Control de la ejecucién y disefio modular

Francisco J. Martin Mateos

Dpto. Ciencias de la Computacién e Inteligencia Artificial
Universidad de Sevilla

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control de la ejecucidn

@ Ejemplo de fases de un problema:
e Lectura de datos.
o Deteccidén de problemas.
@ Técnicas de control:
o Control empotrado en las reglas.
e Control usando prioridades.
e Control usando reglas.
o Control usando médulos.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control empotrado en las reglas

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control empotrado en las reglas

@ Distinguir las fases del problema usando hechos de control:
@ (fase lectura-de-datos)
@ (fase deteccion-de-problemas)

@ Todas las reglas de una misma fase tienen entre sus condiciones
el hecho de control correspondiente.

@ Las reglas que finalizan una fase tienen que eliminar el hecho de
control de dicha fase y afiadir el de la siguiente.

@ Inconvenientes:

o ldentificacién de los hechos de control.
e Dificultad para precisar la conclusién de cada fase.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control empotrado en las reglas

@ Hechos iniciales:

(deffacts inicio
(fase lectura-de-datos)
(dispositivos Cl1 C2 C3))

@ Fase de lectura de datos:

(defrule lectura-de-datos
(fase lectura-de-datos)
?h <- (dispositivos ?id $?res)
(not (dato ?id ?val))
=>
(retract °?h)
(assert (dispositivos $?res)
(dato ?id (random 1 100))))

(defrule final-de-lectura-de-datos
?hl <- (fase lectura-de-datos)
?h2 <- (dispositivos)
=>
(retract ?hl ?h2)
(assert (dispositivos Cl1 C2 C3)
(fase deteccion-de-problemas)))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control empotrado en las reglas

o Fase de detecciéon de problemas:

(defrule deteccion-de-problemas-1
(fase deteccion-de-problemas)
?h <- (dato ?id ?valé&: (evenp ?val))

=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule deteccion-de-problemas-2
(fase deteccion-de-problemas)
?h <- (dato ?id ?valé&: (oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

(defrule final-deteccion-de-problemas
?h <- (fase deteccion-de-problemas)
(not (dato ? ?))
=>
(retract ?h)

(assert (fase lectura-de-datos)))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control empotrado en las reglas: Ejercicio

o Afiadir control empotrado en las reglas a la practica del Sudoku
o Utilizar dos hechos de control:

@ (fase basica) en la que se usan las estrategias de valor asignado,
par asignado, valores ocultos y pares ocultos.

@ (fase avanzada) en la que se usan las estrategias de la interseccién
y de la cruz.

@ Implementar el siguiente comportamiento:

o Las estrategias asociadas a la (fase avanzada) solo se usan cuando
no se pueden aplicar las estrategias asociadas a la (fase basica).

e Una vez aplicada una regla asociada a la (fase avanzada), Se tienen
que volver a evaluar las estrategias asociadas a la (fase basica).

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando prioridades

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

@ Sintaxis:

(defrule <nombre>
(declare (salience <numero>))
<condicion>x*
=>
<accion>x*)

@ Valores:
e Minimo: -10000
e Maximo: 10000
o Defecto: 0
@ Ventajas:
o No es necesario precisar la conclusién de cada fase.
@ Inconvenientes:
e Tendencia a abusar de las prioridades.
o Contradiccién con el objetivo de los sistemas basados en reglas.

o Las fases se pueden mezclar.
e Dificultad para comenzar otra vez el ciclo.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando prioridades

@ Hechos iniciales:

(deffacts inicio
(dispositivos C1l C2 C3))

@ Fase de lectura de datos:

(defrule lectura-de-datos
(declare (salience 30))
?h <- (dispositivos $? ?id $?)
(not (dato ?id ?val))
=>
(assert (dato ?id (random 1 100))))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando prioridades

o Fase de deteccién de problemas:

(defrule deteccion-de-problemas-1
(declare (salience 20))
?h <- (dato ?id ?valé&: (evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule deteccion-de-problemas-2
(declare (salience 20))
?h <- (dato ?id ?valé&: (oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando prioridades: Ejercicio

@ Afiadir control usando prioridades a la prictica del Sudoku
@ Utilizar dos prioridades:
e Prioridad 20 en la que se usan las estrategias de valor asignado, par
asignado, valores ocultos y pares ocultos.
e Prioridad 10 en la que se usan las estrategias de la interseccién y de
la cruz.
o Las reglas que imprimen la solucién tienen prioridad -10.
@ Implementar el siguiente comportamiento:
o Las estrategias asociadas a la prioridad 10 solo se usan cuando no se
pueden aplicar las estrategias asociadas a la prioridad 2o0.

e Una vez aplicada una regla asociada a la prioridad 10, se tienen que
volver a evaluar las estrategias asociadas a la prioridad 20.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando reglas

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Reglas de control

@ Reglas especificas para controlar las fases de desarrollo.
e Se utilizan hechos de control para distinguir las fases.
e Se definen reglas para cambiar las fases con baja prioridad.
@ Ventajas:
e Separacidn entre reglas de control y reglas de proceso.
e Acorde con las metodologias de disefo.
e No es necesario precisar la conclusién de cada fase.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando reglas (1)

@ Una regla para cada cambio de fase:

(deffacts inicio
(fase lectura-de-datos)
(dispositivos C1l C2 C3))

(defrule lectura-a-deteccion
(declare (salience -10))
?fase <- (fase lectura-de-datos)
=>
(retract ?fase)
(assert (fase deteccion-de-problemas)))

(defrule deteccion-a-lectura
(declare (salience -10))
?fase <- (fase deteccion-de-problemas)
=>
(retract ?fase)
(assert (fase lectura-de-datos)))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando reglas (1)

@ Fase de lectura de datos:

(defrule lectura-de-datos
(fase lectura-de-datos)
?h <- (dispositivos $? ?id $?)
(not (dato ?id ?val))
=>
(assert (dato ?id (random 1 100))))

o Fase de deteccién de problemas:

(defrule deteccion-de-problemas-1
(fase deteccion-de-problemas)
?h <- (dato ?id ?valé&: (evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule deteccion-de-problemas-2
(fase deteccion-de-problemas)
?h <- (dato ?id ?valé&: (oddp ?val))
=>
(retract °?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando reglas (2)

@ Una regla para todos los cambios de fase:

(deffacts control
(fase lectura-de-datos)
(siguiente-fase lectura-de-datos deteccion-de-problemas)
(siguiente-fase deteccion-de-problemas lectura-de-datos))

(defrule cambio-de-fase
(declare (salience -10))
?fase <- (fase ?actual)
(siguiente-fase ?actual ?siguiente)
=>
(retract ?fase)
(assert (fase ?siguiente)))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando reglas (3)

@ Cambio de fase en secuencia:

(deffacts control
(fase lectura-de-datos)
(secuencia-de-fases lectura-de-datos
deteccion-de-problemas))

(defrule cambio-de-fase
(declare (salience -10))
?fase <- (fase Ractual)
?secuencia <- (secuencia-de-fases ?siguiente $?resto)
=>
(retract ?fase ?secuencia)
(assert (fase 7?siguiente)
(secuencia-de-fases $?resto ?siguiente)))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando reglas: Ejercicio

@ Afadir control usando reglas a la practica del Sudoku
o Utilizar dos hechos de control:

@ (fase basica) en la que se usan las estrategias de valor asignado,
par asignado, valores ocultos y pares ocultos.

@ (fase avanzada) en la que se usan las estrategias de la interseccién
y de la cruz.

@ Implementar el siguiente comportamiento:

o Las estrategias asociadas a la (fase avanzada) solo se usan cuando
no se pueden aplicar las estrategias asociadas a la (fase basica).

e Una vez aplicada una regla asociada a la (fase avanzada), Se tienen
que volver a evaluar las estrategias asociadas a la (fase basica).

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando médulos

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

e Grupos de constructores (reglas, hechos, funciones, ...) con
agenda propia.

7w

@ Sélo un médulo estd “activo” en cada momento, los restantes
estan “latentes”.

@ El médulo por defecto es MAIN vy es el primero en construirse.

@ Sintaxis:

(defmodule <nombre>
(export <elemento>) *
(import <modulo> <elemento>) *)

<elemento> := ?ALL |
?NONE |
<constructor> ?ALL |
<constructor> ?NONE |
<constructor> <nombre>+

<constructor> := deftemplate | defclass |
defglobal | deffunction | defgeneric

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Comunicacidon entre mddulos

@ Lectura secuencial de ficheros:

o Sélo se puede exportar a médulos sucesivos.

e Sélo se puede importar de médulos anteriores.

o El médulo MAIN puede exportar a cualquier otro pero no puede
importar de ninguno.

@ Solucién mas general: exportarlo todo e importarlo todo de los
mddulos anteriores.

(defmodule DETECCION
(export ?ALL))

(defmodule AISLAMIENTO
(export ?ALL))

(defmodule RECUPERACION
(import DETECCION °?ALL)
(import AISLAMIENTO ?ALL))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Definicion de constructores en mddulos

@ Indicar delante del nombre del constructor el nombre del médulo.

@ Los constructores pueden hacer uso de cualquier elemento
definido en el propio médulo o importado de otro médulo.
@ Médulo peTECCcION:

(deftemplate DETECCION: :fallo
(slot componente))

(deffacts DETECCION: :inicio
(fallo (componente A4)))

(defrule DETECCION: :deteccion

(fallo (componente A | C))
=>)

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Definicion de constructores en mddulos

@ Moddulo arsramienTO:

(deftemplate AISLAMIENTO: :posible-fallo
(slot componente))

(deffacts AISLAMIENTO: :inicio
(posible-fallo (componente B)))

(defrule AISLAMIENTO: :aislamiento

(posible-fallo (componente B | D))
=>)

@ Médulo rRecuPERACION:

(deffacts RECUPERACION: :inicio
(fallo (componente C))
(posible-fallo (componente D)))

(defrule RECUPERACION: : recuperacion
(fallo (componente A | C))
(posible-fallo (componente B | D))
=>)

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Memorias de trabajo

@ Visualizar la memoria de trabajo de un mdédulo:

CLIPS> (facts DETECCION)

f-1 (fallo (componente A))

£-3 (fallo (componente C))

For a total of 2 facts.

CLIPS> (facts AISLAMIENTO)

f-2 (posible-fallo (componente B
f-4 (posible-fallo (componente D
For a total of 2 facts.

CLIPS> (facts RECUPERACION)

-
~

£-1 (fallo (componente A))
f£f-2 (posible-fallo (componente B))
£-3 (fallo (componente C))
f-4 (posible-fallo (componente D))

For a total of 4 facts.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Memorias de trabajo

@ Visualizar la memoria de trabajo de todos los médulos:
CLIPS> (facts «*)

£-0 (initial-fact)

f-1 (fallo (componente A))

£-2 (posible-fallo (componente B))
£-3 (fallo (componente C))

f-4 (posible-fallo (componente D))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

o Visualizar la agenda de un médulo:

CLIPS> (agenda DETECCION)

0 deteccion: f-3

0 deteccion: f-1

For a total of 2 activations.
CLIPS> (agenda AISLAMIENTO)

0 aislamiento: f-4

0 aislamiento: £f-2

For a total of 2 activations.
CLIPS> (agenda RECUPERACION)

0 recuperacion: f-1,£f-4
0 recuperacion: f-1,f-2
0 recuperacion: f£-3,f-4
0 recuperacion: f£-3,£f-2

For a total of 4 activations.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

o Visualizar la agenda de todos los médulos:
CLIPS> (agenda x*)

MAIN:
DETECCION:
0 deteccion: £-3
0 deteccion: f-1
AISLAMIENTO:
0 aislamiento: f-4
0 aislamiento: £-2
RECUPERACION:
0 recuperacion: f-1,f-4
0 recuperacion: f-3,f-4
0 recuperacion: f£-3,f-2
0 recuperacion: f£-1,£f-2
For a total of 8 activations.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Pila de mddulos

@ Estructura que establece la secuencia de médulos a ejecutar.
e Al iniciar el sistema de produccién el médulo MAIN se coloca como
primer médulo.
e Se pueden colocar otros médulos con el comando focus.

CLIPS> (reset)

CLIPS> (watch rules)
CLIPS> (run)

CLIPS> (focus DETECCION)

TRUE

CLIPS> (run)

FIRE 1 deteccion: £-3
FIRE 2 deteccion: f-1

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Pila de mddulos

@ El comando (1ist-focus-stack) permite ver el estado de la pila
de médulos:

CLIPS> (reset)
CLIPS> (focus RECUPERACION)

TRUE

CLIPS> (focus AISLAMIENTO)

TRUE

CLIPS> (list-focus-stack)
AISLAMIENTO

RECUPERACION

MAIN

CLIPS> (run)

FIRE 1l aislamiento: £f-4

FIRE 2 aislamiento: £-2

FIRE 3 recuperacion: f-1,f-4
FIRE 4 recuperacion: f-3,f-4
FIRE 5 recuperacion: f-3,f-2
FIRE 6 recuperacion: f-1,f-2

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Pila de mddulos

@ Se pueden apilar varios médulos en una misma instruccién focus:

CLIPS> (reset)
CLIPS> (focus AISLAMIENTO RECUPERACION)

TRUE

CLIPS> (list-focus-stack)
AISLAMIENTO

RECUPERACION

MAIN

CLIPS> (run)

FIRE 1 aislamiento: £f-4

FIRE 2 aislamiento: £-2

FIRE 3 recuperacion: f-1,f-4
FIRE 4 recuperacion: f-3,f-4
FIRE 5 recuperacion: £-3,£f-2
FIRE 6 recuperacion: f-1,f-2

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Pila de mddulos

@ Se puede apilar varias veces un mismo médulo, aunque no de
forma consecutiva:

CLIPS> (reset)
CLIPS> (focus DETECCION DETECCION AISLAMIENTO DETECCION)

TRUE

CLIPS> (list-focus-stack)
DETECCION

AISLAMIENTO

DETECCION

MAIN

CLIPS> (run)

FIRE 1 deteccion: £-3
FIRE 2 deteccion: f-1
FIRE 3 aislamiento: f-4
FIRE 4 aislamiento: £-2

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Pila de mddulos

@ El comando pop-focus elimina el primer médulo de la pila.
o Este comando se puede usar en una regla como accién.

CLIPS> (reset)
CLIPS> (focus DETECCION AISLAMIENTO RECUPERACION)
TRUE

CLIPS> (list-focus-stack)
DETECCION

AISLAMIENTO

RECUPERACION

MAIN

CLIPS> (run 2)

FIRE 1 deteccion: £-3
FIRE 2 deteccion: f-1
CLIPS> (pop—-focus)
AISLAMIENTO

CLIPS> (list-focus-stack)
RECUPERACION

MAIN

CLIPS> (run)

FIRE recuperacion: f-1
FIRE recuperacion: f£-3
FIRE recuperacion: f£-3
FIRE recuperacion: f£-1

Bwh R

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Pila de mddulos

@ El comando (watch focus) permite visualizar como cambian los
elementos en la pila de mdédulos.

CLIPS> (reset)

CLIPS> (watch focus)

CLIPS> (focus DETECCION AISLAMIENTO RECUPERACION)
==> Focus RECUPERACION from MAIN

==> Focus AISLAMIENTO from RECUPERACION

==> Focus DETECCION from AISLAMIENTO

TRUE

CLIPS> (run)

FIRE 1 deteccion: £-3

FIRE 2 deteccion: f-1

<== Focus DETECCION to AISLAMIENTO
FIRE 3 aislamiento: £f-4

FIRE 4 aislamiento: £f-2

<== Focus AISLAMIENTO to RECUPERACION
FIRE 5 recuperacion: f-1,f-4
FIRE 6 recuperacion: f-3,f-4
FIRE 7 recuperacion: f-3,f-2
FIRE 8 recuperacion: f-1,f-2
<== Focus RECUPERACION to MAIN

<== Focus MAIN

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Acciones sobre la pila de médulos

@ El comando focus se puede usar como accién en una regla.

(defmodule MAIN
(export ?ALL))

(defrule MAIN::inicio
=>
(focus DETECCION AISLAMIENTO RECUPERACION))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Acciones sobre la pila de médulos

o Traza de la ejecucidn:

CLIPS> (reset)

CLIPS> (watch focus)

CLIPS> (run)

FIRE 1 inicio: =*

==> Focus RECUPERACION from MAIN

==> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO

FIRE 2 deteccion: £-3

FIRE 3 deteccion: f£-1

<== Focus DETECCION to AISLAMIENTO
FIRE 4 aislamiento: f-4

FIRE 5 aislamiento: £-2

<== Focus AISLAMIENTO to RECUPERACION
FIRE 6 recuperacion: f-1,f-4
FIRE 7 recuperacion: f-3,f-4
FIRE 8 recuperacion: f£-3,f-2
FIRE 9 recuperacion: f-1,£f-2
<== Focus RECUPERACION to MAIN

<== Focus MAIN

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Acciones sobre la pila de médulos

@ El comando pop-focus se puede usar como accién en una regla:

(defrule DETECCION: :deteccion
(fallo (componente A | C))
=>
(pop—-focus))

(defrule AISLAMIENTO: :aislamiento
(posible-fallo (componente B | D))
=>
(pop—-focus))

(defrule RECUPERACION: : recuperacion
(fallo (componente A | C))
(posible-fallo (componente B | D))
=>
(pop—£focus))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Acciones sobre la pila de médulos

@ Traza de la ejecucidn:

CLIPS> (reset)

CLIPS> (watch focus)

CLIPS> (run)

FIRE 1 inicio: =*

==> Focus RECUPERACION from MAIN

> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO
FIRE 2 deteccion: £-3

<== Focus DETECCION to AISLAMIENTO
FIRE 3 aislamiento: f-4

<== Focus AISLAMIENTO to RECUPERACION
FIRE 4 recuperacion: f-1,f-4

<== Focus RECUPERACION to MAIN

<== Focus MAIN

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Acciones sobre la pila de médulos

o La declaracidn (declare (auto-focus TRUE)) en una regla coloca
el médulo al que pertenece en la pila de médulos al activarse
dicha regla.

(defmodule RECUPERACION
(import DETECCION ?ALL)
(import AISLAMIENTO °?ALL)
(export ?ALL))

(defrule RECUPERACION: : recuperacion
(fallo (componente A | C))
(posible-fallo (componente B | D))
=>
(assert (alarma)))

(defmodule ALARMA
(import RECUPERACION ?ALL))

(defrule ALARMA: :alarma
(declare (auto—-focus TRUE))
(alarma)
=>)

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Acciones sobre la pila de médulos

@ Traza de la ejecucidn:

CLIPS> (reset)

CLIPS> (watch focus)

CLIPS> (run)

FIRE 1 inicio: =*

==> Focus RECUPERACION from MAIN

==> Focus AISLAMIENTO from RECUPERACION
==> Focus DETECCION from AISLAMIENTO

FIRE 2 deteccion: f-3

FIRE 3 deteccion: f-1

<== Focus DETECCION to AISLAMIENTO
FIRE 4 aislamiento: f-4

FIRE 5 aislamiento: £f-2

<== Focus AISLAMIENTO to RECUPERACION
FIRE 6 recuperacion: f-1,f-4
==> Focus ALARMA from RECUPERACION
FIRE 7 alarma: £-5

<== Focus ALARMA to RECUPERACION
FIRE 8 recuperacion: f-3,f-4
FIRE 9 recuperacion: f-3,f-2

FIRE 10 recuperacion: f-1,£f-2
<== Focus RECUPERACION to MAIN
<== Focus MAIN

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando médulos

@ Médulo man:

(defmodule MAIN
(export ?ALL))

(deffacts MAIN::inicio
(ciclo)
(dispositivos Cl1 C2 C3))

(defrule MAIN: :control
?h <- (ciclo)
=>
(retract °?h)
(assert (ciclo))
(focus LECTURA DETECCION))

Ingenieria del Conocimiento

Control de la ejecucién y disefio modular

Control usando médulos

@ Médulo LEcTURA:

(defmodule LECTURA
(import MAIN °?ALL)
(export ?ALL))

(defrule LECTURA: :lectura-de-datos
?h <- (dispositivos $? ?id $?)
(not (dato ?id ?val))
=>
(assert (dato ?id (random 1 100))))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando médulos

@ Mdédulo peTECCION:

(defmodule DETECCION
(import LECTURA °?ALL))

(defrule DETECCION: :deteccion—-de-problemas-1
?h <- (dato ?id ?valé&: (evenp ?val))
=>
(retract ?h)
(printout t "Problemas en el dispositivo " ?id crlf))

(defrule DETECCION: :deteccion—-de—-problemas-2
?h <- (dato ?id ?valé&: (oddp ?val))
=>
(retract ?h)
(printout t "Sin problemas en el dispositivo " ?id crlf))

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Control usando médulos: Ejercicio

@ Afadir control usando médulos a la prictica del Sudoku
@ ldentificar tres mddulos:
o Mddulo MaIN para las plantillas, los datos y las reglas para imprimir
el resultado.
e Mdédulo Basico para las estrategias de valor asignado, par asignado,
valores ocultos y pares ocultos.
o Mddulo avanzapo para las estrategias de la interseccién y de la cruz.

@ Implementar el siguiente comportamiento:
o Las estrategias del médulo avanzapo solo se usan cuando no hay
posibilidad de aplicar las estrategias del médulo Baszco.
e Una vez usada una regla del médulo avanzapo, se tienen que volver
a evaluar las estrategias del médulo Baszco.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

Bibliografia

o Giarratano, J.C. y Riley, G.
“Expert Systems Principles and Programming (4th ed.)”,
PWS Pub. Co., 2005.

o Capitulos del 7 al 12

e Giarratano, J.C.
“CLIPS User’'s Guide",
http://clipsrules.sourceforge.net/OnlineDocs.html.

Ingenieria del Conocimiento Control de la ejecucién y disefio modular

http://clipsrules.sourceforge.net/OnlineDocs.html

	Control empotrado en las reglas
	Control usando prioridades
	Control usando reglas
	Control usando módulos

