
Sistemas de producción: CLIPS

Francisco J. Mart́ın Mateos

Dpto. Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Sistemas de producción

Reglas para identificar un animal:

Si el animal tiene pelos entonces es maḿıfero.
Si el animal produce leche entonces es maḿıfero.
Si el animal es maḿıfero y tiene pezuñas entonces es ungulado.
Si el animal es maḿıfero y rumia entonces es ungulado.
Si el animal es ungulado y tiene el cuello largo entonces es una
jirafa.
Si el animal es ungulado y tiene rayas negras entonces es una cebra.

¿Cómo identificamos un animal que tiene pelos, pezuñas y rayas
negras?

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Sistemas de producción

Un sistema de producción es un mecanismo computacional
basado en reglas de producción de la forma: “Si se cumplen las
condiciones entonces se ejecutan las acciones.”

El conjunto de las reglas de producción forma la base de
conocimiento que describe como evoluciona un sistema.

Las reglas de producción actúan sobre una memoria de trabajo o
base de datos que describe el estado actual del sistema.
Si la condición de una regla de producción se satisface entonces
dicha regla está activa.
El conjunto de reglas de producción activas en un instante concreto
forma el conjunto de conflicto o agenda.
La estrategia de resolución selecciona una regla del conjunto de
conflicto para ser ejecutada o disparada, modificando aśı la memoria
de trabajo.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Sistemas de producción

Disparo

Reglas Hechos

Equiparación de patrones

Resolución de conflictos

Agenda

Producción

Sistema de

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Sistemas de producción

Componentes:

Base de hechos (memoria de trabajo): Elemento dinámico.
Base de reglas (base de conocimiento): Elemento estático.
Motor de inferencia: Produce los cambios en la memoria de trabajo.

Elementos adicionales:

Algoritmo de equiparación de patrones: Algoritmo para calcular
eficientemente la agenda.
Estrategia de resolución de conflictos: Proceso para decidir en cada
momento qué regla de la agenda debe ser disparada.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Estrategia de resolución de conflictos

Una activación sólo se produce una vez.

Estrategias más comunes:

Tratar la agenda como una pila.
Tratar la agenda como una cola.
Elección aleatoria.
Regla más espećıfica (número de condiciones).
Activación más reciente (en función de los hechos).
Regla menos utilizada.
Mejor (pesos).

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas de producción

Modelo de regla:
<Condiciones> => <Acciones>

Condiciones:

Existencia de cierta información.
Ausencia de cierta información.
Relaciones entre datos.

Acciones:

Incluir nueva información.
Eliminar información.
Presentar información en pantalla.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



CLIPS

CLIPS ≡ C Language Integrated Production Systems.

http://www.clipsrules.net/

Versión 6.31

Lenguaje basado en reglas de producción.

Desarrollado en el Johnson Space Center de la NASA.

Relacionado con OPS5 y ART.

Caracteŕısticas:

Conocimiento: reglas, objetos y procedimental.
Portabilidad: implementado en C.
Integración y Extensibilidad: C, Java, FORTRAN, ADA.
Documentación.
Bajo coste: software libre.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS

http://www.clipsrules.net/


Hechos en CLIPS

Estructura de un hecho simple:
(<simbolo> <datos>*)

Ejemplos:

(conjunto A 1 2 3)

(1 2 3 4) no es un hecho válido.

Conjunto de hechos iniciales:
(deffacts <nombre>

<hecho>*)

Ejemplo:
(deffacts datos-iniciales
(conjunto A 1 2 3 4)
(conjunto B 1 3 5))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas en CLIPS

Estructura de una regla (I):
(defrule <nombre>
<condicion>*
=>
<accion>*)

Las condiciones son patrones que se equiparan con los hechos de
la memoria de trabajo.

Acción: Añadir hechos.
(assert <hecho>*)

Ejemplo:
(defrule mamifero-1
(tiene pelos)
=>
(assert (es mamifero)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Interacción con CLIPS

Limpiar la base de conocimiento: (clear)

Cargar el contenido de un archivo: (load <archivo>)

Inicializar el sistema de producción: (reset)

Visualizar la memoria de trabajo: (facts)

Visualizar la agenda: (agenda)

Ejecutar el sistema de producción: (run)

Ejecutar una regla en el sistema de producción: (run 1)

Salir del sistema: (exit)

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Ejemplo

Reglas:
(defrule mamifero-1
(tiene pelos)
=>
(assert (es mamifero)))

(defrule ungulado-1
(es mamifero)
(tiene pezuñas)
=>
(assert (es ungulado)))

(defrule jirafa
(es ungulado)
(tiene cuello-largo)
=>
(assert (es jirafa)))

(defrule mamifero-2
(da-leche)
=>
(assert (es mamifero)))

(defrule ungulado-2
(es mamifero)
(rumia)
=>
(assert (es ungulado)))

(defrule cebra
(es ungulado)
(tiene rayas-negras)
=>
(assert (es cebra)))

Conjunto de hechos iniciales:
(deffacts hechos-iniciales
(tiene pelos)
(tiene pezuñas)
(tiene rayas-negras))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Seguimiento de la ejecución

Visualizar las entradas y salidas de hechos:
(watch facts)

Visualizar las activaciones y desactivaciones de las reglas:
(watch activations)

Visualizar los disparos de las reglas:
(watch rules)

Desactivar el seguimiento:
(unwatch facts)
(unwatch activations)
(unwatch rules)

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Tabla de seguimiento

Hechos E Agenda D

f0 (initial-fact) 0
f1 (tiene pelos) 0 mamifero-1: f1 1
f2 (tiene pezuñas) 0
f3 (tiene rayas-negras) 0

f4 (es mamifero) 1 ungulado-1: f4,f2 2

f5 (es ungulado) 2 cebra: f5,f3 3

f6 (es cebra)

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Variables en CLIPS

Variables simples: ?x, ?y

Toman un valor simple (número, śımbolo o cadena de texto).

Variables múltiples: $?x, $?y

Toman como valor una secuencia de valores simples.

Variables mudas: Toman un valor que no es necesario recordar.

Simple: ?

Múltiple: $?

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas en CLIPS

Estructura de una regla (II):
(defrule <nombre>
<condicion>*
=>
<accion>*)

Condiciones positivas y negativas:

<condicion> := <patron> |
(not <patron>) |
<variable-simple> <- <patron>

Condiciones positivas: comprueban la presencia de un hecho.
Condiciones negativas: comprueban la ausencia de un hecho.

Acción: eliminar hechos.
(retract <identificador-hecho>*)

<identificador-hecho> := <variable-simple>

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos

Reglas:
(defrule inicio
=>
(assert (union)))

(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e $?u)))

Conjunto de hechos iniciales:
(deffacts datos-iniciales
(conjunto A 1 2 3 4)
(conjunto B 1 3 5))

Ejercicio: Intersección de conjuntos.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (reset)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

Agenda:
(defrule inicio
=>
(assert (union)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

Agenda:
(defrule inicio
=>
(assert (union)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union)

Agenda:

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e $?u)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e $?u)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union $?u)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e $?u)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 1 $?)
(not (union $? 1 $?))
=>
(retract ?h)
(assert (union 1 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 1 $?)
(not (union $? 1 $?))
=>
(retract ?h)
(assert (union 1 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? ?e $?)
(not (union $? ?e $?))
=>
(retract ?h)
(assert (union ?e 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract ?h)
(assert (union 2 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract ?h)
(assert (union 2 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract ?h)
(assert (union 2 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract ?h)
(assert (union 2 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 2 5 3 1)

Agenda:
(defrule union
?h <- (union 5 3 1)
(conjunto ? $? 2 $?)
(not (union $? 2 $?))
=>
(retract ?h)
(assert (union 2 5 3 1)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos: (run)

Memoria de trabajo:

(conjunto A 1 2 3 4)

(conjunto B 1 3 5)

(union 2 5 3 1)

Agenda:

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos

Hechos E S Agenda D S
f0 (initial-fact) 0 inicio: * 1
f1 (conjunto A 1 2 3 4) 0
f2 (conjunto B 1 3 5) 0
f3 (union) 1 2 union: f3,f1(?e=4),* 2

union: f3,f1(?e=3),* 2
union: f3,f1(?e=2),* 2
union: f3,f1(?e=1),* 2
union: f3,f2(?e=5),* 2
union: f3,f2(?e=3),* 2
union: f3,f2(?e=1),* 2

f4 (union 1) 2 3 union: f4,f1(?e=4),* 3
union: f4,f1(?e=3),* 3
union: f4,f1(?e=2),* 3
union: f4,f2(?e=5),* 3
union: f4,f2(?e=3),* 3

f5 (union 3 1) 3 4 union: f5,f1(?e=4),* 4
union: f5,f1(?e=2),* 4
union: f5,f2(?e=5),* 4

f6 (union 5 3 1) 4 5 union: f6,f1(?e=4),* 5
union: f6,f1(?e=2),* 5

f7 (union 2 5 3 1) 5 6 union: f7,f1(?e=4),* 6
f8 (union 4 2 5 3 1) 6

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Plantillas

Estructura de una plantilla:
(deftemplate <nombre>
<campo>*)

<campo> := (slot <nombre-campo>)
(multislot <nombre-campo>)

Un campo simple slot tiene que almacenar exactamente un valor
simple.
Un campo múltiple multislot puede almacenar cualquier secuencia
de valores.

Ejemplos:
(deftemplate conjunto
(slot nombre)
(multislot datos))

(conjunto (nombre A)
(datos 1 2 3 4))

(conjunto (nombre B)
(datos 1 3 5))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Unión de conjuntos con plantillas

Plantillas:
(deftemplate conjunto
(slot nombre)
(multislot datos))

Reglas:
(defrule inicio
=>
(assert (conjunto (nombre union) (datos))))

(defrule union
?h <- (conjunto (nombre union) (datos $?u))
(conjunto (datos $? ?e $?))
(not (conjunto (nombre union) (datos $? ?e $?)))
=>
(retract ?h)
(assert (conjunto (nombre union) (datos ?e $?u))))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Restricciones sobre las variables

Condiciones sobre las variables que se comprueban en el
momento de analizar las condiciones de una regla.

Negativas: (dato ?x&˜a)

Disyuntivas: (dato ?x&a|b)

Conjuntivas: (dato ?x&˜a&˜b)

Igualdad: (dato ?x&=<llamada-a-funcion>)

Evaluables: (dato ?x&:<llamada-a-predicado>)

Funciones y predicados en CLIPS.

Gúıa de Programación Básica, sección 12.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas en CLIPS

Estructura de una regla (III):
(defrule <nombre>
<condicion>*
=>
<accion>*)

Condiciones expĺıcitas: comprueban propiedades de las variables.

<condicion> := <patron> |
(not <patron>) |
<variable-simple> <- <patron> |
(test <llamada-a-predicado>)

Acción: presentar información en pantalla.
(printout t <dato>* crlf)

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Plantillas:
(deftemplate casilla
(slot fila)
(slot columna)
(slot valor))

Conjuntos de hechos iniciales:

1

2

2 1

4 1 3

5 4

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Plantillas:
(deftemplate casilla
(slot fila)
(slot columna)
(slot valor))

Conjuntos de hechos iniciales:
(deffacts datos-iniciales
(casilla (fila 1) (columna 1) (valor 1))
(casilla (fila 1) (columna 2) (valor 2))
(casilla (fila 1) (columna 3) (valor 1))
(casilla (fila 2) (columna 1) (valor 4))
(casilla (fila 2) (columna 2) (valor 1))
(casilla (fila 2) (columna 3) (valor 3))
(casilla (fila 3) (columna 1) (valor 5))
(casilla (fila 3) (columna 2) (valor 2))
(casilla (fila 3) (columna 3) (valor 4)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en la misma fila:
(defrule repetidos-en-la-misma-fila
(casilla (fila ?f) (columna ?c1) (valor ?v))
(casilla (fila ?f) (columna ?c2&˜?c1) (valor ?v))
=>
(printout t "Repetidos en fila " ?f

" y columnas " ?c1 " y " ?c2 crlf))

Valores repetidos en la misma columna:
(defrule repetidos-en-la-misma-columna
(casilla (fila ?f1) (columna ?c) (valor ?v))
(casilla (fila ?f2&˜?f1) (columna ?c) (valor ?v))
=>
(printout t "Repetidos en columna " ?c

" y filas " ?f1 " y " ?f2 crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en la misma diagonal (1):

(defrule repetidos-en-la-misma-diagonal-1
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(casilla (fila ?f2)

(columna ?c2&˜?c1&:(= (abs (- ?f1 ?f2))
(abs (- ?c1 ?c2))))

(valor ?v))
=>
(printout t "Repetidos en diagonal V1 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en la misma diagonal (2):

(defrule repetidos-en-la-misma-diagonal-2
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(casilla (fila ?f2) (columna ?c2&˜?c1) (valor ?v))
(test (= (abs (- ?f1 ?f2)) (abs (- ?c1 ?c2))))
=>
(printout t "Repetidos en diagonal V2 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en distintas ĺıneas (1):

(defrule repetidos-en-distintas-lineas-1
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(casilla (fila ?f2&˜?f1)

(columna ?c2&˜?c1) (valor ?v))
=>
(printout t "Repetidos en distintas lı́neas V1 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en distintas casillas (1):

(defrule repetidos-en-distintas-casillas-1
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(casilla (fila ?f2)

(columna ?c2&:(!= ?f1 ?f2)|:(!= ?c1 ?c2))
(valor ?v))

=>
(printout t "Repetidos en casillas V1 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en distintas casillas (2):

(defrule repetidos-en-distintas-casillas-2
?h1 <- (casilla (fila ?f1) (columna ?c1) (valor ?v))
?h2 <- (casilla (fila ?f2) (columna ?c2) (valor ?v))
(test (neq ?h1 ?h2))
=>
(printout t "Repetidos en casillas V2 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Ordenación de un vector

Reglas:
(defrule ordena
?f <- (vector $?b ?m1 ?m2&:(< ?m2 ?m1) $?e)
=>
(retract ?f)
(assert (vector $?b ?m2 ?m1 $?e)))

(defrule resultado
(vector $?x)
(not (vector $?b ?m1 ?m2&:(< ?m2 ?m1) $?e))
=>
(printout t "El vector ordenado es " $?x crlf))

Conjuntos de hechos iniciales:
(deffacts datos-iniciales
(vector 3 2 1 4))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Ordenación de un vector

Hechos E S Agenda D S
f0 (initial-fact) 0
f1 (vector 3 2 1 4) 0 1 ordena: f1(?m1=2,?m2=1) 1

ordena: f1(?m1=3,?m2=2) 1
f2 (vector 2 3 1 4) 1 2 ordena: f2(?m1=3,?m2=1) 2
f3 (vector 2 1 3 4) 2 3 ordena: f3(?m1=2,?m2=1) 3
f4 (vector 1 2 3 4) 3 resultado: *,f4 4

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas en CLIPS

Estructura de una regla (IV):
(defrule <nombre>
<cond-combinada>*
=>
<accion>*)

Condiciones combinadas: aplicación de operadores lógicos.

<cond-combinada> := <condicion> |
(not <cond-combinada>) |
(and <cond-combinada>+) |
(or <cond-combinada>+) |
(exists <cond-combinada>+) |
(forall <cond-combinada>

<cond-combinada>+)

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas en CLIPS

Negación: Comprueba la ausencia de hechos en la base de datos
que cumplan una condición combinada.

Conjunción: Comprueba la existencia de hechos en la base de
datos que cumplan una serie de condiciones combinadas.

Es equivalente a escribir la regla indicando expĺıcitamente todas las
condiciones combinadas de la conjunción.

Disyunción: Comprueba la existencia de hechos en la base de
datos que cumplan alguna de una serie de condiciones
combinadas.

Es equivalente a escribir varias reglas, indicando en cada una de ellas
expĺıcitamente una de las condiciones combinadas de la disyunción.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en la misma diagonal (3):

(defrule repetidos-en-la-misma-diagonal-3
(and (casilla (fila ?f1) (columna ?c1) (valor ?v))

(casilla (fila ?f2) (columna ?c2&˜?c1) (valor ?v))
(test (= (abs (- ?f1 ?f2)) (abs (- ?c1 ?c2)))))

=>
(printout t "Repetidos en diagonal V3 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Valores repetidos en distintas casillas (3):

(defrule repetidos-en-distintas-casillas-3
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(or (casilla (fila ?f2&˜?f1) (columna ?c2) (valor ?v))

(casilla (fila ?f2) (columna ?c2&˜?c1) (valor ?v)))
=>
(printout t "Repetidos en distintas casillas V3 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Equivalencia de la disyunción con varias reglas:
(defrule repetidos-en-distintas-casillas-3-1
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(casilla (fila ?f2&˜?f1) (columna ?c2) (valor ?v))
=>
(printout t "Repetidos en casillas V3-1 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

(defrule repetidos-en-distintas-casillas-3-2
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(casilla (fila ?f2) (columna ?c2&˜?c1) (valor ?v))
=>
(printout t "Repetidos en casillas V3-2 "

"(" ?f1 "," ?c1 ") y (" ?f2 "," ?c2 ")" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Reglas en CLIPS

Existencia: Comprueba la existencia de hechos en la base de
datos que cumplan una serie de condiciones combinadas, pero
no almacena la información que contienen.

Es equivalente a una doble negación de la conjunción de todas las
condiciones combinadas.

Universal: Comprueba que para todos los hechos que cumplen la
primera de las condiciones combinadas, también se cumplen
todas las demás.

Es útil para comprobar que un proceso ha terminado.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Existen valores repetidos en distintas casillas:
(defrule existen-repetidos-en-casillas-distintas
(exists (casilla (fila ?f1) (columna ?c1) (valor ?v))

(casilla (fila ?f2) (columna ?c2) (valor ?v))
(test (or (!= ?f1 ?f2) (!= ?c1 ?c2))))

=>
(printout t "Existen valores repetidos" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Existen valores que no se repiten:
(defrule existen-valores-que-no-se-repiten
(exists (casilla (fila ?f1) (columna ?c1) (valor ?v))

(not (and (casilla (fila ?f2)
(columna ?c2) (valor ?v))

(test (or (!= ?f1 ?f2)
(!= ?c1 ?c2))))))

=>
(printout t "Existen valores que no se repiten" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Valores repetidos en un tablero

Todos los valores pares se repiten:
(defrule todos-los-valores-se-repiten
(forall (casilla (fila ?f1) (columna ?c1)

(valor ?v&:(evenp ?v)))
(casilla (fila ?f2) (columna ?c2) (valor ?v))
(test (or (!= ?f1 ?f2) (!= ?c1 ?c2))))

=>
(printout t "Todos los valores pares se repiten" crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Problemas de terminación

Una misma regla se puede activar con distinto conjunto de
hechos dando lugar a una iteración infinita en el proceso de
deducción.
(deffacts datos-iniciales
(hecho))

(defrule bucle-infinito
?h <- (hecho)
=>
(retract ?h)
(assert (hecho)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Problemas de terminación

También se puede producir en otras situaciones:
(deffacts suma-inicial
(suma 0))

(defrule suma-valores
(casilla (fila ?f1) (columna ?c1) (valor ?v))
?h <- (suma ?total)
=>
(retract ?h)
(assert (suma (+ ?total ?v))))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Problemas de terminación

Suma de los valores de todas las casillas:
(deffacts suma-inicial
(suma 0))

(defrule suma-valores
(casilla (fila ?f1) (columna ?c1) (valor ?v))
(not (sumado ?f1 ?c1))
?h <- (suma ?total)
=>
(retract ?h)
(assert (suma (+ ?total ?v))

(sumado ?f1 ?c1)))

(defrule suma-valores-final
(forall (casilla (fila ?f1) (columna ?c1))

(sumado ?f1 ?c1))
(suma ?total)
=>
(printout t "La suma de los valores es " ?total crlf))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Plantillas

En la definición de las plantillas se pueden incluir restricciones
sobre los atributos

Tipo de dato: (type <TIPO>), donde el <TIPO> puede ser SYMBOL,
STRING, LEXEME, INTEGER, FLOAT o NUMBER entre otros.
Valores permitidos: (allowed-<TIPO> <lista>)

Rango: (range <rango-min> <rango-max>), donde los ĺımites del
rango pueden ser números o ?VARIABLE.
Cardinalidad: (cardinality <min> <max>), donde los ĺımites de la
cardinalidad pueden ser números o ?VARIABLE.
Valor por defecto: (default <val>), donde el valor por defecto
puede ser ?DERIVE, ?NONE, un valor concreto
Valor generado por una expresión: (default-dynamic <expresion>)

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Plantillas

Definición restrictiva de un tipo de dato:
(deftemplate elemento
(slot id

(type INTEGER)
(default ?DERIVE)
(allowed-integers 0 1 2 3 4 5 6 7 8 9))

(multislot valor
(type FLOAT)
(default ?NONE)
(range 0 100)
(cardinality 0 3)))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Plantillas: Generación dinámica

Variable global contadora
(defglobal ?*id* = 0)

Función de incremento
(deffunction incrementaId ()
(bind ?*id* (+ ?*id* 1))
?*id*)

Plantilla
(deftemplate restriccion
(slot id (default-dynamic (incrementaId)))
(multislot datos))

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS



Bibliograf́ıa

Giarratano, J.C. y Riley, G.
“Expert Systems Principles and Programming (4th ed.)”,
PWS Pub. Co., 2005.

Cap. 7: “Introduction to Clips”

Giarratano, J.C.
“CLIPS User’s Guide”,
http://www.clipsrules.net/ug631.pdf.

Giarratano, J.C.
“CLIPS Basic Programming Guide”,
http://www.clipsrules.net/bpg631.pdf.

Ingenieŕıa del Conocimiento Sistemas de producción: CLIPS

http://www.clipsrules.net/ug631.pdf
http://www.clipsrules.net/bpg631.pdf

