### Deducción natural en lógica de primer orden

#### Francisco J. Martín Mateos

Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

- Una sustitución σ de un lenguaje L es una aplicación
   σ : Var → Term(L)
  - Representaremos por  $[x_1/t_1,x_2/t_2,\ldots,x_n/t_n]$  a la sustitución  $\sigma$  definida por:

$$\sigma(\mathbf{x}) = \begin{cases} \mathbf{t_i} & \text{si } \mathbf{x} \text{ es } \mathbf{x_i} \\ \mathbf{x} & \text{si } \mathbf{x} \not\in \{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_n}\} \end{cases}$$

- Notación: Usaremos  $\sigma, \sigma_1, \sigma_2, \ldots$  para representar sustituciones de un lenguaje de primer orden
- Ejemplo: [x/s(0), y/x + y] es la sustitución  $\sigma$  de **Var** en el conjunto de los términos de la aritmética definida por:

$$\sigma(z) = \begin{cases} s(0) & \text{si z es x} \\ x + y & \text{si z es y} \\ z & \text{si z } \in Var \setminus \{x, y\} \end{cases}$$



 La extensión (única) de una sustitución σ al conjunto de términos de un lenguaje L es la aplicación σ: Term(L) → Term(L) definida por:

$$\sigma(t) = \left\{ \begin{array}{ll} c & \text{si } t \text{ es una constante } c \\ \sigma(x) & \text{si } t \text{ es una variable } x \\ f(\sigma(t_1), \dots, \sigma(t_n)) & \text{si } t \text{ es } f(t_1, \dots, f_n) \end{array} \right.$$

- Notación:  $\mathbf{t}[\mathbf{x}_1/\mathbf{t}_1,\ldots,\mathbf{x}_n/\mathbf{t}_n]$  es el término obtenido al aplicar sobre el término  $\mathbf{t}$  la sustitución representada por  $[\mathbf{x}_1/\mathbf{t}_1,\ldots,\mathbf{x}_n/\mathbf{t}_n]$
- Ejemplos: Si  $\sigma = [x/f(y,a), y/z]$ , entonces
  - $\sigma(a) = a$ , donde a es una constante
  - $\sigma(\mathbf{w}) = \mathbf{w}$ , donde  $\mathbf{w}$  es una variable distinta de  $\mathbf{x}$  e  $\mathbf{y}$
  - $\sigma(h(a, x, w)) = h(a, f(y, a), w)$
  - $\sigma(f(x,y)) = f(f(y,a),z)$



La extensión (única) de una sustitución σ al conjunto de las fórmulas de un lenguaje L es la aplicación
 σ : Form(L) → Form(L) definida por:

$$\sigma(\mathsf{F}) = \left\{ \begin{array}{ll} \mathsf{P}(\sigma(\mathsf{t}_1), \dots, \sigma(\mathsf{t}_\mathsf{n})) & \text{si } \mathsf{F} \text{ es } \mathsf{P}(\mathsf{t}_1, \dots, \mathsf{t}_\mathsf{n}) \\ \neg(\sigma(\mathsf{G})) & \text{si } \mathsf{F} \text{ es } \neg \mathsf{G} \\ \sigma(\mathsf{G}_1) \star \sigma(\mathsf{G}_2) & \text{si } \mathsf{F} \text{ es } \mathsf{G}_1 \star \mathsf{G}_2 \\ \forall \mathsf{x} \ \sigma_\mathsf{x}(\mathsf{G}) & \text{si } \mathsf{F} \text{ es } \forall \mathsf{x} \ \mathsf{G} \\ \exists \mathsf{x} \ \sigma_\mathsf{x}(\mathsf{G}) & \text{si } \mathsf{F} \text{ es } \exists \mathsf{x} \ \mathsf{G} \end{array} \right.$$

donde  $\sigma_{\mathsf{x}}$  es la sustitución definida por

$$\sigma_{x}(y) = \begin{cases} x & \text{si } y \text{ es la variable } x \\ \sigma(y) & \text{si } y \text{ es distinta de } x \end{cases}$$

• Notación:  $F[x_1/t_1,...,x_n/t_n]$  es la fórmula obtenida al aplicar a la fórmula F la sustitución representada por  $[x_1/t_1,...,x_n/t_n]$ 



```
• Ejemplos: Si \sigma = [x/f(y), y/b], entonces

• \sigma(\forall x \ (Q(x) \to R(x, y))) = \forall x \ (\sigma_x(Q(x) \to R(x, y)))

= \forall x \ (\sigma_x(Q(x)) \to \sigma_x(R(x, y)))

• \sigma(Q(x) \to \forall x \ R(x, y))) = \sigma(Q(x)) \to \sigma(\forall x \ R(x, y))

= Q(f(y)) \to \forall x \ \sigma_x(R(x, y)))

• \sigma(\forall x \ (Q(x) \to \exists y \ R(x, y))) = \forall x \ (\sigma_x(Q(x) \to \exists y \ R(x, y)))

= \forall x \ (Q(x) \to \exists y \ \sigma_{x,y}(R(x, y)))

= \forall x \ (Q(x) \to \exists y \ \sigma_{x,y}(R(x, y)))

= \forall x \ (Q(x) \to \exists y \ R(x, y))
```

- Una sustitución es libre para una fórmula si todas las ocurrencias de variables introducidas por la sustitución en esa fórmula resultan libres
- Ejemplos
  - La sustitución [y/x] no es libre para  $\exists x \ (x < y)$  $(\exists x \ (x < y))[y/x] = \exists x \ (x < x)$
  - La sustitución [y/g(y)] es libre para  $\forall x \ (P(x) \rightarrow Q(x,y))$  $(\forall x \ (P(x) \rightarrow Q(x,y)))[y/g(y)] = \forall x \ (P(x) \rightarrow Q(x,g(y)))$
  - La sustitución [y/g(x)] no es libre para  $\forall x \ (P(x) \to Q(x,y))$  $(\forall x \ (P(x) \to Q(x,y)))[y/g(x)] = \forall x \ (P(x) \to Q(x,g(x)))$

Regla de eliminación del cuantificador universal

$$\frac{\forall x \ F}{F[x/t]} [\forall e] \qquad \qquad S \vdash \forall x \ F \\
\Downarrow \\
S \vdash F[x/t]$$

donde [x/t] es una sustitución libre para F

- Analogía con las reglas ∧e<sub>1</sub> y ∧e<sub>2</sub>
- Necesidad de la condición sobre [x/t]

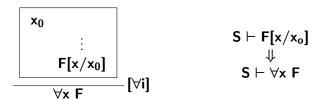
• Si 
$$F = \exists y \ P(x, y) \ y \ t = y$$
:

$$\{ \forall x \exists y \ P(x,y) \} \not\vdash \exists y \ P(y,y)$$

$$\{P(c), \forall x \ (P(x) \rightarrow \neg Q(x))\} \vdash \neg Q(c)$$

- 1. P(c) premisa
- 2.  $\forall x (P(x) \rightarrow \neg Q(x))$  premisa
- 3.  $P(c) \rightarrow \neg Q(c)$  [ $\forall e 2$ ]
- 4. ¬**Q(c)** [→e 3 1]

Regla de introducción del cuantificador universal



donde  $x_0$  es una variable que no aparece libre en S ni F

- Sugerencia: Utilizar siempre variables  $(x_0)$  nuevas
- Analogía con la regla ∧i
- Necesidad de la condición sobre x<sub>0</sub>

• Si 
$$F = P(x)$$
 y  $x_0 = y$ :

$$\{P(x), P(y)\} \not\vdash \forall x P(x)$$



Regla de introducción del cuantificador existencial

$$\frac{F[x/t]}{\exists x F} [\exists i] \qquad S \vdash F[x/t] 
\Downarrow 
S \vdash \exists x F$$

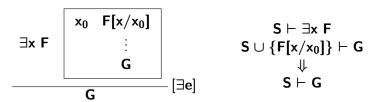
donde [x/t] es una sustitución libre para F

- Analogía con las reglas ∨i₁ y ∨i₂
- Necesidad de la condición sobre [x/t]

• Si 
$$F = \forall y P(x, y) y t = y$$
:

$$\{\forall y \ P(y,y)\} \not\vdash \exists x \ \forall y \ P(x,y)$$

• Regla de eliminación del cuantificador existencial



donde  $x_0$  es una variable que no aparece libre en S, F ni G

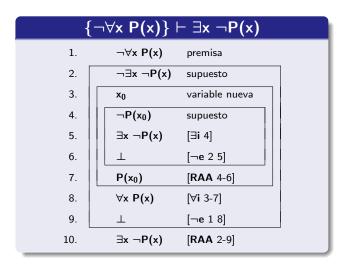
- Sugerencia: Utilizar siempre variables  $(x_0)$  nuevas
- Analogía con la regla ∨e
- Necesidad de la condición sobre x<sub>0</sub>

• Si 
$$F = P(x)$$
 y  $x_0 = y$ :

$$\{\exists x \ P(x)\} \not\vdash P(y)$$



### Equivalencia: $\neg \forall x \mathbf{F} \equiv \exists x \neg \mathbf{F}$



### Equivalencia: $\neg \forall x \mathbf{F} \equiv \exists x \neg \mathbf{F}$

$$\begin{cases}
\exists x \ \neg P(x) \} \vdash \neg \forall x \ P(x)
\end{cases}$$
1. 
$$\exists x \ \neg P(x) \quad \text{premisa}$$
2. 
$$\forall x \ P(x) \quad \text{supuesto}$$
3. 
$$x_0, \ \neg P(x_0) \quad \text{supuesto}$$
4. 
$$P(x_0) \quad [\forall e \ 2]$$
5. 
$$\bot \quad [\neg e \ 3 \ 4]$$
6. 
$$\bot \quad [\exists e \ 1 \ 3-5]$$
7. 
$$\neg \forall x \ P(x) \quad [\neg i \ 2-7]$$

## Equivalencia: $\forall x (F \land G) \equiv \forall x F \land \forall x G$

# Equivalencia: $\forall x (F \land G) \equiv \forall x F \land \forall x G$

| $\{\forall x \ P(x) \land \forall x \ Q(x)\} \vdash \forall x \ (P(x) \land Q(x))$ |                                             |                     |
|------------------------------------------------------------------------------------|---------------------------------------------|---------------------|
| 1.                                                                                 | $\forall x \; P(x) \land \forall x \; Q(x)$ | premisa             |
| 2.                                                                                 | x <sub>0</sub>                              | variable nueva      |
| 3.                                                                                 | ∀x P(x)                                     | [∧e <sub>1</sub> 1] |
| 4.                                                                                 | $P(x_0)$                                    | [∀e 2]              |
| 5.                                                                                 | ∀x Q(x)                                     | [∧e <sub>2</sub> 1] |
| 6.                                                                                 | $Q(x_0)$                                    | [∀e 4]              |
| 7.                                                                                 | $P(x_0) \wedge Q(x_0)$                      | [∧i 4 6]            |
| 8.                                                                                 | $\forall x \; (P(x) \land Q(x))$            | [∀i 2-7]            |

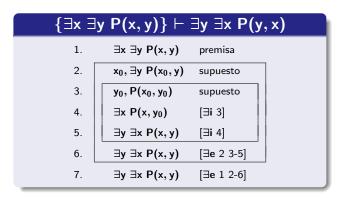
### Equivalencia: $\exists x (F \lor G) \equiv \exists x F \lor \exists x G$

```
\{\exists x \ (P(x) \lor Q(x))\} \vdash \exists x \ P(x) \lor \exists x \ Q(x)\}
          1.
                     \exists x (P(x) \lor Q(x))
                                                     premisa
         2.
                     x_0, P(x_0) \vee Q(x_0)
                                                    supuesto
         3.
                     P(x_0)
                                                     supuesto
         4.
                     \exists x P(x)
                                                     [3i 3]
         5.
                     \exists x P(x) \lor \exists x Q(x)
                                                     [\vee i_1 \ 4]
         6.
                     Q(x_0)
                                                     supuesto
         7.
                     \exists x \ Q(x)
                                                     [∃i 6]
         8.
                     \exists x P(x) \lor \exists x Q(x)
                                                     [\vee i_2 7]
         9.
                     \exists x P(x) \lor \exists x Q(x) \quad [\lor e 2 3-5 6-8]
        10.
                     \exists x P(x) \lor \exists x Q(x)
                                                     [∃e 1 2-9]
```

### Equivalencia: $\exists x (F \lor G) \equiv \exists x F \lor \exists x G$

```
\{\exists x \ P(x) \lor \exists x \ Q(x)\} \vdash \exists x \ (P(x) \lor Q(x))
                      \exists x P(x) \lor \exists x Q(x)
                                                   premisa
           2.
                      \exists x P(x)
                                                   supuesto
           3.
                      x_0, P(x_0)
                                                   supuesto
                                                   [\vee i_1 \ 3]
           4
                      P(x_0) \vee Q(x_0)
           5.
                      \exists x (P(x) \lor Q(x))
                                                   [∃i 4]
           6.
                      \exists x (P(x) \lor Q(x))
                                                   [∃e 2 3-5]
           7.
                      \exists x \ Q(x)
                                                   supuesto
           8.
                      x_0, Q(x_0)
                                                   supuesto
           9.
                      P(x_0) \vee Q(x_0)
                                                   [Vi<sub>2</sub> 8]
         10.
                      \exists x (P(x) \lor Q(x))
                                                   [∃i 9]
         11.
                      \exists x (P(x) \lor Q(x))
                                                   [∃e 7 8-10]
         12.
                      \exists x (P(x) \lor Q(x))
                                                   [Ve 1 2-9]
```

### Equivalencia: $\exists x \ \exists y \ F \equiv \exists y \ \exists x \ F$



Corrección y completitud del cálculo de Deducción Natural en Lógica de Primer Orden

Dados un conjunto finito de fórmulas S y una fórmula F. Decimos que F se deduce a partir de S mediante el cálculo de Deducción Natural  $(S \vdash F)$  si hay una secuencia finita de pares  $S_0 \vdash F_0$ ,  $S_1 \vdash F_1$ , ...,  $S_n \vdash F_n$  tales que

- $S_n = S$ ,  $F_n = F$  y
- para todo  $\mathbf{i} = \mathbf{0}, \dots, \mathbf{n}$ , el par  $\mathbf{S_i} \vdash \mathbf{F_i}$  se deduce a partir de pares anteriores mediante alguna de las reglas del cálculo de Deducción Natural.

Las reglas del cálculo de Deducción Natural son las siguientes:

- [p]: Si  $F \in S$  entonces  $S \vdash F$
- $[\land i]$ : Si  $S \vdash F$  y  $S \vdash G$  entonces  $S \vdash F \land G$
- $[\land e_1]$ : Si  $S \vdash F \land G$  entonces  $S \vdash F$
- $[\land e_2]$ : Si  $S \vdash F \land G$  entonces  $S \vdash G$
- $[\neg\neg i]$ : Si **S**  $\vdash$  **F** entonces **S**  $\vdash \neg \neg F$
- $[\neg \neg e]$ : Si  $S \vdash \neg \neg F$  entonces  $S \vdash F$
- $[\rightarrow e]$ : Si  $S \vdash F \rightarrow G$  y  $S \vdash F$  entonces  $S \vdash G$
- $[\rightarrow i]$ : Si  $S \cup \{F\} \vdash G$  entonces  $S \vdash F \rightarrow G$



Las reglas del cálculo de Deducción Natural son las siguientes:

- $[\lor i_1]$ : Si  $S \vdash F$  entonces  $S \vdash F \lor G$
- $[\lor i_2]$ : Si  $S \vdash G$  entonces  $S \vdash F \lor G$
- [ $\vee$ e]: Si S  $\vdash$  F  $\vee$  G, S  $\cup$  {F}  $\vdash$  H y S  $\cup$  {G}  $\vdash$  H, entonces S  $\vdash$  H
- $[\leftrightarrow i]$ : Si  $S \vdash F \rightarrow G$  y  $S \vdash G \rightarrow F$  entonces  $S \vdash F \leftrightarrow G$
- $[\leftrightarrow e_1]$ : Si  $S \vdash F \leftrightarrow G$  entonces  $S \vdash F \rightarrow G$
- $[\leftrightarrow e_2]$ : Si  $S \vdash F \leftrightarrow G$  entonces  $S \vdash G \rightarrow F$
- $[\bot e]$ : Si  $S \vdash \bot$  entonces  $S \vdash F$
- $[\neg e]$ : Si  $S \vdash \neg F$  y  $S \vdash F$  entonces  $S \vdash \bot$
- $[\neg i]$ : Si  $S \cup \{F\} \vdash \bot$  entonces  $S \vdash \neg F$



Las reglas del cálculo de Deducción Natural son las siguientes:

- [∀e]: Si S ⊢ ∀x F entonces S ⊢ F[x/t] donde [x/t] es una sustitución libre para F
- [ $\forall$ i]: Si  $S \vdash F[x/x_o]$  entonces  $S \vdash \forall x F$  donde  $x_0 \notin VL(S \cup \{F\})$
- [∃i]: Si S ⊢ F[x/t] entonces S ⊢ ∃x F donde [x/t] es una sustitución libre para F
- $[\exists e]$ : Si  $S \vdash \exists x \ F \ y \ S \cup \{F[x/x_0]\} \vdash G$  entonces  $S \vdash G$  donde  $x_0 \not\in VL(S \cup \{F,G\})$

- Principio de inducción estructural sobre términos:
   Si P es una propiedad sobre los términos que verifica
  - ullet Todas las constantes cumplen la propiedad  ${\cal P}$
  - ullet Todas las variables cumplen la propiedad  ${\cal P}$
  - Si  $t_1 \dots t_n$  son términos que cumplen la propiedad  $\mathcal P$  y f es un símbolo de función de aridad n, entonces  $f(t_1,\dots,t_n)$  también cumple

Entonces cualquier término del lenguaje cumple la propiedad  ${\cal P}$ 

- Principio de inducción estructural sobre fórmulas:
  - Si  ${m {\cal P}}$  es una propiedad sobre las fórmulas que verifica
  - ullet Todas las fórmulas atómicas cumplen la propiedad  ${\cal P}$
  - Si F cumple la propiedad P entonces  $\neg F$  también la cumple
  - Si  $\mathbf{F}$  y  $\mathbf{G}$  cumplen la propiedad  $\mathcal{P}$  entonces  $\mathbf{F} \star \mathbf{G}$  también la cumple
  - Si **F** cumple la propiedad  $\mathcal{P}$  entonces  $\forall x$  **F** y  $\exists x$  **F** también la cumplen

Entonces cualquier fórmula de primer orden cumple  ${\cal P}$ 

- Versión Fuerte:
  - Si F[x/t] cumple la propiedad  $\mathcal{P}$  para cualquier término del lenguaje t, entonces  $\forall x \ F \ y \ \exists x \ F$  también la cumplen



#### Lemas de irrelevancia de variables

- Sea t un término de L e I una estructura de L:
  - Si A y B son dos asignaciones en  $\mathcal I$  que coinciden sobre las variables de t, entonces  $\mathcal I_A(t)=\mathcal I_B(t)$ .
- Sea F una fórmula de L e  $\mathcal{I}$  una estructura de L:
  - Si A y B son dos asignaciones en  $\mathcal{I}$  que coinciden sobre las variables libres de F, entonces  $\mathcal{I}_A(F) = \mathcal{I}_B(F)$ .

- Lemas sobre sustituciones y asignaciones: Sea  $\mathcal{I}$  una estructura de L, A una asignación en  $\mathcal{I}$  y h un término de L:
  - Para todo término t de L:

$$\mathcal{I}_{A[x/\mathcal{I}_A(h)]}(t) = \mathcal{I}_A(t[x/h])$$

 Para toda fórmula F de L tal que [x/h] es una sustitución libre para F:

$$\mathcal{I}_{A[x/\mathcal{I}_A(h)]}(F) = \mathcal{I}_A(F[x/h])$$

 Teorema de corrección: Sea S un conjunto finito de fórmulas y F una fórmula:

si 
$$S \vdash F$$
 entonces  $S \models F$ 

• Demostración por inducción fuerte en la longitud de la deducción  $\mathbf{S} \vdash \mathbf{F}$ 

 Lema de monotonía: Sean S y S' dos conjuntos finitos de fórmulas tales que S ⊆ S' y F una fórmula:

si 
$$S \vdash F$$
 entonces  $S' \vdash F$ 

• Demostración por inducción fuerte en la longitud de la deducción  $\mathbf{S} \vdash \mathbf{F}$ 

 Teorema de completitud: Sea S un conjunto finito de fórmulas y F una fórmula:

si 
$$S \models F$$
 entonces  $S \vdash F$ 

Por reducción al absurdo, usando los Lemas L1, L2 y L3.

- Lema L1: Dado S un conjunto de fórmulas y F una fórmula tal que S ⊬ F, entonces S ∪ {¬F} ⊬ ⊥
- Lema L2 (Lema de existencia de modelos): Todo conjunto de fórmulas S tal que S ⊬ ⊥, es consistente
- Lema L3: Dado S un conjunto de fórmulas y F una fórmula tal que S ∪ {¬F} es consistente, entonces S ⊭ F

- Universo de Herbrand: El conjunto de los términos cerrados del lenguaje definidos como:
  - Las constantes son términos cerrados
  - Si f es un símbolo de función de aridad n y  $t_1, \ldots, t_n$  son términos cerrados, entonces  $f(t_1, \ldots, t_n)$  es un término cerrado
  - El universo de Herbrand de L, UH(L), es el conjunto de los términos cerrados en L
- Numerabilidad de las fórmulas cerradas: El conjunto de todas las fórmulas cerradas (sentencias) es numerable

```
\begin{array}{ll} \bullet \ S_0 = S \\ \bullet \ \mathsf{Para} \ \mathsf{todo} \ i > 0, \ S_i = \\ \left\{ \begin{array}{ll} S_{i-1} \cup \{F_i\} & \mathsf{si} \ S_{i-1} \cup \{F_i\} \not\vdash \bot \ \mathsf{y} \ \mathsf{F}_i \neq \exists \mathsf{x} \ \mathsf{G} \\ S_{i-1} \cup \{F_i, \mathsf{G}[\mathsf{x}/\mathsf{c}]\} & \mathsf{si} \ S_{i-1} \cup \{F_i\} \not\vdash \bot, \ \mathsf{F}_i = \exists \mathsf{x} \ \mathsf{G} \\ \mathsf{y} \ \mathsf{c} \ \mathsf{es} \ \mathsf{una} \ \mathsf{constante} \ \mathsf{nueva} \ \mathsf{en} \ \mathsf{S}_{i-1} \cup \mathsf{F}_i \\ \mathsf{S}_i & \mathsf{en} \ \mathsf{otro} \ \mathsf{caso} \end{array} \right. Finalmente, S_\infty = \bigcup S_i
```

- - $\forall i, S_i \subseteq S_{\infty}$ , en particular  $S \subseteq S_{\infty}$
  - $\bullet \ \forall i \leq j, S_i \subseteq S_j \ \text{y} \ \forall i < j, S_i \subseteq S_{j-1}$
  - $\forall i, S_i \not\vdash \bot$
  - $\forall i, \, F_i \in S_\infty$  si y solo si  $S_{i-1} \cup \{F_i\} \not\vdash \bot$  (si y solo si  $F_i \in S_i)$

- Interpretación sintáctica: Sea S un conjunto de fórmulas tal que S  $\not\vdash \bot$  y S<sub> $\infty$ </sub> el cierre maximal no contradictorio de S. Vamos a construir una estructura  $\mathcal{I} = (U, I)$  de L:
  - Universo U = UH(L)
    - $\bullet$  Los elementos del universo son la versión escrita de los términos cerrados, los representaremos como  $\overline{t}$
  - Interpretación de los símbolos propios de L:
    - $I(c) = \overline{c}$  para todo símbolo de constante c
    - $I(f): U^n \mapsto U$ , tal que  $I(f)(\overline{t_1}, \dots, \overline{t_n}) = \overline{f(t_1, \dots, t_n)}$ , para todo símbolo de función f
    - $I(P)=\{(\overline{t_1},\ldots,\overline{t_n}) \text{ tales que } P(t_1,\ldots,t_n)\in S_\infty\}$ , para todo símbolo de predicado de aridad n>0
    - $\bullet \ \, \textbf{I(P)} = \left\{ \begin{array}{l} 1 \quad \ \ \text{si P} \in \textbf{S}_{\infty} \\ 0 \quad \ \ \text{en caso contrario} \\ \text{para todo símbolo de predicado de aridad 0.} \end{array} \right.$



- Interpretación sintáctica: Sea S un conjunto de fórmulas tal que  $S \not\vdash \bot$  y  $S_{\infty}$  el cierre maximal no contradictorio de S e  $\mathcal{I} = (U, I)$  la interpretación sintáctica asociada
  - Valor de los términos cerrados: Para todo término cerrado t y toda asignación A: \( \mathcal{T}\_A(t) = \overline{t} \)
  - Valor de los fórmulas cerrados: Para toda fórmula cerrada F y toda asignación A
    - Si  $\mathsf{F} \in \mathsf{S}_{\infty}$  entonces  $\mathcal{I}_{\mathsf{A}}(\mathsf{F}) = 1$
    - Si  $\mathsf{F} 
      ot\in \mathsf{S}_{\infty}$  entonces  $\mathcal{I}_{\mathsf{A}}(\mathsf{F}) = 0$

- - Si  $\mathbf{S} \not\vdash \bot$  entonces  $\{\land \mathbf{S}\} \not\vdash \bot$
  - Si  $\{\land S\} \not\vdash \bot$  entonces  $\{\exists \land S\} \not\vdash \bot$
  - Si  $\{ \overline{\exists} \land S \} \not\vdash \bot$  entonces  $\{ \overline{\exists} \land S \}$  es consistente
  - Si  $\{\overline{\exists} \land S\}$  es consistente entonces  $\{\land S\}$  es consistente
  - Si  $\{ \land S \}$  es consistente entonces S es consistente

• Regla de eliminación de la igualdad

$$\frac{t_1=t_2 \quad F[x/t_1]}{F[x/t_2]}[=e]$$

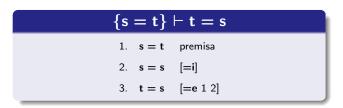
donde  $[x/t_1]$  y  $[x/t_2]$  son sustituciones libres para F

• Regla de sustitución de izquierda a derecha

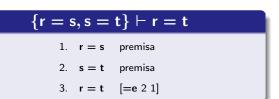
• Regla de introducción de la igualdad

$$\overline{t=t}$$
 [=i]

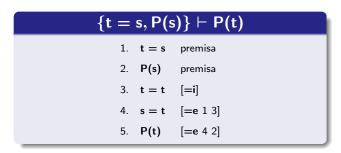
- Se trata de la reflexividad de la igualdad
- Simetría de la igualdad



Transitividad de la igualdad



• Regla de sustitución de derecha a izquierda



### Bibliografía

- C. Badesa, I. Jané y R. Jansana Elementos de lógica formal Capítulo 16
- J.A. Díez. Iniciación a la Lógica Capítulo 8
- M. Huth y M. Ryan. Logic in computer science: modelling and reasoning about systems
   Capítulo 2.3