
Control de la ejecución y diseño modular

Francisco J. Mart́ın Mateos

Dpto. Ciencias de la Computación e Inteligencia Artificial
Universidad de Sevilla

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control de la ejecución

Ejemplo de fases de un problema:

Lectura de datos.
Detección de problemas.

Técnicas de control:

Control empotrado en las reglas.
Control usando prioridades.
Control usando reglas.
Control usando módulos.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control empotrado en las reglas

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control empotrado en las reglas

Distinguir las fases del problema usando hechos de control:

(fase lectura-de-datos)

(fase deteccion-de-problemas)

Todas las reglas de una misma fase tienen entre sus condiciones
el hecho de control correspondiente.

Las reglas que finalizan una fase tienen que eliminar el hecho de
control de dicha fase y añadir el de la siguiente.

Inconvenientes:

Identificación de los hechos de control.
Dificultad para precisar la conclusión de cada fase.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control empotrado en las reglas

Hechos iniciales:
(deffacts inicio
(fase lectura-de-datos)
(dispositivos C1 C2 C3))

Fase de lectura de datos:
(defrule lectura-de-datos
(fase lectura-de-datos)
?h <- (dispositivos ?id $?res)
(not (dato ?id ?val))
=>
(retract ?h)
(assert (dispositivos $?res)

(dato ?id (random 1 100))))

(defrule final-de-lectura-de-datos
?h1 <- (fase lectura-de-datos)
?h2 <- (dispositivos)
=>
(retract ?h1 ?h2)
(assert (dispositivos C1 C2 C3)

(fase deteccion-de-problemas)))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control empotrado en las reglas

Fase de detección de problemas:
(defrule deteccion-de-problemas-1
(fase deteccion-de-problemas)
?h <- (dato ?id ?val&:(evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule deteccion-de-problemas-2
(fase deteccion-de-problemas)
?h <- (dato ?id ?val&:(oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

(defrule final-deteccion-de-problemas
?h <- (fase deteccion-de-problemas)
(not (dato ? ?))
=>
(retract ?h)
(assert (fase lectura-de-datos)))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control empotrado en las reglas: Ejercicio

Añadir control empotrado en las reglas a la práctica del Sudoku

Utilizar dos hechos de control:

(fase basica) en la que se usan las estrategias de valor asignado,
par asignado, valores ocultos y pares ocultos.
(fase avanzada) en la que se usan las estrategias de la intersección
y de la cruz.

Implementar el siguiente comportamiento:

Las estrategias asociadas a la (fase avanzada) solo se usan cuando
no se pueden aplicar las estrategias asociadas a la (fase basica).
Una vez aplicada una regla asociada a la (fase avanzada), se tienen
que volver a evaluar las estrategias asociadas a la (fase basica).

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando prioridades

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Prioridades

Sintaxis:
(defrule <nombre>
(declare (salience <numero>))
<condicion>*
=>
<accion>*)

Valores:

Mı́nimo: -10000
Máximo: 10000
Defecto: 0

Ventajas:

No es necesario precisar la conclusión de cada fase.

Inconvenientes:

Tendencia a abusar de las prioridades.
Contradicción con el objetivo de los sistemas basados en reglas.
Las fases se pueden mezclar.
Dificultad para comenzar otra vez el ciclo.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando prioridades

Hechos iniciales:
(deffacts inicio
(dispositivos C1 C2 C3))

Fase de lectura de datos:
(defrule lectura-de-datos
(declare (salience 30))
?h <- (dispositivos $? ?id $?)
(not (dato ?id ?val))
=>
(assert (dato ?id (random 1 100))))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando prioridades

Fase de detección de problemas:
(defrule deteccion-de-problemas-1
(declare (salience 20))
?h <- (dato ?id ?val&:(evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule deteccion-de-problemas-2
(declare (salience 20))
?h <- (dato ?id ?val&:(oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando prioridades: Ejercicio

Añadir control usando prioridades a la práctica del Sudoku

Utilizar dos prioridades:

Prioridad 20 en la que se usan las estrategias de valor asignado, par
asignado, valores ocultos y pares ocultos.
Prioridad 10 en la que se usan las estrategias de la intersección y de
la cruz.
Las reglas que imprimen la solución tienen prioridad -10.

Implementar el siguiente comportamiento:

Las estrategias asociadas a la prioridad 10 solo se usan cuando no se
pueden aplicar las estrategias asociadas a la prioridad 20.
Una vez aplicada una regla asociada a la prioridad 10, se tienen que
volver a evaluar las estrategias asociadas a la prioridad 20.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando reglas

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Reglas de control

Reglas espećıficas para controlar las fases de desarrollo.

Se utilizan hechos de control para distinguir las fases.
Se definen reglas para cambiar las fases con baja prioridad.

Ventajas:

Separación entre reglas de control y reglas de proceso.
Acorde con las metodoloǵıas de diseño.
No es necesario precisar la conclusión de cada fase.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando reglas (1)

Una regla para cada cambio de fase:
(deffacts inicio
(fase lectura-de-datos)
(dispositivos C1 C2 C3))

(defrule lectura-a-deteccion
(declare (salience -10))
?fase <- (fase lectura-de-datos)
=>
(retract ?fase)
(assert (fase deteccion-de-problemas)))

(defrule deteccion-a-lectura
(declare (salience -10))
?fase <- (fase deteccion-de-problemas)
=>
(retract ?fase)
(assert (fase lectura-de-datos)))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando reglas (1)

Fase de lectura de datos:
(defrule lectura-de-datos
(fase lectura-de-datos)
?h <- (dispositivos $? ?id $?)
(not (dato ?id ?val))
=>
(assert (dato ?id (random 1 100))))

Fase de detección de problemas:
(defrule deteccion-de-problemas-1
(fase deteccion-de-problemas)
?h <- (dato ?id ?val&:(evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule deteccion-de-problemas-2
(fase deteccion-de-problemas)
?h <- (dato ?id ?val&:(oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando reglas (2)

Una regla para todos los cambios de fase:
(deffacts control
(fase lectura-de-datos)
(siguiente-fase lectura-de-datos deteccion-de-problemas)
(siguiente-fase deteccion-de-problemas lectura-de-datos))

(defrule cambio-de-fase
(declare (salience -10))
?fase <- (fase ?actual)
(siguiente-fase ?actual ?siguiente)
=>
(retract ?fase)
(assert (fase ?siguiente)))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando reglas (3)

Cambio de fase en secuencia:
(deffacts control
(fase lectura-de-datos)
(secuencia-de-fases lectura-de-datos

deteccion-de-problemas))

(defrule cambio-de-fase
(declare (salience -10))
?fase <- (fase ?actual)
?secuencia <- (secuencia-de-fases ?siguiente $?resto)
=>
(retract ?fase ?secuencia)
(assert (fase ?siguiente)

(secuencia-de-fases $?resto ?siguiente)))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando reglas: Ejercicio

Añadir control usando reglas a la práctica del Sudoku

Utilizar dos hechos de control:

(fase basica) en la que se usan las estrategias de valor asignado,
par asignado, valores ocultos y pares ocultos.
(fase avanzada) en la que se usan las estrategias de la intersección
y de la cruz.

Implementar el siguiente comportamiento:

Las estrategias asociadas a la (fase avanzada) solo se usan cuando
no se pueden aplicar las estrategias asociadas a la (fase basica).
Una vez aplicada una regla asociada a la (fase avanzada), se tienen
que volver a evaluar las estrategias asociadas a la (fase basica).

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando módulos

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Módulos

Grupos de constructores (reglas, hechos, funciones, ...) con
agenda propia.

Sólo un módulo está “activo” en cada momento, los restantes
están “latentes”.

El módulo por defecto es MAIN y es el primero en construirse.

Sintaxis:
(defmodule <nombre>
(export <elemento>)*
(import <modulo> <elemento>)*)

<elemento> := ?ALL |
?NONE |
<constructor> ?ALL |
<constructor> ?NONE |
<constructor> <nombre>+

<constructor> := deftemplate | defclass |
defglobal | deffunction | defgeneric

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Comunicación entre módulos

Lectura secuencial de ficheros:

Sólo se puede exportar a módulos sucesivos.
Sólo se puede importar de módulos anteriores.
El módulo MAIN puede exportar a cualquier otro pero no puede
importar de ninguno.

Solución más general: exportarlo todo e importarlo todo de los
módulos anteriores.
(defmodule DETECCION
(export ?ALL))

(defmodule AISLAMIENTO
(export ?ALL))

(defmodule RECUPERACION
(import DETECCION ?ALL)
(import AISLAMIENTO ?ALL))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Definición de constructores en módulos

Indicar delante del nombre del constructor el nombre del módulo.

Los constructores pueden hacer uso de cualquier elemento
definido en el propio módulo o importado de otro módulo.

Módulo DETECCION:
(deftemplate DETECCION::fallo
(slot componente))

(deffacts DETECCION::inicio
(fallo (componente A)))

(defrule DETECCION::deteccion
(fallo (componente A | C))
=>)

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Definición de constructores en módulos

Módulo AISLAMIENTO:
(deftemplate AISLAMIENTO::posible-fallo
(slot componente))

(deffacts AISLAMIENTO::inicio
(posible-fallo (componente B)))

(defrule AISLAMIENTO::aislamiento
(posible-fallo (componente B | D))
=>)

Módulo RECUPERACION:
(deffacts RECUPERACION::inicio
(fallo (componente C))
(posible-fallo (componente D)))

(defrule RECUPERACION::recuperacion
(fallo (componente A | C))
(posible-fallo (componente B | D))
=>)

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Memorias de trabajo

Visualizar la memoria de trabajo de un módulo:
CLIPS> (facts DETECCION)
f-1 (fallo (componente A))
f-3 (fallo (componente C))
For a total of 2 facts.
CLIPS> (facts AISLAMIENTO)
f-2 (posible-fallo (componente B))
f-4 (posible-fallo (componente D))
For a total of 2 facts.
CLIPS> (facts RECUPERACION)
f-1 (fallo (componente A))
f-2 (posible-fallo (componente B))
f-3 (fallo (componente C))
f-4 (posible-fallo (componente D))
For a total of 4 facts.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Memorias de trabajo

Visualizar la memoria de trabajo de todos los módulos:
CLIPS> (facts *)
f-0 (initial-fact)
f-1 (fallo (componente A))
f-2 (posible-fallo (componente B))
f-3 (fallo (componente C))
f-4 (posible-fallo (componente D))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Agendas

Visualizar la agenda de un módulo:
CLIPS> (agenda DETECCION)
0 deteccion: f-3
0 deteccion: f-1
For a total of 2 activations.
CLIPS> (agenda AISLAMIENTO)
0 aislamiento: f-4
0 aislamiento: f-2
For a total of 2 activations.
CLIPS> (agenda RECUPERACION)
0 recuperacion: f-1,f-4
0 recuperacion: f-1,f-2
0 recuperacion: f-3,f-4
0 recuperacion: f-3,f-2
For a total of 4 activations.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Agendas

Visualizar la agenda de todos los módulos:
CLIPS> (agenda *)
MAIN:
DETECCION:

0 deteccion: f-3
0 deteccion: f-1

AISLAMIENTO:
0 aislamiento: f-4
0 aislamiento: f-2

RECUPERACION:
0 recuperacion: f-1,f-4
0 recuperacion: f-3,f-4
0 recuperacion: f-3,f-2
0 recuperacion: f-1,f-2

For a total of 8 activations.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Pila de módulos

Estructura que establece la secuencia de módulos a ejecutar.

Al iniciar el sistema de producción el módulo MAIN se coloca como
primer módulo.
Se pueden colocar otros módulos con el comando focus.

CLIPS> (reset)
CLIPS> (watch rules)
CLIPS> (run)
CLIPS> (focus DETECCION)
TRUE
CLIPS> (run)
FIRE 1 deteccion: f-3
FIRE 2 deteccion: f-1

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Pila de módulos

El comando (list-focus-stack) permite ver el estado de la pila
de módulos:
CLIPS> (reset)
CLIPS> (focus RECUPERACION)
TRUE
CLIPS> (focus AISLAMIENTO)
TRUE
CLIPS> (list-focus-stack)
AISLAMIENTO
RECUPERACION
MAIN
CLIPS> (run)
FIRE 1 aislamiento: f-4
FIRE 2 aislamiento: f-2
FIRE 3 recuperacion: f-1,f-4
FIRE 4 recuperacion: f-3,f-4
FIRE 5 recuperacion: f-3,f-2
FIRE 6 recuperacion: f-1,f-2

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Pila de módulos

Se pueden apilar varios módulos en una misma instrucción focus:
CLIPS> (reset)
CLIPS> (focus AISLAMIENTO RECUPERACION)
TRUE
CLIPS> (list-focus-stack)
AISLAMIENTO
RECUPERACION
MAIN
CLIPS> (run)
FIRE 1 aislamiento: f-4
FIRE 2 aislamiento: f-2
FIRE 3 recuperacion: f-1,f-4
FIRE 4 recuperacion: f-3,f-4
FIRE 5 recuperacion: f-3,f-2
FIRE 6 recuperacion: f-1,f-2

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Pila de módulos

Se puede apilar varias veces un mismo módulo, aunque no de
forma consecutiva:
CLIPS> (reset)
CLIPS> (focus DETECCION DETECCION AISLAMIENTO DETECCION)
TRUE
CLIPS> (list-focus-stack)
DETECCION
AISLAMIENTO
DETECCION
MAIN
CLIPS> (run)
FIRE 1 deteccion: f-3
FIRE 2 deteccion: f-1
FIRE 3 aislamiento: f-4
FIRE 4 aislamiento: f-2

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Pila de módulos

El comando pop-focus elimina el primer módulo de la pila.

Este comando se puede usar en una regla como acción.

CLIPS> (reset)
CLIPS> (focus DETECCION AISLAMIENTO RECUPERACION)
TRUE
CLIPS> (list-focus-stack)
DETECCION
AISLAMIENTO
RECUPERACION
MAIN
CLIPS> (run 2)
FIRE 1 deteccion: f-3
FIRE 2 deteccion: f-1
CLIPS> (pop-focus)
AISLAMIENTO
CLIPS> (list-focus-stack)
RECUPERACION
MAIN
CLIPS> (run)
FIRE 1 recuperacion: f-1,f-4
FIRE 2 recuperacion: f-3,f-4
FIRE 3 recuperacion: f-3,f-2
FIRE 4 recuperacion: f-1,f-2

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Pila de módulos

El comando (watch focus) permite visualizar como cambian los
elementos en la pila de módulos.
CLIPS> (reset)
CLIPS> (watch focus)
CLIPS> (focus DETECCION AISLAMIENTO RECUPERACION)
==> Focus RECUPERACION from MAIN
==> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO
TRUE
CLIPS> (run)
FIRE 1 deteccion: f-3
FIRE 2 deteccion: f-1
<== Focus DETECCION to AISLAMIENTO
FIRE 3 aislamiento: f-4
FIRE 4 aislamiento: f-2
<== Focus AISLAMIENTO to RECUPERACION
FIRE 5 recuperacion: f-1,f-4
FIRE 6 recuperacion: f-3,f-4
FIRE 7 recuperacion: f-3,f-2
FIRE 8 recuperacion: f-1,f-2
<== Focus RECUPERACION to MAIN
<== Focus MAIN

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Acciones sobre la pila de módulos

El comando focus se puede usar como acción en una regla.
(defmodule MAIN
(export ?ALL))

(defrule MAIN::inicio
=>
(focus DETECCION AISLAMIENTO RECUPERACION))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Acciones sobre la pila de módulos

Traza de la ejecución:
CLIPS> (reset)
CLIPS> (watch focus)
CLIPS> (run)
FIRE 1 inicio: *
==> Focus RECUPERACION from MAIN
==> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO
FIRE 2 deteccion: f-3
FIRE 3 deteccion: f-1
<== Focus DETECCION to AISLAMIENTO
FIRE 4 aislamiento: f-4
FIRE 5 aislamiento: f-2
<== Focus AISLAMIENTO to RECUPERACION
FIRE 6 recuperacion: f-1,f-4
FIRE 7 recuperacion: f-3,f-4
FIRE 8 recuperacion: f-3,f-2
FIRE 9 recuperacion: f-1,f-2
<== Focus RECUPERACION to MAIN
<== Focus MAIN

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Acciones sobre la pila de módulos

El comando pop-focus se puede usar como acción en una regla:
(defrule DETECCION::deteccion
(fallo (componente A | C))
=>
(pop-focus))

(defrule AISLAMIENTO::aislamiento
(posible-fallo (componente B | D))
=>
(pop-focus))

(defrule RECUPERACION::recuperacion
(fallo (componente A | C))
(posible-fallo (componente B | D))
=>
(pop-focus))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Acciones sobre la pila de módulos

Traza de la ejecución:
CLIPS> (reset)
CLIPS> (watch focus)
CLIPS> (run)
FIRE 1 inicio: *
==> Focus RECUPERACION from MAIN
==> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO
FIRE 2 deteccion: f-3
<== Focus DETECCION to AISLAMIENTO
FIRE 3 aislamiento: f-4
<== Focus AISLAMIENTO to RECUPERACION
FIRE 4 recuperacion: f-1,f-4
<== Focus RECUPERACION to MAIN
<== Focus MAIN

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Acciones sobre la pila de módulos

La declaración (declare (auto-focus TRUE)) en una regla coloca
el módulo al que pertenece en la pila de módulos al activarse
dicha regla.
(defmodule RECUPERACION
(import DETECCION ?ALL)
(import AISLAMIENTO ?ALL)
(export ?ALL))

(defrule RECUPERACION::recuperacion
(fallo (componente A | C))
(posible-fallo (componente B | D))
=>
(assert (alarma)))

(defmodule ALARMA
(import RECUPERACION ?ALL))

(defrule ALARMA::alarma
(declare (auto-focus TRUE))
(alarma)
=>)

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Acciones sobre la pila de módulos

Traza de la ejecución:
CLIPS> (reset)
CLIPS> (watch focus)
CLIPS> (run)
FIRE 1 inicio: *
==> Focus RECUPERACION from MAIN
==> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO
FIRE 2 deteccion: f-3
FIRE 3 deteccion: f-1
<== Focus DETECCION to AISLAMIENTO
FIRE 4 aislamiento: f-4
FIRE 5 aislamiento: f-2
<== Focus AISLAMIENTO to RECUPERACION
FIRE 6 recuperacion: f-1,f-4
==> Focus ALARMA from RECUPERACION
FIRE 7 alarma: f-5
<== Focus ALARMA to RECUPERACION
FIRE 8 recuperacion: f-3,f-4
FIRE 9 recuperacion: f-3,f-2
FIRE 10 recuperacion: f-1,f-2
<== Focus RECUPERACION to MAIN
<== Focus MAIN

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando módulos

Módulo MAIN:
(defmodule MAIN
(export ?ALL))

(deffacts MAIN::inicio
(ciclo)
(dispositivos C1 C2 C3))

(defrule MAIN::control
?h <- (ciclo)
=>
(retract ?h)
(assert (ciclo))
(focus LECTURA DETECCION))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando módulos

Módulo LECTURA:
(defmodule LECTURA
(import MAIN ?ALL)
(export ?ALL))

(defrule LECTURA::lectura-de-datos
?h <- (dispositivos $? ?id $?)
(not (dato ?id ?val))
=>
(assert (dato ?id (random 1 100))))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando módulos

Módulo DETECCION:
(defmodule DETECCION
(import LECTURA ?ALL))

(defrule DETECCION::deteccion-de-problemas-1
?h <- (dato ?id ?val&:(evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule DETECCION::deteccion-de-problemas-2
?h <- (dato ?id ?val&:(oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Control usando módulos: Ejercicio

Añadir control usando módulos a la práctica del Sudoku

Identificar tres módulos:

Módulo MAIN para las plantillas, los datos y las reglas para imprimir
el resultado.
Módulo BASICO para las estrategias de valor asignado, par asignado,
valores ocultos y pares ocultos.
Módulo AVANZADO para las estrategias de la intersección y de la cruz.

Implementar el siguiente comportamiento:

Las estrategias del módulo AVANZADO solo se usan cuando no hay
posibilidad de aplicar las estrategias del módulo BASICO.
Una vez usada una regla del módulo AVANZADO, se tienen que volver
a evaluar las estrategias del módulo BASICO.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

Bibliograf́ıa

Giarratano, J.C. y Riley, G.
“Expert Systems Principles and Programming (4th ed.)”,
PWS Pub. Co., 2005.

Caṕıtulos del 7 al 12

Giarratano, J.C.
“CLIPS User’s Guide”,
http://clipsrules.sourceforge.net/OnlineDocs.html.

Ingenieŕıa del Conocimiento Control de la ejecución y diseño modular

http://clipsrules.sourceforge.net/OnlineDocs.html

	Control empotrado en las reglas
	Control usando prioridades
	Control usando reglas
	Control usando módulos

