Sistemas de produccién: CLIPS

Francisco J. Martin Mateos

Dpto. Ciencias de la Computacién e Inteligencia Artificial
Universidad de Sevilla

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Sistemas de produccién

@ Reglas para identificar un animal:

Si el animal tiene pelos entonces es mamifero.

Si el animal produce leche entonces es mamifero.

Si el animal es mamifero y tiene pezufias entonces es ungulado.

Si el animal es mamifero y rumia entonces es ungulado.

Si el animal es ungulado y tiene el cuello largo entonces es una
jirafa.

e Si el animal es ungulado y tiene rayas negras entonces es una cebra.

@ ;Como identificamos un animal que tiene pelos, pezufas y rayas
negras?

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Sistemas de produccién

@ Un sistema de produccién es un mecanismo computacional
basado en reglas de produccién de la forma: “Si se cumplen las
condiciones entonces se ejecutan las acciones.”

@ El conjunto de las reglas de produccién forma la base de
conocimiento que describe como evoluciona un sistema.

o Las reglas de produccién acttian sobre una memoria de trabajo o
base de datos que describe el estado actual del sistema.

e Si la condicién de una regla de produccién se satisface entonces
dicha regla estd activa.

o El conjunto de reglas de produccién activas en un instante concreto
forma el conjunto de conflicto o agenda.

o La estrategia de resolucion selecciona una regla del conjunto de
conflicto para ser ejecutada o disparada, modificando asi la memoria
de trabajo.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Sistemas de produccién

Sistema de
Produccion !

Equiparacion de patrones \

¢ Agenda

Resolucion de conflictos

'

Disparo

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Sistemas de produccién

o Componentes:

o Base de hechos (memoria de trabajo): Elemento dindmico.

o Base de reglas (base de conocimiento): Elemento estatico.

e Motor de inferencia: Produce los cambios en la memoria de trabajo.

@ Elementos adicionales:

e Algoritmo de equiparacion de patrones:. Algoritmo para calcular
eficientemente la agenda.

o Estrategia de resolucion de conflictos: Proceso para decidir en cada
momento qué regla de la agenda debe ser disparada.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Estrategia de resolucién de conflictos

@ Una activacién sélo se produce una vez.
o Estrategias mas comunes:

Tratar la agenda como una pila.

Tratar la agenda como una cola.

Eleccién aleatoria.

Regla mds especifica (nimero de condiciones).
Activacién m3s reciente (en funcién de los hechos).
Regla menos utilizada.

Mejor (pesos).

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas de produccidn

@ Modelo de regla:
<Condiciones> => <Acciones>
@ Condiciones:
e Existencia de cierta informacion.
e Ausencia de cierta informacién.
o Relaciones entre datos.
@ Acciones:
o Incluir nueva informacién.
e Eliminar informacion.
e Presentar informacién en pantalla.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

CLIPS

CLIPS = C Language Integrated Production Systems.
e http://www.clipsrules.net/

e Versién 6.31

Lenguaje basado en reglas de produccién.
Desarrollado en el Johnson Space Center de la NASA.

Relacionado con OPS5 y ART.
Caracteristicas:

Conocimiento: reglas, objetos y procedimental.
Portabilidad: implementado en C.

Integracién y Extensibilidad: C, Java, FORTRAN, ADA.
Documentacién.

Bajo coste: software libre.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

http://www.clipsrules.net/

Hechos en CLIPS

@ Estructura de un hecho simple:
(<simbolo> <datos>%*)

@ Ejemplos:
@ (conjunto A 1 2 3)
@ (1 2 3 4) no es un hecho vilido.

@ Conjunto de hechos iniciales:

(deffacts <nombre>
<hecho>x*)

@ Ejemplo:
(deffacts datos—iniciales
(conjunto A 1 2 3 4)
(conjunto B 1 3 5))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas en CLIPS

@ Estructura de una regla (I):

(defrule <nombre>
<condicion>x*
=>
<accion>x)

@ Las condiciones son patrones que se equiparan con los hechos de
la memoria de trabajo.
@ Accién: Anadir hechos.
(assert <hecho>x)
@ Ejemplo:
(defrule mamifero-1
(tiene pelos)

=>
(assert (es mamifero)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Interaccidn con CLIPS

@ Limpiar la base de conocimiento: (clear)
o Cargar el contenido de un archivo: (1o0ad <archivo>)
@ Inicializar el sistema de produccién: (reset)
@ Visualizar la memoria de trabajo: (facts)
@ Visualizar la agenda: (agenda)
o Ejecutar el sistema de produccién: (run)
o Ejecutar una regla en el sistema de produccién: (run 1)
o Salir del sistema: (exit)

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Ejemplo

@ Reglas:

(defrule mamifero-1
(tiene pelos)
=>
(assert (es mamifero)))

(defrule ungulado-1
(es mamifero)
(tiene pezufias)
=>
(assert (es ungulado)))

(defrule jirafa
(es ungulado)
(tiene cuello-largo)
=>
(assert (es jirafa)))
@ Conjunto de hechos iniciales:
(deffacts hechos—-iniciales
(tiene pelos)

(tiene pezuifias)
(tiene rayas-—-negras))

Ingenieria del Conocimiento

(defrule mamifero-2
(da-leche)
=>
(assert (es mamifero)))

(defrule ungulado-2
(es mamifero)
(rumia)
=>
(assert (es ungulado)))

(defrule cebra
(es ungulado)
(tiene rayas—negras)
=>
(assert (es cebra)))

Sistemas de produccién: CLIPS

Seguimiento de la ejecucién

@ Visualizar las entradas y salidas de hechos:
(watch facts)

@ Visualizar las activaciones y desactivaciones de las reglas:
(watch activations)

@ Visualizar los disparos de las reglas:

(watch rules)

@ Desactivar el seguimiento:

(unwatch facts)
(unwatch activations)
(unwatch rules)

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Tabla de seguimiento

Hechos Agenda D
f0 (initial-fact)
f1l (tiene pelos) mamifero-1: f1 1

£f2 (tiene pezuifias)

£3 (tiene rayas-—-negras)

f4 (es mamifero) ungulado-1: f£f4, f2 2

N=O OO o m

£5 (es ungulado) cebra: £5,£f3 3

f6 (es cebra)

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Variables en CLIPS

@ Variables simples: 2%, 2y

e Toman un valor simple (nimero, simbolo o cadena de texto).
@ Variables miiltiples: $2x, $2y

e Toman como valor una secuencia de valores simples.

@ Variables mudas: Toman un valor que no es necesario recordar.
e Simple: 2
o Multiple: $2

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas en CLIPS

@ Estructura de una regla (I1):
(defrule <nombre>
<condicion>x*
=>
<accion>«)
@ Condiciones positivas y negativas:
<condicion> := <patron> |

(not <patron>) |
<variable-simple> <- <patron>

e Condiciones positivas: comprueban la presencia de un hecho.
e Condiciones negativas: comprueban la ausencia de un hecho.

@ Accién: eliminar hechos.

(retract <identificador-hecho>x*)

<identificador-hecho> := <variable-simple>

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos

o Reglas:

(defrule inicio
=>
(assert (union)))

(defrule union
?h <- (union $?u)
(conjunto ? $? %e $9?)
(not (union $? ?e $7?))
=>
(retract °?h)
(assert (union ?e $?u)))

@ Conjunto de hechos iniciales:

(deffacts datos—-iniciales
(conjunto A 1 2 3 4)
(conjunto B 1 3 5))

@ Ejercicio: Interseccién de conjuntos.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (reset)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)

o Agenda:
(defrule inicio
=>
(assert (union)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)

o Agenda:
(defrule inicio
=>
(assert (union)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)

@ (union)

o Agenda:

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $9?)
(not (union $? ?e $?))
=>
(retract °?h)
(assert (union ?e $?u)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $9?)
(not (union $? ?e $?))
=>
(retract °?h)
(assert (union ?e $?u)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $9?)
(not (union $? ?e $?))
=>
(retract °?h)
(assert (union ?e $°?u)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <-
(conjunto ? $? ?e $9?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <-
(conjunto ? $? ?e $9?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:
@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <-

(not (union $? 1 $7?))

=>

(retract ?h)

(assert (union 1 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? 1 $?)
(not (union $? 1 $7?))
=>
(retract °?h)
(assert (union 1 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <-
(conjunto ? $? ?e $9?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:
@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <-

(not (union $? 2 $?))

=>

(retract ?h)

(assert (union 2 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)

@ (union 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $7?))
=>
(retract °?h)
(assert (union 2 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract °?h)
(assert (union 2 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract °?h)
(assert (union 2 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 2 5 3 1)

o Agenda:

(defrule union
?h <= (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract °?h)
(assert (union 2 5 3 1)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos: (run)

@ Memoria de trabajo:

@ (conjunto A 1 2 3 4)
@ (conjunto B 1 3 5)
@ (union 2 5 3 1)

o Agenda:

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos

Hechos E | S | Agenda D|S

f0 (initial-fact) 0 inicio: * 1

f1 (conjunto A 1 2 3 4) 0

£f2 (conjunto B 1 3 5) 0

£3 (union) 1 2 union: £3,fl(?e=4),* 2
union: £3,fl(?e=3),* 2
union: f£3,fl(?e=2),* 2
union: £3,fl(?e=1),* 2
union: £3,f2(?e=5), 2
union: f£3,f2(?e=3),* 2
union: £3,f2(?e=1),* 2

f4 (union 1) 2 3 union: £f4,fl (?e=4),* 3
union: f4,fl(?e=3),x* 3
union: f4,fl(?e=2),* 3
union: f4,f2(?e=5),* 3
union: f4,f2(?e=3),* 3

£5 (union 3 1) 3|4 union: f£5,fl(?e=4),* 4
union: f£5,fl(?e=2), * 4
union: f£5,f2(?e=5),* 4

£6 (union 5 3 1) 4 | 5 union: f£6,fl (?e=4),* 5
union: £6,fl (?e=2), % 5

£7 (union 2 5 3 1) 516 union: f£7,fl(?e=4),* 6

£8 (union 4 2 5 3 1) 6

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Plantillas

@ Estructura de una plantilla:

(deftemplate <nombre>
<campo>x*)

<campo> := (slot <nombre-campo>)
(multislot <nombre-campo>)

e Un campo simple slot tiene que almacenar exactamente un valor
simple.

e Un campo miltiple multislot puede almacenar cualquier secuencia
de valores.

@ Ejemplos:

(deftemplate conjunto
(slot nombre)
(multislot datos))

(conjunto (nombre A)
(datos 1 2 3 4))

(conjunto (nombre B)
(datos 1 3 5))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Unién de conjuntos con plantillas

@ Plantillas:

(deftemplate conjunto
(slot nombre)
(multislot datos))

@ Reglas:
(defrule inicio
=>
(assert (conjunto (nombre union) (datos))))

(defrule union

?h <- (conjunto (nombre union) (datos $?u))
(conjunto (datos $? ?e $?))

(not (conjunto (nombre union) (datos $? ?e $7?)))
=>

(retract °?h)
(assert (conjunto (nombre union) (datos ?e $?u))))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Restricciones sobre las variables

o Condiciones sobre las variables que se comprueban en el
momento de analizar las condiciones de una regla.
o Negativas: (dato ?x&~a)
o Disyuntivas: (dato ?xs&a|b)
o Conjuntivas: (dato ?x&~a&"b)
o Igualdad: (dato ?x&=<llamada-a-funcion>)
e Evaluables: (dato ?x&:<llamada-a-predicado>)
@ Funciones y predicados en CLIPS.
e Guia de Programacién Basica, seccién 12.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas en CLIPS

@ Estructura de una regla (I):

(defrule <nombre>
<condicion>*
=>
<accion>x*)

o Condiciones explicitas: comprueban propiedades de las variables.
<condicion> := <patron> |
(not <patron>) |
<variable-simple> <- <patron> |
(test <llamada-a-predicado>)
@ Accién: presentar informacién en pantalla.

(printout t <dato>x crlf)

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Plantillas:

(deftemplate casilla
(slot fila)
(slot columna)
(slot wvalor))

@ Conjuntos de hechos iniciales:

[u—
[E—

(\OR Ll |\

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Plantillas:

(deftemplate casilla
(slot fila)
(slot columna)
(slot wvalor))

@ Conjuntos de hechos iniciales:

(deffacts datos-iniciales
(casilla (fila 1) (columna 1) (valor 1))
(casilla (fila 1) (columna 2) (valor 2))
(casilla (fila 1) (columna 3) (valor 1))
(casilla (fila 2) (columna 1) (valor 4))
(casilla (fila 2) (columna 2) (valor 1))
(casilla (fila 2) (columna 3) (valor 3))
(casilla (fila 3) (columna 1) (valor 5))
(casilla (fila 3) (columna 2) (valor 2))
(casilla (fila 3) (columna 3) (valor 4)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en la misma fila:

(defrule repetidos-en-la-misma-fila
(casilla (fila ?f) (columna ?cl) (valor ?v))
(casilla (fila ?f) (columna ?c2&"?cl) (valor ?v))
=>
(printout t "Repetidos en fila " ?f
" y columnas " ?cl " y " ?c2 crlf))

@ Valores repetidos en la misma columna:

(defrule repetidos—en-la-misma-columna
(casilla (fila ?fl) (columna ?c) (valor ?v))
(casilla (fila ?£f2&7?fl) (columna ?c) (valor ?v))
=>
(printout t "Repetidos en columna " ?c
"y filas " ?f1 " y " ?£f2 crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en la misma diagonal (1):

(defrule repetidos—-en-la-misma-diagonal-1
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(casilla (fila ?f£2)
(columna ?c2&"?cl&: (= (abs (- ?f1 2£2))
(abs (- ?c¢cl 2c2))))
(valor ?v))
=>
(printout t "Repetidos en diagonal V1 "
ll(ll ?f1 Yl," ?2cl ll) y (u 2f2 n,n ?c2 ll)ll crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en la misma diagonal (2):

(defrule repetidos—-en-la-misma-diagonal-2
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(casilla (fila ?f2) (columna ?c2&"?cl) (valor ?v))
(test (= (abs (- ?fl ?£f2)) (abs (- ?cl ?c2))))
=>
(printout t "Repetidos en diagonal V2 "
ll(ll ?f1 u,n ?2cl ll) y (ll 2f2 ll,ll ?c2 ll)ll crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en distintas lineas (1):

(defrule repetidos—en-distintas-lineas-1
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(casilla (fila ?f2&7?f1)
(columna ?c2&"?cl) (valor ?v))
=>
(printout t "Repetidos en distintas lineas V1 "
ll(ll ?f1 u,n ?2cl ll) y (ll 2f2 ll,ll ?c2 ll)ll crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en distintas casillas (1):

(defrule repetidos—-en-distintas-casillas-1

(casilla (fila ?fl) (columna ?cl) (valor ?v))

(casilla (fila ?£2)
(columna ?c2&: (!= ?fl ?£2)|:(!= ?cl 2c2))
(valor ?v))

=>

(printout t "Repetidos en casillas V1 "
ll(ll ?f1 u,u ?2cl ll) y (u 2f2 ll,ll ?c2 ll)ll crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en distintas casillas (2):

(defrule repetidos—en-distintas-casillas-2

?hl <- (casilla (fila ?f1l) (columna ?cl) (valor ?v))
?h2 <- (casilla (fila ?f2) (columna ?c2) (valor ?v))
(test (neq ?hl ?h2))

=>

(printout t "Repetidos en casillas V2 "

n(m 2f1 ", " 2¢cl ") y (" 2£2 nwon ?2c2 ")" crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Ordenacidon de un vector

@ Reglas:

(defrule ordena
?f <- (vector $?b ?ml ?m2&: (< ?m2 ?ml) $°?e)
=>
(retract ?f)
(assert (vector $?b ?m2 ?ml $?e)))

(defrule resultado
(vector $?x)
(not (vector $?b ?ml ?m2&: (< ?m2 ?ml) $7?e))
=>
(printout t "El vector ordenado es " $?x crlf))

@ Conjuntos de hechos iniciales:

(deffacts datos—iniciales
(vector 3 2 1 4))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Ordenacidon de un vector

Hechos E | S | Agenda D|S

f0 (initial-fact) 0

fl (vector 3 2 1 4) 0 1 ordena: f1(?ml=2, ?m2=1) 1
ordena: f1l(?ml=3, ?m2=2) 1

f2 (vector 2 3 1 4) 1 2 ordena: f£f2(?ml=3, ?m2=1) 2

£3 (vector 2 1 3 4) 2 3 ordena: f£3(?ml=2, ?m2=1) 3

f4 (vector 1 2 3 4) 3 resultado: *,f4 4

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas en CLIPS

o Estructura de una regla (IV):

(defrule <nombre>
<cond-combinada>x*
=>
<accion>%)

@ Condiciones combinadas: aplicacién de operadores |6gicos

<cond-combinada> := <condicion> |

(not <cond-combinada>) |
(and <cond-combinada>+) |
(or <cond-combinada>+) |
(exists <cond-combinada>+) |
(forall <cond-combinada>

<cond-combinada>+)

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas en CLIPS

@ Negacién: Comprueba la ausencia de hechos en la base de datos
que cumplan una condicién combinada.

@ Conjuncién: Comprueba la existencia de hechos en la base de
datos que cumplan una serie de condiciones combinadas.

e Es equivalente a escribir la regla indicando explicitamente todas las
condiciones combinadas de la conjuncién.

@ Disyuncién: Comprueba la existencia de hechos en la base de
datos que cumplan alguna de una serie de condiciones
combinadas.

o Es equivalente a escribir varias reglas, indicando en cada una de ellas
explicitamente una de las condiciones combinadas de la disyuncidn.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en la misma diagonal (3):

(defrule repetidos—-en-la-misma-diagonal-3
(and (casilla (fila ?f1l) (columna ?cl) (valor ?v))
(casilla (fila ?f2) (columna ?c2&"?cl) (valor ?v))
(test (= (abs (- ?fl ?£f2)) (abs (- ?cl ?c2)))))
=>
(printout t "Repetidos en diagonal V3 "
n (ll ?fl n , n ?cl ll) y (ll ?fz ll, " ?c2 ll) n crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Valores repetidos en distintas casillas (3):

(defrule repetidos—en-distintas-casillas-3
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(or (casilla (fila ?£f2&7?fl) (columna ?c2) (valor ?v))
(casilla (fila ?£f2) (columna ?c2&"?cl) (valor ?v)))
=>
(printout t "Repetidos en distintas casillas V3 "
n (ll ?fl n , n ?cl ll) y (ll ?fz ll, " ?c2 ll) n crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

o Equivalencia de la disyuncién con varias reglas:

(defrule repetidos—en-distintas-casillas-3-1
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(casilla (fila ?f2&7?fl) (columna ?c2) (valor ?v))
=>
(printout t "Repetidos en casillas V3-1 "
" (H ?fl " , " ?cl H) y (Yl ?fz ll’ " ?cz ") " crlf))

(defrule repetidos—en-distintas-casillas-3-2
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(casilla (fila ?£f2) (columna ?c2&"?cl) (valor ?v))
=>
(printout t "Repetidos en casillas V3-2 "
n (ll ?fl n , n ?cl ll) y (ll ?fz ll, " ?c2 ll) n crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Reglas en CLIPS

@ Existencia: Comprueba la existencia de hechos en la base de
datos que cumplan una serie de condiciones combinadas, pero
no almacena la informacién que contienen.

e Es equivalente a una doble negacién de la conjuncién de todas las
condiciones combinadas.

@ Universal: Comprueba que para todos los hechos que cumplen la
primera de las condiciones combinadas, también se cumplen
todas las demas.

e Es atil para comprobar que un proceso ha terminado.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

o Existen valores repetidos en distintas casillas:

(defrule existen-repetidos—en-casillas-distintas
(exists (casilla (fila ?£f1) (columna ?cl) (valor ?v))
(casilla (fila ?f2) (columna ?c2) (valor ?v))
(test (or (!= ?£f1 ?2£2) (!= ?cl ?c2))))
=>
(printout t "Existen valores repetidos" crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

o Existen valores que no se repiten:

(defrule existen-valores—-que-no-se-repiten
(exists (casilla (fila ?fl) (columna ?cl) (valor ?v))
(not (and (casilla (fila ?£2)
(columna ?c2) (valor ?v))
(test (or (!'= ?f1 ?£2)
(= ?cl 2c2))))))
=>
(printout t "Existen valores que no se repiten" crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Valores repetidos en un tablero

@ Todos los valores pares se repiten:

(defrule todos-los-valores—-se-repiten
(forall (casilla (fila ?f1l) (columna ?cl)
(valor ?vé&: (evenp ?v)))
(casilla (fila ?f2) (columna ?c2) (valor ?v))
(test (or (!= ?£f1 ?£2) (!= ?cl ?c2))))
=>
(printout t "Todos los valores pares se repiten" crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Problemas de terminacidon

@ Una misma regla se puede activar con distinto conjunto de
hechos dando lugar a una iteracién infinita en el proceso de
deduccidn.

(deffacts datos—iniciales
(hecho))

(defrule bucle-infinito
?h <- (hecho)
=>
(retract ?h)
(assert (hecho)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Problemas de terminacidon

@ También se puede producir en otras situaciones:

(deffacts suma-inicial
(suma 0))

(defrule suma-valores
(casilla (fila ?fl) (columna ?cl) (valor ?v))
?h <- (suma ?total)
=>
(retract ?h)
(assert (suma (+ ?total ?v))))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Problemas de terminacidon

@ Suma de los valores de todas las casillas:

(deffacts suma-inicial
(suma 0))

(defrule suma-valores
(casilla (fila ?fl) (columna ?cl) (valor ?v))
(not (sumado ?fl ?cl))
?h <- (suma ?total)
=>
(retract ?h)
(assert (suma (+ ?total ?v))
(sumado ?f1 ?cl)))

(defrule suma-valores—final
(forall (casilla (fila ?£f1) (columna ?cl))
(sumado ?f1 ?cl))
(suma ?total)
=>
(printout t "La suma de los valores es " ?total crlf))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Plantillas

@ En la definicién de las plantillas se pueden incluir restricciones
sobre los atributos

e Tipo de dato: (type <TIPO>), donde el <T1PO> puede ser SYMBOL,
STRING, LEXEME, INTEGER, FLOAT o NUMBER entre otros.

o Valores permitidos: (allowed-<TIPO> <lista>)

o Rango: (range <rango-min> <rango-max>), donde los limites del
rango pueden ser nimeros O ?VARIABLE.

o Cardinalidad: (cardinality <min> <max>), donde los limites de la
cardinalidad pueden ser niimeros o ?VARIABLE.

e Valor por defecto: (default <val>), donde el valor por defecto
puede ser ?DERIVE, ?NONE, un valor concreto

e Valor generado por una expresion: (default-dynamic <expresion>)

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Plantillas

@ Definicién restrictiva de un tipo de dato:

(deftemplate elemento
(slot id
(type INTEGER)
(default ?DERIVE)

(allowed-integers 0 1 2 3 4 5 6 7 8 9))
(multislot wvalor

(type FLOAT)
(default ?NONE)
(range 0 100)
(cardinality 0 3)))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Plantillas: Generacidn dindmica

@ Variable global contadora
(defglobal ?*idx = 0)

@ Funcién de incremento

(deffunction incrementald ()
(bind ?*idx (+ ?xidx 1))
?%xidx)

o Plantilla

(deftemplate restriccion

(slot id (default-dynamic (incrementald)))
(multislot datos))

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

Bibliografia

o Giarratano, J.C. y Riley, G.
“Expert Systems Principles and Programming (4th ed.)
PWS Pub. Co., 2005.

e Cap. 7: “Introduction to Clips”

@ Giarratano, J.C.
“CLIPS User's Guide”,
http://www.clipsrules.net/ug631.pdf.

@ Giarratano, J.C.
“CLIPS Basic Programming Guide",
http://www.clipsrules.net/bpg631.pdf.

Ingenieria del Conocimiento Sistemas de produccién: CLIPS

http://www.clipsrules.net/ug631.pdf
http://www.clipsrules.net/bpg631.pdf

