_{i,r_i} \\ & \text{Detectar}(T_p) \end{array}
```

Corrección del programa: se ha de probar que

• Toda molécula del tubo de salida representa/codifica una valoración que hace verdadera la fórmula φ .

O lo que es lo mismo:

• Si el programa responde SÍ, entonces la fórmula φ debe ser satisfactible.

Entonces:

- ▶ Para cada i (1 ≤ i ≤ p), se notará $\varphi_i \equiv c_1 \land ... \land c_i$ (φ_0 es una tautología).
- ▶ Para cada i, j tales que $1 \le i \le p, \ 1 \le j \le r_i$, se notará $L_{i,j} \equiv l_{i,1} \lor ... \lor l_{i,j}$.
- ▶ Para cada i, j tales que $1 \le i \le p, \ 1 \le j \le r_i$, se define

$$\psi(i,j) \equiv \forall \sigma \in T_{i,j} \ (\sigma(\varphi_{i-1}) = 1 \land \sigma(L_{i,j}) = 1) \land \forall \sigma \in T''_{i,j} \ (\sigma(\varphi_{i-1}) = 1 \land \sigma(L_{i,j}) = 0)$$

▶ Para cada i (1 ≤ i ≤ p), se define $\theta(i) \equiv \forall j$ (1 ≤ j ≤ $r_i \rightarrow \psi(i,j)$).

 $\theta(i) \equiv$ toda molécula de T_i representa/codifica una valoración que hace verdadera φ_i

Teorema: La fórmula $\theta(i)$ es un **invariante** del bucle principal del programa; es decir, $\forall i \ (1 \le i \le p \to \theta(i) = 1)$.

Demostración por inducción sobre i.

- Caso base: i=1
- Veamos que la fórmula $\theta(1) \equiv \forall j \ (1 \leq j \leq r_1 \rightarrow \psi(1,j))$ es verdadera.

A su vez, demostraremos este resultado por inducción sobre j

- * Caso base: j=1 Veamos que es verdadera la fórmula $\psi(1,1)\equiv \forall \sigma \in T_{1,1} \ (\sigma(\varphi_0)=1 \land \sigma(L_{1,1})=1) \land \forall \sigma \in T_{1,1}' \ (\sigma(\varphi_0)=1 \land \sigma(L_{1,1})=0)$. En efecto:
 - * Por una parte, si $\sigma \in T_{1,1} = T_{1,0} \cup T'_{1,1} = T'_{1,1} = +(T''_{1,0}, I^1_{1,1}) = +(T_0, I^1_{1,1})$ entonces $\sigma \in T_0 \vee \sigma(I_{1,1}) = 1$. Luego, $\sigma(\varphi_0) = 1 \wedge \sigma(I_{1,1}) = 1$.
 - * Por otra, si $\sigma \in T_{1,1}'' = -(T_{1,0}'', l_{1,1}^1) = -(T_0, l_{1,1}^1)$ entonces $\sigma \in T_0$ y $\sigma(l_{1,1}) = 0$. Luego, $\sigma(\omega_0) = 1$ y $\sigma(l_{1,1}) = \sigma(l_{1,1}) = 0$.
- Paso inductivo: Sea $j \ge 1$ tal que $j < r_1$ y que $\psi(1,j)$ es verdadera . Entonces hemos de ver que también es verdadera la fórmula $\psi(1,j+1)$ siguiente:
 - $\forall \sigma \in \mathit{T}_{1,j+1} \ (\sigma(\varphi_0) = 1 \land \sigma(\mathit{L}_{1,j+1}) = 1) \land \forall \sigma \in \mathit{T}''_{1,j+1} \ (\sigma(\varphi_0) = 1 \land \sigma(\mathit{L}_{1,j+1}) = 0).$
 - * Por una parte, si $\sigma \in T_{1,j+1} = T_{1,j} \cup T'_{1,j+1} = T_{1,j} \cup \{T''_{1,j}, l^1_{1,j+1}\}$ entonces: o bien, $\sigma \in T_{1,j}$, en cuyo caso por H.I. $\sigma(\varphi_0 \wedge L_{1,j}) = 1$ (luego, $\sigma(\varphi_0) = 1$ y $\sigma(L_{1,j+1}) = 1$); o bien $\sigma \in +(T''_{1,j}, l^1_{1,j+1})$, en cuyo caso, por H.I. $\sigma(\varphi_0) = 1$ y $\sigma(L_{1,j}) = 0$ (luego, $\sigma(\varphi_0) = 1 \wedge \sigma(L_{1,j+1}) = 1$).
 - * Por otra, si $\sigma \in T_{1,j+1}'' = -(T_{1,j}', I_{1,j+1}^1)$ entonces $\sigma \in T_{1,j}''$ y $\sigma(I_{1,j+1}) = 0$. Como por H.I. se tiene que $\sigma(\varphi_0) = 1 \wedge \sigma(L_{1,j}) = 0$, resulta que $\sigma(\varphi_0) = 1 \wedge \sigma(L_{1,j+1}) = 0$.

Paso inductivo Sea $i \geq 1$ tal que i < p y $\theta(i)$ es verdadera Entonces hemos de ver que la fórmula $\theta(i+1) \equiv \forall j \ (1 \leq j \leq r_{i+1} \to \psi(i+1,j))$ también es verdadera.

A su vez, demostraremos este resultado por inducción sobre j

* Caso base:
$$j=1$$
 Veamos que es verdadera la fórmula $\psi(i+1,1)$ siguiente $\forall \sigma \in \mathcal{T}_{i+1,1} \ (\sigma(\varphi_i) = 1 \land \sigma(\mathcal{L}_{i+1,1}) = 1) \land \forall \sigma \in \mathcal{T}''_{i+1,1} \ (\sigma(\varphi_i) = 1 \land \sigma(\mathcal{L}_{i+1,1}) = 0).$

En efecto:

- * Por una parte, si
 - $$\begin{split} &\sigma \in T_{i+1,1} = T_{i+1,0} \cup T'_{i+1,1} = T'_{i+1,1} = + (T''_{i+1,0}, l^1_{i+1,1}) = + (T_i, l^1_{i+1,1}) \text{ entonces} \\ &\sigma \in T_i = T_{i,r_i} \text{ y } \sigma(l_{i+1,1}) = 1. \text{ Por tanto, } \sigma(\varphi_{i-1}) = 1 \wedge \sigma(L_{i,r_i}) = 1 \text{ (por H.l.) y} \\ &\sigma(l_{i+1,1}) = 1; \text{ es decir, } \sigma(\varphi_i) = 1 \wedge \sigma(L_{i+1,1}) = 1 \text{ .} \end{split}$$
- $\star \ \, \text{Por otra, si} \,\, \sigma \in T''_{i+1,1} = -(T''_{i+1,0}, l^1_{i+1,1}) = -(T_i, l^1_{i+1,1}) \,\, \text{entonces} \,\, \sigma \in T_i \,\, \text{y} \\ \sigma(l_{i+1,1}) = 0. \,\, \text{Luego,} \,\, \sigma(\varphi_i) = 1 \,\, (\text{por H.l.}) \,\, \text{y} \,\, \sigma(L_{i+1,1}) = 0.$
- - * Por una parte, si $\sigma \in T_{i+1,j+1} = T_{i+1,j} \cup T'_{i+1,j+1}$ entonces: o bien, $\sigma \in T_{i+1,j}$, en cuyo caso por H.I. $\sigma(\varphi_i) = 1 \land \sigma(L_{i+1,j}) = 1$ (luego, $\sigma(\varphi_i) = 1 \land \sigma(L_{i+1,j+1}) = 1$); o bien $\sigma \in T'_{i+1,j+1} = +(T''_{i+1,j}, l^1_{i+1,j+1})$, en cuyo caso, $\sigma \in T''_{i+1,j}$ y $\sigma(l_{i+1,j+1}) = 1$, luego $\sigma(\varphi_i) = 1 \land \sigma(L_{i+1,i+1}) = 1$.
 - * Por otra, si $\sigma \in T''_{i+1,j+1} = -(T''_{i+1,j}, l^1_{i+1,j+1})$ entonces $\sigma \in T''_{i+1,j}$ y $\sigma(l_{i+1,j+1}) = 0$. Por H.I. se tiene que $\sigma \in T''_{i+1,j} \Rightarrow \sigma(\varphi_i) = 1 \land \sigma(\mathcal{L}_{i+1,j}) = 0$. En consecuencia, se deduce que $\sigma(\varphi_i) = 1$ y $\sigma(\mathcal{L}_{i+1,j+1}) = 0$.

Corolario: (Corrección del programa)

Toda molécula del tubo de salida representa/codifica una valoración que hace verdadera $\varphi.$

Demostración: Del teorema anterior resulta que la fórmula $\theta(p)$ es verdadera y, en consecuencia, toda molécula del tubo de salida \mathcal{T}_p representa una valoración de verdad que asigna el valor 1 a φ_p ; es decir, a la fórmula φ .

Completitud del programa: se ha de probar que

 Toda molécula del tubo de entrada que codifique una valoración que hace verdadera φ, deberá aparecer, también, en el tubo de salida.

O lo que es lo mismo, se ha de probar que:

• Si el programa responde NO, entonces la fórmula φ no es satisfactible.

Se considera la siguiente fórmula:

$$\delta(i) \equiv \forall \sigma \in T_0 \ (\sigma(\varphi) = 1 \to \sigma \in T_i)$$

para *i* verificando que $1 \le i \le p$.

Es decir, $\delta(i) \equiv$ toda molécula del tubo inicial que codifica una valoración que hace verdadera φ , está en el tubo T_i .

```
 \begin{array}{c} \text{Entrada:} \quad T_0 \\ \text{Para } i \leftarrow 1 \text{ hasta } p \text{ hacer} \\ T_{i,0} \leftarrow \emptyset; \quad T_{i,0}' \leftarrow T_{i-1} \\ \text{Para } j \leftarrow 1 \text{ hasta } r_i \text{ hacer} \\ T_{i,j}' \leftarrow + (T_{i,j-1}', l_{i,j}^1) \\ T_{i,j}' \leftarrow - (T_{i,j-1}', l_{i,j}^1) \\ T_{i,j} \leftarrow T_{i,j-1} \cup T_{i,j} \\ T_i \leftarrow T_{i,r_i} \end{array}
```

Teorema: La fórmula $\delta(i)$ es un invariante del bucle principal del programa; es decir, $\forall i \ (1 \le i \le p \to \delta(i))$.

Demostración por inducción sobre i.

• Caso base: *i* = 1

Veamos que la fórmula $\delta(1) \equiv \forall \sigma \in T_0 \ (\sigma(\varphi) = 1 \to \sigma \in T_1)$ es verdadera.

Comencemos observando que si $\sigma \in \mathcal{T}_0$ es tal que $\sigma(\varphi)=1$, entonces $\sigma(c_1)=\ldots=\sigma(c_p)=1$.

Para cada t $(1 \le t \le p)$, sea $k_t = \min\{j \mid 1 \le j \le r_t \land \sigma(l_{t,j}) = 1\}$; es decir, k_t es el menor índice de un literal de c_t verdadero por σ . Luego, $\forall j (1 \le j < k_t \Rightarrow \sigma(l_{t,j}) = 0)$.

Para ver que $\delta(1)$ es verdadera, sea $\sigma \in \mathcal{T}_0$ tal que $\sigma(\varphi) = 1$.

* Caso 1: $k_1=1$ En este caso, $\sigma\in T_0\subseteq T_{1,0}^{\prime\prime}\wedge\sigma(l_{1,1})=1$. Luego, $\sigma\in +(T_{1,0}^{\prime\prime},l_{1,1})=T_{1,1}^{\prime}\subseteq T_{1,1}\subseteq T_1.$

Entrada:
$$T_0$$

Para $i \leftarrow 1$ hasta p hace

 $T_{i,0} \leftarrow \emptyset$: $T_{i,0}' \leftarrow T_{i-1}$

Para $j \leftarrow 1$ hasta r_i hace

 $T_{i,j}' \leftarrow +(T_{i,j-1}'', l_{i,j})$
 $T_{i,j}' \leftarrow -(T_{i,j-1}', l_{i,j})$
 $T_{i,j} \leftarrow T_{i,r_i}$

Detectar(T_p)

* $\boxed{ \mathsf{Caso}\ 2:\ k_1>1 }$. En este caso, $\sigma\in T_0\subseteq T_{1,0}''\wedge\sigma(l_{1,k_1-1})=0.$ Luego, $\sigma\in -(T_{1,0}'',l_{1,k_1-1})=T_{1,k_1-1}''$. Puesto que $\sigma(l_{1,k_1})=1$, se tiene que $\sigma\in +(T_{1,k_1-1}'',l_{1,k_1})=T_{1,k_1}'\subseteq T_1.$

- Paso inductivo: Sea $i,1 \leq i < p$, tal que la fórmula $\delta(i)$ es verdadera Veamos que la fórmula $\delta(i+1) \equiv \forall \sigma \in T_0 \ (\sigma(\varphi) = 1 \to \sigma \in T_{i+1})$ también es verdadera. Para ello, sea $\sigma \in T_0$. Por H.I. la fórmula $\delta(i)$ es verdadera y, por tanto, $\sigma \in T_i = T_{i+1,0}''$
 - * Caso 1: $k_{i+1} = 1$. En este caso, $\sigma \in \mathcal{T}''_{i+1,0} \wedge \sigma(l_{i+1,1}) = 1$. Luego, $\sigma \in +(\mathcal{T}''_{i+1,0}, l_{i+1,1}) = \mathcal{T}'_{i+1,1} \subseteq \mathcal{T}_{i+1,1} \subseteq \mathcal{T}_{i+1}$.

Entrada:
$$T_0$$

Para $i \leftarrow 1$ hasta p hacer

 $T_{i,0} \leftarrow \emptyset$; $T''_{i,0} \leftarrow T_{i-1}$

Para $j \leftarrow 1$ hasta r_i hacer

 $T'_{i,j} \leftarrow +(T''_{i,j-1}, l^1_{i,j})$
 $T'_{i,j} \leftarrow -(T'_{i,j-1}, l^1_{i,j})$
 $T_{i,j} \leftarrow T_{i,j-1} \cup T'_{i,j}$
 $T_i \leftarrow T_{i,r_i}$

Detectar(T_p)

* $\boxed{ \text{Caso 2: } k_{i+1} > 1 }$. En este caso, $\sigma \in T''_{i+1,0} \land \forall j \ (1 \leq j < k_{i+1} \Rightarrow \sigma(l_{i+1,j}) = 0).$ De donde se tiene que $\forall j \ (1 \leq j < k_{i+1} \Rightarrow \sigma \in T''_{i+1,j}).$ En particular $\sigma \in T''_{i+1,k_{i+1}-1}.$ Puesto que $\sigma(l_{i+1,k_{i+1}}) = 1$ se deduce que $\sigma \in +(T''_{i+1,k_{i+1}-1},l_{i+1,k_{i+1}}) = T'_{i+1,k_{i+1}} \subseteq T_{i+1,k_{i+1}} \subseteq$

Corolario: (Completitud del programa)

Toda molécula del tubo de entrada que representa/codifica una valoración que hace verdadera φ , pertenece al tubo de salida.

Demostración: Del teorema anterior se deduce que es verdadera la fórmula $\delta(p) \equiv \forall \sigma \in T_0 \ (\sigma(\varphi) = 1 \to \sigma \in T_p)$

Por tanto, si $\sigma \in T_0$ es tal que $\sigma(\varphi) = 1$ entonces $\sigma \in T_p$; es decir, σ pertenece al tubo de salida T_p .

Una solución de 3-COL en el modelo restringido

Sea G = (V, E) un grafo no dirigido, con $V = \{1, ..., n\}$. Notaremos:

- p₁, ..., p_n: códigos moleculares de los nodos.
- c₁, c₂, c₃: códigos moleculares de los colores.
- * $\{e_1, e_2, ..., e_p\}$: conjunto ordenado de aristas de G.
- * $e_i = \{e_i^1, e_i^2\}, \text{ con } e_i^1 < e_i^2.$

Se considera el alfabeto:

$$\Sigma = \{(p_1, x_1, p_2, x_2, ..., p_n, x_n) : \forall i \ (1 \le i \le n \to (x_i = c_1 \lor x_i = c_2 \lor x_i = c_3))\}$$

Cada símbolo $(p_1, x_1, p_2, x_2, ..., p_n, x_n)$ del alfabeto Σ se identifica con una molécula $p_1x_1p_2x_2...p_nx_n$ de ADN que representa una coloración del grafo codificada por:

* El color del nodo i es x_i (para cada i, $1 \le i \le n$).

Si $\sigma = p_1 x_1 p_2 x_2 ... p_n x_n$, notaremos $(\sigma)_i = x_i$. Asímismo, notaremos $p_i(c_j)$ para indicar que el nodo p_i está coloreado con el color c_i .

El tubo de entrada T_0 del programa va a ser el propio alfabeto Σ (que codifica todas las posibles coloraciones del grafo).

Un programa molecular en el modelo restringido

Consideremos el siguiente programa molecular que resuelve el problema 3-COL:

```
\begin{array}{l} \text{Entrada:} \quad T_0 \\ \text{Para } i \leftarrow 1 \text{ hasta } p \text{ hacer} \\ T_1 \leftarrow +(T_0, e_i^1(c_1)); \quad T_1^* \leftarrow -(T_0, e_i^1(c_1)) \\ T_2 \leftarrow +(T_1^*, e_i^1(c_2)); \quad T_3 \leftarrow -(T_1^*, e_i^1(c_2)) \\ \text{Para } j \leftarrow 1 \text{ hasta } 3 \text{ hacer} \\ T_j' \leftarrow -(T_j, e_i^2(c_j)) \\ T_0 \leftarrow T_1' \cup T_2' \\ T_0 \leftarrow T_0 \cup T_3' \\ \text{Detectar}(T_0) \end{array}
```


ldea del programa molecular: a partir del tubo inicial T_0 que codifica todas las coloraciones relevantes del grafo de entrada, se procede como sigue:

- Se elabora un tubo T₁ seleccionando de T₀ las coloraciones que son válidas para el subgrafo inducido por la arista e₁. Para ello:
 - * Para cada j ($1 \le j \le 3$) se coloca en T_j las coloraciones que dan color c_j a e_1^1 y en T_j' las coloraciones de T_j que dan a e_1^1 un color distinto de c_j .
 - \star El tubo T_1 será la unión de los tubos T_1' , T_2' , T_3' .
- Se elabora un tubo T₂ seleccionando de T₁ las coloraciones que son válidas para el subgrafo inducido por las aristas e₁, e₂ (procediendo de manera análoga).
- El proceso se reitera p veces (siendo p el número de aristas).

Verificación formal (I)

Se etiquetan los tubos que se obtienen a lo largo de la ejecución, reescribiendo el programa molecular como sigue:

```
 \begin{split} \text{Entrada:} \quad & T \text{ (en las condiciones antes citadas)} \\ & T^0 \leftarrow T \\ & \text{Para } i \leftarrow 1 \text{ hasta } p \text{ hacer} \\ & T_{i,1} \leftarrow + (T^{i-1}, e_i^1(c_1)); \quad T_{i,1}^* \leftarrow -(T^{i-1}, e_i^1(c_1)) \\ & T_{i,2} \leftarrow + (T_{i,1}^*, e_i^1(c_2)); \quad T_{i,3} \leftarrow -(T_{i,1}^*, e_i^1(c_2)) \\ & \text{Para } j \leftarrow 1 \text{ hasta } 3 \text{ hacer} \\ & T_{i,j}' \leftarrow -(T_{i,j}, e_i^2(c_j)) \\ & \overline{T}^i \leftarrow T_{i,1}' \cup T_{i,2}' \\ & T^i \leftarrow \overline{T}^i \cup T_{i,3}' \\ & \text{Detectar}(T^p) \end{split}
```


Verificación formal (II)

Corrección del programa: se ha de probar que

• Toda molécula del tubo de salida codifica una coloración válida del grafo con tres colores.

O lo que es lo mismo, se ha de probar que:

• Si el programa responde SÍ, entonces el grafo G es coloreable con tres colores.

Para probar la corrección del programa se considera la fórmula

$$\theta(i) = \forall \sigma \in T^i \ \forall k \leq i \ ((\sigma)_{e_k^1} \neq (\sigma)_{e_k^2})$$

para i verificando que $1 \leqslant i \leqslant p$.

Obsérvese que $\theta(i)$ es verdadera sii todas las moléculas del tubo T^i codifican coloraciones válidas del subgrafo de G inducido por las aristas $\{e_1, ..., e_i\}$.

Se trata de probar que $\theta(i)$ es un invariante del bucle principal del programa.

Verificación formal (III)

Lema 1: Para cada i, j $(1 \le i \le p \land 1 \le j \le 3)$ se verifica:

- $T_{i,i} \subseteq T^{i-1}$ y $T'_{i,i} \subseteq T^{i-1}$.
- Para cada molécula $\sigma \in T_{i,j}$ se tiene que $(\sigma)_{e^1_i} = c_j$.
- Para cada molécula $\sigma \in T'_{i,j}$ se tiene que $(\sigma)_{e^1_i} = c_j$ y $(\sigma)_{e^2_i} \neq c_j$.

Lema 2: Para cada i, $1 \le i < p$, se tiene que $T^{i+1} \subseteq T^i$.

Teorema: La fórmula $\theta(i)$ es un **invariante** del bucle principal del programa; es decir, $\forall i \ (1 \le i \le p \to \theta(i))$.

* Prueba por inducción sobre i.

Corolario: (Corrección del programa)

Toda molécula del tubo de salida T^p codifica una coloración válida del grafo.

Verificación formal (IV)

Completitud del programa: se ha de probar que

 Toda molécula del tubo inicial que codifique una coloración válida del grafo con tres colores, aparecerá en el tubo de salida.

O lo que es lo mismo, se ha de probar que:

Si el programa responde NO, entonces el grafo G no es coloreable con tres colores.

Para probar la completitud del programa se considera la fórmula:

$$\delta(i) \equiv \forall \sigma \in T^{0}([\forall k \leq p \ ((\sigma)_{e_{k}^{1}} \neq (\sigma)_{e_{k}^{2}})] \rightarrow \sigma \in T^{i})$$

para i verificando que $1 \leqslant i \leqslant p$.

 $\delta(i)$ es verdadera sii toda molécula del tubo inicial que codifica una coloración válida del grafo con tres colores, pertenece al tubo relevante \mathcal{T}^i , que se obtiene a lo largo de la ejecución del programa.

Teorema: La fórmula $\delta(i)$ es un **invariante** del bucle principal del programa; es decir, $\forall \sigma \ (\sigma \in \mathcal{T}^0 \land [\forall k \leq p \ ((\sigma)_{e_k^1} \neq (\sigma)_{e_k^2})] \longrightarrow \underbrace{\forall i \ (1 \leq i \leq p \rightarrow \sigma \in \mathcal{T}^i)}).$

* Prueba por inducción sobre i.

Corolario: (Completitud del programa)

Toda molécula del tubo inicial que codifica una coloración válida del grafo, pertenece

val tubo \mathcal{T}^p de salida del programa

Una solución del problema 3-COL en el modelo débil

Consideremos el siguiente alfabeto: $\Sigma = \{(p_i, c_j) : 1 \le i \le n \land 1 \le j \le 3\}$. El tubo de entrada del programa molecular es el siguiente

$$T = \{ \sigma \in \Sigma^n : \exists x_1 ... \exists x_n (\sigma = (p_1, x_1)(p_2, x_2) ... (p_n, x_n)) \}$$

Si σ es una molécula de dicho tubo, entonces para cada i, $1 \le i \le n$, notaremos $(\sigma)_i = x_i$.

Idea del programa molecular:

- A partir del tubo de entrada, se seleccionan las moléculas que codifican coloraciones válidas con tres colores del subgrafo inducido por las aristas cuyo extremo inferior es menor o igual que 1.
 - * De éstas, se seleccionan las que codifican coloraciones válidas con tres colores del subgrafo inducido por las aristas cuyo extremo inferior es menor o igual que 2.
 - * Y se repite el proceso n veces.

Estas ideas sugieren el diseño del siguiente programa molecular:

```
Entrada: T (en las condiciones antes citadas)

Para i \leftarrow 1 hasta n-1 hacer

copiar(T, \{T_1, T_2, T_3\})

Para j \leftarrow 1 hasta 3 hacer

quitar(T_j, \{x_i \neq j, p_k(c_j) : k > i \land \{i, k\} \in E\})

union(\{T_1, T_2, T_3\}, T)

Seleccion(T)
```


Verificación formal (I)

Para establecer la verificación, se etiquetan los tubos que se obtienen a lo largo de la ejecución, reescribiendo el programa molecular como sigue:

```
 \begin{array}{ll} \text{Entrada:} & T^0 \text{ (en las condiciones antes citadas)} \\ & \text{Para } i \leftarrow 1 \text{ hasta } n-1 \text{ hacer} \\ & \text{copiar}(T^{i-1}, \{T_1^{i-1}, T_2^{i-1}, T_3^{i-1}\}) \\ & \text{Para } j \leftarrow 1 \text{ hasta } 3 \text{ hacer} \\ & \overline{T}_j^i \leftarrow \text{quitar}(T_j^{i-1}, \{x_i \neq j, p_k(c_j): \ k > i \land \{i, k\} \in E\}) \\ & \text{union}(\{\overline{T}_1^i, \overline{T}_2^i, \overline{T}_3^i\}, T^i) \\ & \text{Seleccion}(T^{n-1}) \end{array}
```


Verificación formal (II)

Del etiquetado de tubos que ha sido introducido se deduce:

(a) La sucesión de tubos relevantes, T^i que se obtiene a lo largo de la ejecución es creciente por la relación de inclusión. Es decir,

$$\forall i \ (1 \leq i \leq n-1 \rightarrow T^i \subseteq T^{i-1})$$

(b) Para cada i,j tales que $1 \le i \le n-1, 1 \le j \le 3$, y para cada molécula $\sigma \in \overline{\mathcal{T}}^i_j$ se verifica que $(\sigma)_i = j \land \forall k \ (i < k \land \{i,k\} \in E \to (\sigma)_k \ne j)$.

Verificación formal (III)

Corrección del programa: se ha de probar que

• Toda molécula del tubo de salida codifica una coloración válida del grafo con tres colores.

O lo que es lo mismo, se ha de probar que:

• Si el programa responde SI, entonces el grafo G es coloreable con tres colores.

Para probar la corrección del programa molecular, para cada i $(1 \le i \le n-1)$ se considera la fórmula:

$$\theta(i) = \forall \sigma \in T^i \ \forall r \ \forall s \ (1 \le r \le i \land r < s \land \{r, s\} \in E \rightarrow (\sigma)_r \ne (\sigma)_s)$$

 $\theta(i)$ es verdadera sii cada molécula de T^i codifica una coloración del grafo que es válida para el subgrafo inducido por el conjuntos de nodos $\{1,\ldots,i\}$.

Teorema 5: La fórmula $\theta(i)$ es un **invariante** del bucle principal del programa. Es decir, $\forall i \ (1 \le i \le n-1 \to \theta(i))$.

Corolario 6: (Corrección del programa):

Toda molécula del tubo de salida T^{n-1} codifica una coloración válida del grafo.

Verificación formal (IV)

Completitud del programa: se ha de probar que

 Toda molécula del tubo inicial que codifique una coloración válida del grafo con tres colores, aparecerá en el tubo de salida.

O lo que es lo mismo, se ha de probar que:

• Si el programa responde NO, entonces el grafo G no es coloreable con tres colores.

Teorema 7: Sea $\sigma \in T^0$ tal que

$$\forall r \ \forall s \ (1 \leq r \leq n-1 \land r < s \land \{r,s\} \in E \rightarrow (\sigma)_r \neq (\sigma)_s)$$

Entonces $\forall i \ (1 \leq i \leq n-1 \rightarrow \sigma \in T^i)$.

Corolario 8: (Completitud del programa)

Toda molécula del tubo inicial que codifica una coloración válida del grafo, aparece en el tubo de salida T^{n-1} .

Amortiguación de errores (I)

Operaciones moleculares del modelo formal:

- Son exactas.
- Están inspiradas en operaciones susceptibles de ser ejecutadas en el laboratorio (existencia de errores).

Operaciones conflictivas:

- extraer en el modelo restringido o no restringido.
- quitar en el modelo débil.

A continuación se analiza un procedimiento que permite atenuar el efecto negativo de los errores cometidos en la operación extraer.

Amortiguación de errores (II)

Al implementar la operación extraer (T, γ) (o extraer(T, s)), a través de la manipulación de moléculas de ADN, puede suceder:

- \triangleright o bien que alguna molécula del tubo T contenga la cadena γ y, en cambio, pertenezca al tubo $-(T, \gamma)$;
- \triangleright o bien que alguna molécula del tubo T no contenga a la cadena γ y, en cambio, pertenezca al tubo $+(T,\gamma)$.

Los errores del segundo tipo son subsanables.

Los errores del primer tipo son muy graves.

Veamos cómo se pueden "amortiguar" los errores de este último tipo.

Amortiguación de errores (III)

La idea es la siguiente:

- A partir del tubo T, la cadena γ y un número natural n se procede como sigue:
 - * Se ejecuta la operación extraer (T, γ) que devuelve dos tubos: $+(T, \gamma) = T_1$ y $-(T, \gamma) = T'_1$.
 - * Se ejecuta la operación extraer (T_1', γ) que devuelve dos tubos: $+(T_1', \gamma) = T_2$ y $-(T_1', \gamma) = T_2'$.
 - * El proceso se reitera n veces.
 - * Finalmente se devuelve la unión de los tubos T_1, T_2, \ldots, T_n .

Amortiguación de errores (IV)

Las ideas anteriores pueden ser descritas a través del siguiente programa molecular (que podríamos denominar **extraer** ⁽ⁿ⁾):

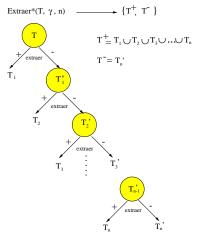
```
\begin{array}{ll} \text{Entrada:} & (T,\gamma) \\ & T_0 \leftarrow \emptyset; \quad T_0' \leftarrow T \\ & \text{Para } i \leftarrow 1 \text{ hasta } n \text{ hacer} \\ & T_i \leftarrow + (T_{i-1}',\gamma); \quad T_i' \leftarrow - (T_{i-1}',\gamma) \\ & T^+ \leftarrow T_{i-1} \cup T_i \\ & T^- \leftarrow T_n' \end{array}
```

La ejecución de este programa devuelve dos tubos, T^+ y T^- :

- * La probabilidad de que una molécula de T que contiene a γ esté en T^+ es $1-(p_+)^n$, siendo
 - * p_+ la probabilidad de que tras ejecutar la operación extraer (T, γ) , una molécula que debería estar en $+(T, \gamma)$ no se encuentre en dicho tubo.

Conclusión: Es posible amortiguar el error del primer tipo a unos niveles prefijados, con tal de elegir n convenientemente.

Amortiguación de errores (V)



El problema de las familias disjuntas

Enunciado: Sean $A = \{1, ..., p\}$ un conjunto finito y $\mathcal{F} = \{B_1, ..., B_q\}$ una familia finita de subconjuntos de A. Determinar <u>todas</u> las subfamilias de \mathcal{F} cuyos elementos son disjuntos dos a dos.

Este problema es presuntamente intratable.

Notación: Para cada
$$j$$
 $(1 \le j \le q)$, notaremos $r_j = |B_j|$ y $B_j = \{x_j^1, \dots, x_j^{r_j}\}$.

Una (p+q,q)-biblioteca está formada por complejos que codifican **todos** los números binarios con (p+q) dígitos tales que: los q primeros se consideran de todas las formas posibles y los (p+q)-q=p últimos son nulos (en total 2^q números binarios).

Cada complejo de esa biblioteca representará una subfamilia \mathcal{F}' de \mathcal{F} :

 \triangleright Si en la posición j ($1 \le j \le q$) aparece un 1 significa que el conjunto B_j pertenece a la subfamilia representada por ese complejo. Si aparece un 0, no pertenece a esa subfamilia.

Una solución del problema de las familias disjuntas en el modelo sticker (I)

Idea de un programa molecular: a partir de una (p+q,q)-biblioteca, T_0 , que codifica todas las posibles subfamilias de \mathcal{F} , se procede así:

- \triangleright Se clasifican las moléculas de T_0 entre las que contienen al 1 (tubo T^+), y las que no (tubo T^-). De entre las que contienen al 1:
 - * Si para algún $x_1^j \in B_1$ tiene activada la posición $q + x_1^j$, se **desecha**.
 - * Si no, se activan las posiciones $q + x_1^j$ (tubo T^*).

Se considera $T_0 = T^* \cup T^-$.

 \triangleright Se reitera el proceso para 2 (respecto de B_2), ..., para q (respecto de B_q).

Una solución del problema de las familias disjuntas en el modelo sticker (II)

Diseño de un programa molecular:

```
 \begin{array}{ll} \text{Entrada:} & T_0 \text{ (una } (p+q,q)\text{-libreria)} \\ & \text{para } i \leftarrow 1 \text{ hasta } q \text{ hacer} \\ & T^+ \leftarrow + (T_0,i); \quad T^- \leftarrow - (T_0,i) \\ & T_0^* \leftarrow T^+ \\ & \text{para } j \leftarrow 1 \text{ hasta } r_i \text{ hacer} \\ & T_{basura} \leftarrow + (T_{j-1}^*, \quad q + x_i^j) \\ & T \leftarrow - (T_{j-1}^*, \quad q + x_i^j) \\ & T_j^* \leftarrow \text{activar}(T, \quad q + x_i^j) \\ & T_0 \leftarrow \text{mezcla}(T_r^*, T^-) \end{array}
```


Verificación formal (I)

Para establecer la verificación, se etiquetan los tubos que se obtienen a lo largo de la ejecución, reescribiendo el programa molecular como sigue:

```
\begin{split} \text{Entrada:} \quad & T_0 \text{ (una } (p+q,q)\text{-libreria)} \\ & \text{para } i \leftarrow 1 \text{ hasta } q \text{ hacer} \\ & T_i^++\leftarrow + (T_{i-1},i); \quad T_i^-\leftarrow - (T_{i-1},i) \\ & T_{i,0}^*\leftarrow T_i^+ \\ & \text{para } j\leftarrow 1 \text{ hasta } r_i \text{ hacer} \\ & T_{i,j}^{basura}\leftarrow + (T_{i,j-1}^*, \quad q+x_i^j) \\ & T_{i,j}^*\leftarrow - (T_{i,j-1}^*, \quad q+x_i^j) \\ & T_{i,j}^*\leftarrow \text{activar}(T_{i,j}^\bullet, \quad q+x_i^j) \\ & T_i\leftarrow \text{mezcla}(T_{i,r_i}^*, T_i^-) \end{split}
```


Verificación formal (II)

Notación:

- $\triangleright \ \sigma$ se identifica con un número binario de p+q dígitos.
- ightharpoonup Si $\sigma = \sigma(1) \dots \sigma(q) \sigma(q+1) \dots \sigma(q+p)$, entonces

$$\left\{ egin{array}{l} \sigma_q = \sigma(1) \ldots \sigma(q) \ \sigma_p = \sigma(q+1) \ldots \sigma(q+p) \end{array}
ight.$$

 \triangleright Diremos que $k \in \sigma$ sii $\sigma(k) = 1$. Relación de inclusión entre moléculas.

Verificación formal (III)

Interpretación de la ejecución del programa molecular:

- ▶ Evolución de una población de individuos a lo largo del tiempo.
- ▶ Al transcurrir una unidad de tiempo, un individuo puede:
 - * Morir.
 - ⋆ Mutar.
 - * Permanecer invariable.
- ▶ Evolución de una molécula en una unidad de tiempo: STEP (ρ, i) , para $\rho \in T_{i-1}$ y $1 \le i \le q$.
- ▶ Historia de $\sigma \in T_0$: $\widehat{\sigma} = (\sigma^0, \sigma^1, \dots, \sigma^q)$, en donde $\sigma^0 = \sigma$ y $\sigma^i = \text{STEP}(\sigma^{i-1}, i)$.

Verificación formal (IV)

Lema 1: $\forall i \ (1 \leq i \leq q \rightarrow \forall \rho \in T_{i-1} \ (STEP(\rho, i) \downarrow \rightarrow STEP(\rho, i) \in T_i))$

 $\begin{array}{l} \textbf{Lema 2: } \forall i \forall j (1 \leq i \leq q \ \land \ 1 \leq j \leq r_i \rightarrow \forall \tau \in T_{i,j}^* \leq \rho \in T_i^+(\tau_q = \rho_q \land \forall s ((1 \leq s \leq j \rightarrow \rho(q + x_i^j) = 0 \land \tau(q + x_i^j) = 1) \land (j < s \leq q \rightarrow \rho(q + x_i^j) = \tau(q + x_j^j))))) \end{array}$

Corolario 3: $\forall i (1 \leq i \leq q \rightarrow \forall \tau \in T_{i,r_i}^* \leq \rho \in T_{i-1} (i \in \rho \land \rho \neq \tau \land STEP(\rho, i) = \tau))$

Corolario 4: $\forall i \forall j \ (1 \leq i \leq q \land 1 \leq j \leq r_i \rightarrow T_{i,j}^* \cap T_i^- = \emptyset)$

Lema 5: $\forall i \ (1 \leq i \leq q \rightarrow \forall \tau \in T_i^- (\tau \in T_{i-1} \land \mathtt{STEP}(\tau, i) = \tau))$

 $\textbf{Lema 6: } \forall i \ (1 \leq i \leq q \rightarrow \forall \rho, \tau \in \textit{T}_{i-1} \ (\texttt{STEP}(\rho, i) \downarrow = \texttt{STEP}(\tau, i) \rightarrow \rho = \tau))$

Corolario 7: $\forall i \ (1 \leq i \leq q \rightarrow \forall \sigma, \rho \in T_0 \ (\sigma^i \downarrow = \rho^i \rightarrow \sigma = \rho))$

Lema 8: $\forall i \ (1 \leq i \leq q \rightarrow \forall \tau \in T_i \leq ! \sigma \in T_0 \ (\sigma^i = \tau))$

Lema 9: $\forall i \ (1 \leq i \leq q \rightarrow \forall \sigma \in T_0 \ (\sigma^i \downarrow \rightarrow \sigma^i \in T_i))$

Lema 10: $\forall i \forall j \ (1 \leq i \leq q \land 1 \leq j \leq r_i \rightarrow \forall \tau \in T^*_{i,j} \ (i \in \tau))$

Proposición 11: $\forall i \ (0 \le i < q \to \forall \sigma \in T_0(\sigma^{i+1} \downarrow \to \sigma^i_g = \sigma^{i+1}_g \land \sigma^i_g \subseteq \sigma^{i+1}_g))$

Proposición 12: $\forall i \forall k (1 \leq i \leq q \land 1 \leq k < i \rightarrow \forall \sigma \in T_0(\sigma^i \downarrow \rightarrow \sigma^k_q = \sigma^i_q \land \sigma^k_p \subseteq \sigma^i_p)$

Verificación formal (V)

Fórmula invariante de la corrección

$$\theta(i) \equiv \forall \tau \in T_i \forall k, k' \in \tau \ (1 \le k < k' \le i \to B_k \cap B_{k'} = \emptyset)$$

Teorema 13: $\forall i \ (1 \leq i \leq q \rightarrow \theta(i)).$

$$\forall \tau \in T_q \forall k, k' \in \tau \ (1 \leq k < k' \leq q \rightarrow B_k \cap B_{k'} = \emptyset)$$

Fórmula invariante de la completitud

$$\delta(i) \equiv \forall \sigma \in T_0 \ ((\forall k, k' \in \sigma \ (1 \leq k < k' \leq q \rightarrow B_k \cap B_{k'} = \emptyset)) \rightarrow \sigma^i \in T_i)$$

Teorema 15: $\forall i \ (1 \leq i \leq q \rightarrow \delta(i)).$

Corolario 16: (Completitud)

$$\forall \sigma \in T_0 \ ((\forall k, k' \in \tau \ (1 \leq k < k' \leq q \rightarrow B_k \cap B_{k'} = \emptyset)) \rightarrow \sigma^q \in T_q)$$

