Computación Bio-inspirada

Tema 6: Modelos de Computación Celular con Membranas

David Orellana Martín Mario de J. Pérez Jiménez

Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

dorellana@us.es (http://www.cs.us.es/~dorellana/)
marper@us.es (http://www.cs.us.es/~marper/)

Máster Universitario en Lógica, Computación e Inteligencia Artificial

Curso 2025-2026

Índice

- . Las células de los organismos vivos.
- . El paradigma de la computación celular con membranas.
- 4 Modelos de computación celular con membranas.
- Sistemas P básicos de transición.
 - Sintaxis.
 - * Semántica.
- . Ejemplo de un sistema P generador.

La célula (I)

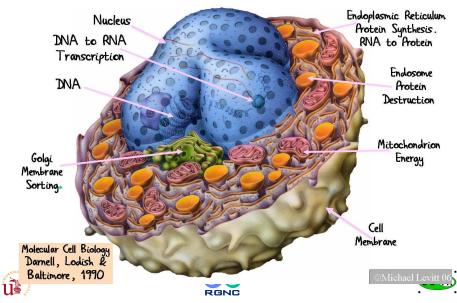
Procesos esenciales para la Vida:

- * Replicación del ADN.
- * Producción de energía.
- * Síntesis de proteínas.
- * Procesos metabólicos.

Célula: entidad básica de la Vida.

- * Estructura compleja y, a la vez, muy organizada.
- * Permite ejecución simultánea de reacciones químicas.

La célula (II)


Partes de una célula:

- Una especie de piel (membrana plásmica)
- * El corazón de la célula (núcleo), que almacena el ADN
- * El resto de la célula (citoplasma), que contiene:
 - La mitocondria: se encarga de producir energía.
 - El aparato de Golgi: fábrica de proteínas.
 - El retículo endoplásmico: red de membranas interconectadas.
 - Los lisosomas: estómagos de las células.

Existen dos tipos de células:

- Procariotas: carecen de un núcleo bien definido (propias de los organismos unicelulares).
- Eucariotas: poseen un núcleo rodeado por una doble membrana (específicas de animales y plantas).

La célula (III)

Las membranas biológicas

- * Involucradas en la mayoría de reacciones químicas
- * Canales selectivos de comunicación (barreras semipermeables).
- * Controlan un flujo de datos; es decir, de información:
- Premio Nobel de Química 2003: P. Agre y R. MacKinnon (canales proteínicos de las membranas).

Células versus máquinas

En una célula viva:

 Cada membrana trabaja con compuestos químicos de acuerdo con unas reacciones específicas

En una máquina paralela:

 Cada procesador trabaja con datos de acuerdo con un programa específico

Célula	Máquina	
Membranas	Procesadores	
Compuestos químicos	Datos	
Reacciones químicas	Instrucciones	

Paradigma de la computación celular con membranas

Membrane Computing: Gh. Păun, 1998–2000.

- * Modelos de computación (sistemas de membranas o sistemas P):
 - * Orientados a máquinas.
 - No deterministas.
 - Distribuidos.
 - ★ Paralelos y maximales.
- * Los modelos de computación celular pueden trabajar:
 - * A modo de células (cell-like).
 - * A modo de tejidos (tissue-like).
 - * A modo de neuronas (neural-like).

Sistemas P básicos de transición (a modo de células)

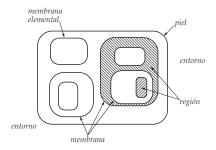
Ingredientes sintácticos:

- * Alfabeto de trabajo(los elementos se denominan objetos).
- * Un subconjunto del alfabeto de trabajo (objetos de entrada).
- Una estructura de unidades de procesos (membranas): árbol enraizado.
- * Un multiconjunto asociado a cada unidad de proceso.
- * Un conjunto finito de reglas de evolución.
- * Un entorno pasivo: sólo recibe objetos.
- Una <u>membrana</u> distinguida (de <u>entrada</u>) y una <u>zona</u> distinguida (de <u>salida</u>), que puede ser una membrana o el entorno.

Sistemas P básicos de transición

Ingredientes semánticos:

- * Configuración o descripción instantánea del sistema.
 - * Configuraciones iniciales.
- * Aplicabilidad de las reglas a una configuración.
- * Transición de una configuración a otra.
- * Computación a partir de una configuración inicial.



Sistemas P básicos de transición

Una estructura de membranas (diagrama de Venn):

Formalmente, una estructura de membranas es un árbol enraizado:

- * La raíz del árbol es la membrana piel.
- * Las hojas son las membranas elementales.
- \star En este contexto, el "padre" de la membrana piel es el "entorno" del sistema.

Sistemas P básicos de transición: Sintaxis

Sistema P básico de transición de grado $q \ge 1$:

$$\Pi = (\Gamma, \Sigma, \mu, \mathcal{M}_1, \dots, \mathcal{M}_q, (\mathcal{R}_1, \rho_1), \dots, (\mathcal{R}_q, \rho_q), i_{in}, i_{out})$$

en donde:

- * Γ es un alfabeto (objetos) y $\Sigma \subseteq \Gamma$.
- * μ es una estructura de membranas de grado q: membranas etiquetadas biyectivamente con elementos de $\{1, \ldots, q\}$ (0 es la etiqueta del entorno).
- * Para cada i, $1 \le i \le q$:
 - \star \mathcal{M}_i es un multiconjunto finito sobre $\Gamma \setminus \Sigma$.
 - * \mathcal{R}_i es un conjunto de reglas de evolución asociadas a la membrana i, del tipo $u \to v$, con $v = (v_1, here) (v_2, out) (v_3, in_j)$ o bien $v = (v_1, here) (v_2, out) (v_3, in_j) \delta$, siendo u, v_1, v_2, v_3 multiconjuntos sobre Γ y δ es un símbolo distinguido.
 - \star ρ_i es un orden parcial estricto sobre \mathcal{R}_i (prioridades: una regla tiene mayor prioridad que otra ...).
 - \star $i_{in} \in \{1,\ldots,q\}$ representa la membrana de entrada del sistema.
 - \star $i_{out} \in \{0, 1, \dots, q\}$ representa la zona de salida del sistema.

Sistemas P básicos de transición: Semántica

Configuración inicial de Π : $(\mu, \mathcal{M}_1, \dots, \mathcal{M}_q)$

Configuración inicial de Π asociada a un multiconjunto m sobre Σ :

$$(\mu, \mathcal{M}_1, \cdots, \mathcal{M}_{i_{i_n}} + m, \dots \mathcal{M}_q)$$

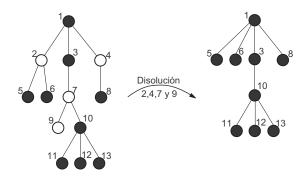
Configuración de Π en un instante t: una tupla $C_t = (\mu', \mathcal{M}'_{i_1}, \dots, \mathcal{M}'_{i_k})$ tal que

- * $\{i_1,\ldots,i_k\}$ debe contener la etiqueta asociada a la membrana piel.
- * μ' : subárbol de μ obtenido al eliminar las membranas distintas de i_1,\ldots,i_k .
- * $\mathcal{M}'_{i_1}, \dots, \mathcal{M}'_{i_k}$ son multiconjuntos sobre $\Gamma \setminus \Sigma$.

Sistemas P básicos de transición: Semántica

* **Aplicabilidad** de una regla $u \to v$ de \mathcal{R}_i a una configuración C_t .

Condiciones necesarias:


- * En la estructura de membranas de C_t ha de aparecer una membrana etiquetada por i.
- \star El multiconjunto u ha de estar contenido en esa membrana i de C_t .
- ★ Si (v₃, in_j) aparece en v, entonces j debe ser una hija de esa membrana i de C_t.
- \star Si δ aparece en ν , entonces i no puede ser la membrana piel ni, en su caso, la membrana de salida.
- ★ No existe una regla de \mathcal{R}_i aplicable a C_t y con mayor prioridad que $u \to v$.
- * Multiconjunto de reglas aplicables a una configuración.
- * Las reglas se ejecutan en paralelo, de forma maximal y no determinista.

Sistemas P básicos de transición: Semántica

Sean $C'=(\mu',m'_{i_1},\ldots,m'_{i_k}),$ $C''=(\mu'',m''_{j_1},\ldots,m''_{j_l})$ configuraciones de Π :

- * C'' se obtiene de C' en un paso de transición ejecutando las reglas aplicables de $\mathcal{R}_{i_1}, \ldots, \mathcal{R}_{i_k}$ (de forma paralela y maximal) como sigue:
 - si $u o v \in R_{i_s}$ y el multiconjunto u aparece en una membrana de μ' etiquetada por i_s , entonces
 - ★ El multiconjunto u se elimina de la membrana i_s.
 - \star Si $(v_1, here)$ aparece en v, se añade v_1 a la membrana i_s .
 - ★ Si (v₁, out) aparece en v, se añade v₁ a la membrana padre de i_s (al entorno si i_s es la piel).
 - \star Si (v_1, in_i) aparece en v_i , se añade v_1 a la membrana j (hija de la membrana i_s).
 - ★ Si δ ∈ v, la membrana i_s se disuelve y su contenido pasa al primer antecesor no disuelto (la piel no se puede disolver ni, en su caso, la membrana de salida).
 - Maximalidad: tras la ejecución de las reglas no puede quedar un objeto por evolucionar al que se le pueda aplicar alguna regla.

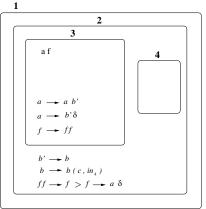
Ilustración de la ejecución de las reglas de disolucion

Computaciones en sistemas P básicos de transición

Una computación C es una sucesión (finita o infinita) de configuraciones (C_0, C_1, \ldots, C_r) , con $r \in \mathbb{N} \cup \{+\infty\}$, tal que:

- * C_0 es una configuración inicial de Π .
- * Para cada i < r, C_{i+1} se obtiene de C_i por un paso de transición.

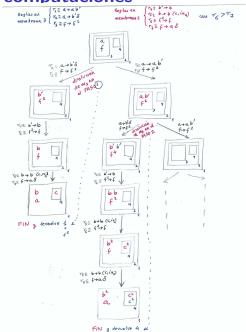
 $C = (C_0, C_1, \dots, C_r)$ es una **computación de parada** si $r \in \mathbb{N}$. En ese caso, a C_r (**configuración de parada**) no se le puede aplicar ninguna regla.


 El resultado de una computación de parada está codificado por el multiconjunto asociado a la membrana de salida de la configuración de parada.

Un sistema P básico de transición se puede considerar como:

- ★ Una máquina generadora ($\Sigma = \emptyset$).
- ★ Una máquina de *cálculo* ($\Sigma \neq \emptyset$).
- * Una máquina de decisión o reconocedora (yes, no $\in \Gamma$ y $\Sigma \neq \emptyset$).

Ejemplo de un sistema P generador


Un sistema celular con membranas que genera el conjunto $\{n^2: n \geq 1\}$.

Membrana 4: membrana de salida.

 \star Analizar las computaciones en función del instante $m\geq 0$ en el que se aplica $a o b'\delta$ por primera vez.

Traza de las computaciones

Contenidos de las membranas a lo largo de la evolución

Paso	Membrana 1	Membrana 2	Membrana 3	Membrana 4
0			af	
1			ab' f ²	
2			$ab'^2f^{2^2}$	
3			$ab'^3f^{2^3}$	
:	:	:	:	:
m			ab′ ^m f ^{2^m}	
m+1		$b'^{(m+1)}f^{2^{m+1}}$	disuelta	
m + 2		$b^{m+1}f^{2^m}$	disuelta	
(m+2)+1		$b^{m+1}f^{2^{m-1}}$	disuelta	c^{m+1}
(m+2)+2		$b^{m+1}f^{2^{m-2}}$	disuelta	$c^{2(m+1)}$
(m+2)+3		$b^{m+1}f^{2^{m-3}}$	disuelta	$c^{3(m+1)}$
:	:	:	:	:
(m+2) + m		$b^{m+1}f^{2^{m-m}}$	disuelta	$c^{m(m+1)}$
2m + 3	ab ^{m+1}	disuelta	disuelta	$c^{(m+1)(m+1)}$