MODELOS DE COMPUTACIÓN Y COMPLEJIDAD

Grado en Ingeniería Informática. Tecnologías Informáticas ETS Ingeniería Informática. Universidad de Sevilla (Curso 2021-2022)

Problemas de FUNCIONES GOTO-COMPUTABLES

EJERCICIO 16.

Sea $f: \mathbb{N}^{k+1} \to \mathbb{N}$ una función total (k+1)-aria, con $k \geq 0$. Se define la suma acotada de f, que notaremos Σ_f , así: $\Sigma_f(\vec{x},y) = \Sigma_{z \leq y} f(\vec{x},z)$, para cada k-tupla de números naturales \vec{x} y cada número natural y. Probar que si f es GOTO-computable, entonces la función suma acotada Σ_f también lo es.

SOLUCIÓN:

Vamos a ver que la función Σ_f (de aridad k+1) se puede describir mediante la recursión primitiva de dos ciertas funciones g (de aridad k) y h (de aridad k+2), de tal manera que estas funciones g y h sean GOTO-computables.

Para ello, si $\Sigma_f = \mathcal{R}(g, h)$ entonces deberá verificarse las siguientes condiciones:

- (a) $\Sigma_f(\vec{x}, 0) = g(\vec{x})$, para cada k-tupla \vec{x} .
- (b) $\Sigma_f(\vec{x}, y + 1) = h(\vec{x}, y, \Sigma_f(\vec{x}, y))$, para cada k-tupla \vec{x} y cada número natural $y \in \mathbb{N}$.

Ahora bien, de la propia definición de Σ_f se tiene que:

- (a) $\Sigma_f(\vec{x},0) = \Sigma_{z<0} f(\vec{x},z) = f(\vec{x},0)$, para cada k-tupla \vec{x} .
- (b) $\Sigma_f(\vec{x}, y + 1) = \Sigma_{z \leq y + 1} f(\vec{x}, z) = \Sigma_{z \leq y} f(\vec{x}, z) + f(\vec{x}, y + 1)$, para cada k-tupla \vec{x} y cada número natural $y \in \mathbb{N}$.

Por tanto, las funciones g y h deberán verificar lo siguiente:

- (a) $q(\vec{x}) = f(\vec{x}, 0)$, para cada k-tupla \vec{x} .
- (b) $h(\vec{x}, y, \Sigma_f(\vec{x}, y)) = \Sigma_{z \leq y} f(\vec{x}, z) + f(\vec{x}, y + 1) = \Sigma_f(\vec{x}, y) + f(\vec{x}, y + 1)$, para cada k-tupla \vec{x} y cada número natural $y \in \mathbb{N}$.

En consecuencia:

- (a) Teniendo presente que la función f es GOTO-computable y que $g(\vec{x}) = f(\vec{x}, 0)$, deducimos que la función g es GOTO-computable.
- (b) Teniendo presente que la función f es GOTO-computable y que $h(\vec{x}, y, t)$ = $t + f(\vec{x}, y + 1)$, deducimos que la función h es GOTO-computable.

Finalmente, de la GOTO-computabilidad de las funciones g y h, así como del hecho de que Σ_f está definida por recursión primitiva a partir de g y de h, concluimos que la función Σ_f es GOTO-computable.
