Teoría de la Complejidad Computacional

PRELIMINARES

David Orellana Martín

Grupo de Investigación en Computación Natural
Dpto. Ciencias de la Computación e Inteligencia Artificial
Liniversidad de Sevilla

dorellana@us.es

Máster Universitario en Matemáticas

Curso 2022-2023

Teoría intuitiva de conjuntos: G. Cantor (desarrollada entre 1873 y 1896).

Aparición de paradojas en la teoría de Cantor:

- * C. Burali-Forti (1897): afectaba al conjunto de los ordinales.
- * B. Russell (1901): afectaba a la relación de pertenencia.

Para resolver este escollo, algunos matemáticos optaron por la axiomatización.

- * E. Zermelo (1908): Primer sistema de axiomas de la teoría de conjuntos.
- * A. Fraenkel (1922): Complementa y "precisa" el sistema axiomático de Zermelo (en esa tarea, Th. Skolem realizó importantes contribuciones).

Los objetos matemáticos de esta teoría son conjuntos.

Conceptos primitivos o indefinibles en la teoría:

- * Concepto de conjunto.
- * Concepto de pertenencia ($a \in b$: el conjunto a es un elemento del conjunto b).

Sean a y b conjuntos. Notaremos $a \notin b$ para indicar que a no es un elemento de b

Fórmula $\theta(x)$ sobre un conjunto a:

- Si $b \in a$, entonces $\theta(b)$ es una proposición (verdadera o falsa).
- $\{x \mid \theta(x)\}$: conjunto cuyos elementos son los conjuntos x tales que la proposición $\theta(x)$ es verdadera.

Abreviaremos la expresión "si y sólo si" escribiendo "sii".

Algunos axiomas de la teoría de Z-F que destacamos:

Axioma de extensionalidad: dos conjuntos a y b son iguales (a = b) sii poseen los mismos elementos: $\forall x (x \in a \longleftrightarrow x \in b)$.

Si los conjuntos a y b no son iguales entonces se notará $a \neq b$.

Axioma del conjunto vacío: existe un conjunto que carece de elementos (se denotará por \emptyset y se denomina conjunto vacío),

Axioma del par no ordenado: para cada par de conjuntos a y b existe un conjunto c cuyos únicos elementos son a y b. Se notará $c = \{a, b\}$

- * El par ordenado, de primera componente el conjunto a y segunda componente el conjunto b, notaremos (a, b), es el conjunto {{a, b}}.
- ★ Dados los conjuntos a, b, c y d se tiene que (a, b) = (c, d) sii a = c y b = d.

Axioma de la unión: dado un conjunto a, existe un conjunto (que se notará $\bigcup a$) cuyos elementos son, exactamente, los elementos de los conjuntos que son elementos de a. Es decir, $\bigcup a = \{x \mid \exists y (y \in a \land x \in y\}.$

En el caso particular $a = \{b, c\}$, el conjunto $\bigcup a$ se notará $b \cup c$. Por tanto, se verificará que $b \cup c = \{x \mid x \in b \lor x \in c\}$.

Axioma del conjunto de partes: para cada conjunto a existe un conjunto $\mathcal{P}(a)$ cuyos elementos son todos los subconjuntos de a.

- * Se dice que un conjunto b es un subconjunto de a (y se notará $\mathbf{b} \subseteq \mathbf{a}$) si se verifica que $\forall x (x \in b \to x \in a)$.
- * Se dice que un conjunto b es un subconjunto estricto (o propio) de a (y se notará $b \subseteq a$) si se verifica que $b \subseteq a$ y $b \neq a$.

Axioma del infinito: existe un conjunto $\mathbb N$ (denominado conjunto de los números naturales) tal que: (a) $\emptyset \in \mathbb N$; y (b) $\forall x (x \in \mathbb N \to x \cup \{x\} \in \mathbb N)$.

Para cada $x \in \mathbb{N}$ diremos que $x \cup \{x\} \in \mathbb{N}$ es el sucesor de x (lo notaremos por S(x), o bien por x+1).

El conjunto de los números naturales

Existencia del conjunto de los números naturales (axioma del infinito).

$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$$

El conjunto N se puede describir, de manera recursiva, como sigue:

- ⋆ 0 es el conjunto vacío.
- ★ Para cada número natural x se tiene que $x + 1 = x \cup \{x\}$.

Es decir:

- \star 0 $\stackrel{def}{=}$ \emptyset .
- * $1 \stackrel{\text{def}}{=} 0 \cup \{0\} = \{0\}.$
- * $2 \stackrel{\textit{def}}{=} 1 \cup \{1\} = \{0, 1\}.$
- * $3 \stackrel{def}{=} 2 \cup \{2\} = \{0, 1, 2\}.$

Qué son los números naturales

Los números naturales son los siguientes

- ⋆ 0 es el conjunto vacío.
- * Para cada número natural $x \neq 0$ se tiene que:
 - * x es un conjunto.
 - * x es un conjunto que consta, exactamente, de x elementos.
 - * x es <u>el</u> conjunto cuyos elementos son, exactamente: $0, 1, \dots x-1$; es decir: $x = \{0, 1, \dots, x-1\}$.

Tuplas ordenadas

Una 2-tupla ordenada es un par ordenado: (x_1, x_2) .

Se define, manera recursiva, las *n*-tuplas ordenadas, para $n \ge 3$, como sigue:

- $\star (x_1, x_2, x_3) \stackrel{def}{=} (x_1, (x_2, x_3)).$
- * $(x_1, x_2, x_3, x_4) \stackrel{def}{=} (x_1, (x_2, x_3, x_4)).$
- $\star (x_1, x_2, x_3, x_4, x_5) \stackrel{def}{=} (x_1, (x_2, x_3, x_4, x_5)).$
- *

En general: $(x_1, x_2, \ldots, x_n) \stackrel{def}{=} (x_1, (x_2, \ldots, x_n))$, para cada $n \ge 3$.

Operaciones con conjuntos

Sean a y b dos conjuntos arbitrarios:

- **★ Unión**: $a \cup b = \{x \mid x \in a \lor x \in b\}$
- **★ Intersección**: $a \cap b = \{x \mid x \in a \land x \in b\}$
 - * Dos conjuntos a y b se dicen que son disjuntos sii $a \cap b = \emptyset$.
- **★ Diferencia**: $a \setminus b = \{x \mid x \in a \land x \notin b\}$
- *** Complementario**: Si $b \subseteq a$, el complementario de b en a es $a \setminus b$.
- **Conjunto de las partes** de a: $\mathcal{P}(a) = \{x \mid x \subseteq a\}$.
- ★ Producto cartesiano de a y b (¡en ese orden!):

$$a \times b = \{(x_1, x_2) \mid x_1 \in a \land x_2 \in b\}$$

Para cada número natural $n \ge 2$, si a_1, \ldots, a_n son conjuntos entonces se define $a_1 \times \ldots \times a_n = \{(x_1, \ldots, x_n) \mid x_1 \in a_1 \wedge \ldots \wedge x_n \in a_n\}.$

Se define $a^1 = a$ y $a^n = a \times \stackrel{(n)}{\dots} \times a$, para cada número natural $n \ge 2$.

Funciones

- Una relación es un conjunto cuyos elementos, si existen, son pares ordenados.
- * Una función f es una relación tal que $\forall x \forall y \forall z \ ((x,y) \in f \land (x,z) \in f \implies y=z)$
- * El conjunto vacío es una función (denominada función vacía).
- * Una función f es inyectiva si satisface la siguiente condición: $\forall x \forall y \forall z \ (x, y) \in f \land (z, y) \in f \implies x = z$
- * El dominio de una función f es el conjunto: $dom(f) = \{x \mid \exists y ((x, y) \in f)\}$
- * El rango de una función f es el conjunto: $rang(f) = \{x \mid \exists y ((y, x) \in f)\}$
- * Si f es una función y $a \in dom(f)$, entonces existe un $\underline{unico}\ b \in rang(f)$ tal que $(a,b) \in f$. Notaremos f(a) = b para expresar que $(a,b) \in f$.
- ★ Si $x \in dom(f)$, notaremos $f(x) \downarrow (f \text{ está definida en } x)$.
- * Si $x \notin dom(f)$, notaremos $f(x) \uparrow (f \text{ no está definida en } x)$.
- $\star [f = g] \iff [\mathsf{dom}(f) = \mathsf{dom}(g) \land \forall x \in \mathit{dom}(f) (f(x) = g(x))].$

Tipos de funciones

Sean A y B dos conjuntos.

- * Una función total f de A en B (notaremos $f:A \longrightarrow B$) es una función que verifica: dom(f) = A y $rang(f) \subseteq B$.
 - Una aplicación f de A en B es una función total f de A en B.
- * Una función parcial f de A en B (notaremos $f:A \to B$) es una función que verifica: $dom(f) \subseteq A$ y $rang(f) \subseteq B$.
 - Toda función total de A en B es una función parcial de A en B.
 - Existen funciones parciales de A en B que no son funciones totales de A en B (por ejemplo: la función f de N en N definida por f(x) = raíz cuadrada de x. Se tiene que f(10) ↑).
- ★ Una función parcial f de A en B es:
 - sobreyectiva (o suprayectiva) si rang(f) = B.
 - biyectiva si es total, inyectiva y sobreyectiva.

Si A un conjunto, la función identidad sobre A es la función $Id_A = \{(x,x) \mid x \in A\}$; es decir, $Id_A(x) = x$, para cada $x \in A$.

Composición de funciones

Sean $f:A \to B$ y $g:B \to C$. La **composición** de f y g (¡en ese orden!) es la función parcial h de A en C definida así:

$$h = \{(x, y) \in A \times C : \exists z \in B (f(x) = z \land g(z) = y\}$$

Gráficamente,

$$\begin{array}{ccccccc}
A & \stackrel{f}{-} & B & \stackrel{g}{-} & C \\
x & \mapsto & f(x) & \mapsto & g(f(x)) & (=h(x))
\end{array}$$

Notación: $h = g \circ f$.

Función inversa

Si f es una función entonces se define el conjunto $f^{-1} = \{(x, y) \mid (y, x) \in f\}$.

- ★ El conjunto f^{-1} no tiene por qué ser una función.
- * f^{-1} es una <u>función</u> sii f es <u>inyectiva</u> (función inversa de f). Además, en este caso se tiene que $(f^{-1})^{-1} = f$.

Proposición: Sea f una función total de A en B.

- f^{-1} es una aplicación de B en A sii f es biyectiva.
- Si f es biyectiva, entonces $f \circ f^{-1} = Id_B$ y $f^{-1} \circ f = Id_A$.

Imagen directa e imagen inversa por una función

Sea f una función parcial de un conjunto A en un conjunto B.

- * Si $C \subseteq A$ entonces la **imagen directa** de C por f es el conjunto $f[C] = \{y \in B \mid \text{Existe } x \in dom(f) \cap C \text{ tal que } f(x) = y\}$
- * Si $D \subseteq B$ entonces la **imagen inversa** de D por f es el conjunto $f^{-1}[D] = \{x \in A \mid x \in dom(f) \text{ y } f(x) \in D\}$

Familia de conjuntos

Sea I un conjunto no vacío.

- * Una familia de conjuntos, con conjunto de índices /, es una función F cuyo dominio es / (los elementos de / se denominan índices de la familia).
 - * La familia F se representará así: $\{F(i) \mid i \in I\}$.
 - * Si $I = \{1, ..., n\}$, con $n \in \mathbb{N} \setminus \{0\}$, entonces la familia F se representará así: $\{F(1), ..., F(n)\}$.
- ★ Sea F una familia de conjuntos, con conjunto de índices I.
 - * La unión de los conjuntos de la familia F, que se notará $\bigcup_{i \in I} F(i)$, es el conjunto $\{x \mid \exists i (i \in I \land x \in F(i))\}$.
 - * La intersección de los conjuntos de la familia F, que se notará $\bigcap_{i \in I} F(i)$, es el conjunto $\{x \mid \forall i (i \in I \rightarrow x \in F(i))\}$.

Familia de conjuntos

Sea F una familia de conjuntos, con conjunto de índices $I \neq \emptyset$.

- * Se dice que F es una familia de conjuntos disjuntos dos a dos si satisface la siguiente propiedad:
 - * Para cada $i, j \in I$ tales que $i \neq j$, se tiene que los conjuntos F(i) y F(j) de la famila, son disjuntos.
- * Se dice que F es un <u>recubrimiento</u> de un conjunto A si satisface la siguiente propiedad: $A \subseteq \bigcup_{i \in I} F(i)$.
- \star Se dice que F es una partición de un conjunto A si satisface:
 - * F es una familia de subconjuntos de A.
 - * F es un recubrimiento de A.
 - * F es una familia de conjuntos disjuntos dos a dos.

Sucesiones de elementos de un conjunto

Sucesión finita de elementos de un conjunto A: es una aplicación de un número natural $n \in \mathbb{N}$ en el conjunto A.

- \star El número natural n se denomina longitud de la sucesión.
- * La sucesión finita de longitud 0 será la función vacía.
- * Una sucesión finita, f, de longitud n+1 se representará así: $f(0) f(1) \dots f(n)$.

Toda sucesión finita de elementos de un conjunto A, de longitud $n \in \mathbb{N}$, es una familia de conjuntos (que son elementos de A), cuyo conjunto de índice es n.

Sucesión infinita de elementos de un conjunto A: es una aplicación del conjunto $\mathbb N$ de los números naturales en el conjunto A.

* Una sucesión infinita, f, se representará así: $f(0) f(1) \dots$

Toda sucesión infinita de elementos de un conjunto A es una familia de conjuntos (que son elementos de A), cuyo conjunto de índice es \mathbb{N} .

Conjuntos infinitos

Un conjunto A es infinito sii existe un subconjunto estricto B de A tal que es equipotente a A (es decir, existe una aplicación biyectiva de B en A).

★ El conjunto N es infinito: existe una biyección entre dicho conjunto y el subconjunto de los números pares.

Un conjunto A es numerable sii existe una aplicación biyectiva de \mathbb{N} en A.

Ejemplos:

- ★ El conjunto \mathbb{N}^2 es numerable: se prueba que la función $J: \mathbb{N}^2 \to \mathbb{N}$ definida por $J(x,y) = \frac{(x+y)(x+y+1)}{2} + x$ es **biyectiva**.
- ★ Para cada $k \ge 2$, el conjunto \mathbb{N}^k es numerable.
- ★ El conjunto Q de los números racionales es numerable.
- \star El conjunto $\mathbb R$ de los números reales **no** es numerable.
- ★ El intervalo $[0,1) \subseteq \mathbb{R}$ no es numerable.
- * $\mathcal{P}(\mathbb{N})$ **no** es numerable.

Método diagonal de Cantor: $\mathcal{P}(\mathbb{N})$ no es numerable

Caso contrario, $\mathcal{P}(\mathbb{N}) = \{A_0, A_1, A_2, ..., A_n, ...\}.$

 \star Cada subconjunto B de $\mathbb N$ se puede identificar con una sucesión infinita compuesta de SÍES y NOES:

	0	1	2	 n	
В	SÍ	NO	NO	 SÍ	

En la posición j-ésima aparece SÍ cuando $j \in B$ y NO en caso contrario.

 \star Formemos una tabla infinita con la información de los conjuntos A_i (de acuerdo con el criterio anterior). .

	0	1	2	 n	
A_0	SÍ	no	no	 no	
A_1	no	NO	SÍ	 SÍ	
A_2	sí	sí	NO	 no	
A_n	no	sí	no	 SÍ	

 \star El conjunto $D\subseteq\mathbb{N}$ definido como sigue a través de la diagonal de la tabla (permutando SÍ y NO, entre sí)

	0	1	2	 n	
	NO	-	-	 -	
	-	SÍ	-	 -	
D	-	-	SÍ	 -	
	_	-	_	 _	
ĺ	-	-	-	 NO	
	_	-	-	 -	

Entonces $D \in \mathcal{P}(\mathbb{N})$ y D es un conjunto distinto de $A_0, A_1, A_2, ..., A_n, ...$ Lo que es una contradicción.

Método diagonal de Cantor: [0,1) no es numerable

Recuérdese que $[0,1) = \{x \in \mathbb{R} : 0 \le x < 1\}$

Veamos ahora que

- * Cada número real $x \in [0,1)$ se puede escribir en base 10 como: $0'a_0$ a_1 a_2 ..., en donde cada $a_k \in \{0,1,2,\ldots,9\}$. Por tanto podemos identificar x con la sucesión $(a_0, a_1, a_2,\ldots,a_n,\ldots)$
- * Si el conjunto [0,1) fuese numerable, entonces $[0,1)=\{x_0,x_1,x_2,\dots\}$. Ahora bien, cada x_j tendría una expresión decimal: $0'a_{i,0}a_{j,1}a_{j,2}\dots$
- * Formemos una tabla infinita con las expresiones decimales de los x_i:

a _{0,0}	a _{0,1}	a _{0,2}		a _{0,n}	
a _{1,0}	a _{1,1}	a _{1,2}		a _{1,n}	
a _{2,0}	a _{2,1}	a _{2,2}		a _{2,n}	
	:	:		:	
a _{n,0}	$a_{n,1}$	a _{n,2}		a _{n,n}	
:	1 :	1 :	١	1 :	١
	a _{1,0} a _{2,0}	$\begin{array}{c cccc} a_{1,0} & a_{1,1} \\ a_{2,0} & a_{2,1} \\ \vdots & \vdots & \vdots \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- * Definamos ahora el número real $d=0'd_0\ d_1\ d_2\ \dots,\ d_n\ \dots$, en donde $d_j=\left\{\begin{array}{ll} 0 & \text{si } a_{j,j} \neq 0 \\ 1 & \text{si } a_{j,i}=0 \end{array}\right.$
- * Entonces $d \in [0,1)$ y para todo $j \in \mathbb{N}$, $x_j \neq d$; es decir, $d \notin \{x_0, x_1, x_2, \dots\} = [0,1)$. Lo que es una contradicción.

Predicados

Sea A un conjunto. Si $(x_1, \ldots, x_n) \in A^n$, $n \neq 0$, entonces notaremos $\vec{x} \in A^n$.

Un predicado n-ario, $n \neq 0$, θ sobre A es una aplicación de A^n en $\{0,1\}$.

- * Si $\theta(\vec{x}) = 1$ para $\vec{x} \in A^n$, diremos que el predicado θ se verifica para \vec{x} . Caso contrario, diremos que el predicado θ no se verifica para \vec{x} .
- * Todo predicado n-ario, θ, sobre A determina un subconjunto de Aⁿ definido así: S_θ = { \vec{x} ∈ Aⁿ | θ(\vec{x}) = 1 }.
- * Todo subconjunto de $B \subseteq A^n$ determina un predicado n-ario θ_B sobre A tal que $\theta_B(\vec{x}) = 1$ sii $\vec{x} \in B$.

La función característica de $B \subseteq A^n$ es el siguiente predicado sobre A^n :

$$C_B(\vec{x}) = \begin{cases} 1 & \text{si } \vec{x} \in B \\ 0 & \text{si } \vec{x} \in A^n \setminus B \end{cases}$$

La función característica del subconjunto B es el predicado n-ario asociado a B.

Operaciones con predicados

Sean θ y θ' predicados n-arios, $n \neq 0$, sobre un conjunto A. Se definen los siguientes predicados n-arios sobre A:

- * $(\neg \theta)(\vec{x}) = 1 \theta(\vec{x})$. Se notará $\neg \theta(\vec{x})$ en lugar de $(\neg \theta)(\vec{x})$
- * $(\theta \lor \theta')(\vec{x}) = \max \{\theta(\vec{x}), \theta'(\vec{x})\}$. Se notará $\theta(\vec{x}) \lor \theta'(\vec{x})$ en lugar de $(\theta \lor \theta')(\vec{x})$.
- * $(\theta \wedge \theta')(\vec{x}) = \min \{\theta(\vec{x}), \theta'(\vec{x})\}$. Se notará $\theta(\vec{x}) \wedge \theta'(\vec{x})$ en lugar de $(\theta \wedge \theta')(\vec{x})$.
- $\star \ \theta \to \theta' \stackrel{\text{def}}{=} (\neg \theta) \lor \theta'.$
- $\star \ \theta \leftrightarrow \theta' \stackrel{\text{def}}{=} (\theta \to \theta') \land (\theta' \to \theta).$

Se verifican las siguientes relaciones:

- $\star S_{\theta \vee \theta'} = S_{\theta} \cup S_{\theta'}.$
- $\star S_{\theta \wedge \theta'} = S_{\theta} \cap S_{\theta'}.$
- $\star S_{\neg \theta} = A^n \setminus S_{\theta}.$

Cuantificación acotada

Sea $\theta(x_1,...,x_n,y)$ un predicado (n+1)-ario sobre \mathbb{N} .

* El predicado obtenido a partir de θ por cuantificación <u>existencial</u> acotada es el siguiente predicado (n+1)-ario sobre \mathbb{N} :

$$(\exists z)_{\leq y}\theta(\vec{x},z) = \begin{cases} 1 & \text{si existe } z_0 \leq y \text{ tal que } \theta(\vec{x},z_0) = 1. \\ 0 & \text{en caso contrario} \end{cases}$$

Obsérvese que
$$(\exists z)_{\leq y}\theta(\vec{x},z) = \theta(\vec{x},0) \vee \theta(\vec{x},1) \vee ... \vee \theta(\vec{x},y)$$
.

* El predicado obtenido a partir de θ por cuantificación <u>universal</u> acotada es el siguiente predicado (n+1)-ario sobre \mathbb{N} :

$$(\forall z)_{\leq y}\theta(\vec{x},z) = \left\{ \begin{array}{ll} 1 & \text{si para todo } z_0 \leq y \text{ se tiene } \theta(\vec{x},z_0) = 1. \\ 0 & \text{en caso contrario} \end{array} \right.$$

Obsérvese que
$$(\forall z)_{\leq y} \theta(\vec{x}, z) = \theta(\vec{x}, 0) \wedge \theta(\vec{x}, 1) \wedge ... \wedge \theta(\vec{x}, y)$$
.

Cuantificación no acotada

Sea $\theta(x_1,...,x_n,y)$ un predicado (n+1)-ario sobre \mathbb{N} , con $n \neq 0$.

 El predicado obtenido a partir de θ por cuantificación existencial no acotada es el siguiente predicado n-ario sobre N:

$$(\exists z)\,\theta(\vec{x},z) = \left\{ \begin{array}{ll} 1 & \text{si existe } z_0 \text{ tal que se verifica } \theta(\vec{x},z_0) = 1. \\ 0 & \text{en caso contrario.} \end{array} \right.$$

* El predicado obtenido a partir de θ por cuantificación universal no acotada es el siguiente predicado n-ario sobre \mathbb{N} :

$$(\forall z)\, \theta(\vec{x},z) = \left\{ egin{array}{ll} 1 & ext{si para todo } z_0 ext{ se verifica } \theta(\vec{x},z_0) = 1. \\ 0 & ext{en caso contrario.} \end{array} \right.$$

El principio de minimización

Expresión sobre predicados. Sea $\theta(x)$ un predicado 1-ario sobre $\mathbb N$. Si $\exists x \ \theta(x)$ entonces $\exists m \ (\theta(m) \land \forall y < m \ (\neg \theta(y))$

* <u>Notación</u>: $m = \mu x(\theta(x))$ (**m** es **el mínimo** de los x que verifican $\theta(x)$).

Expresión conjuntista. Sea $A \subseteq \mathbb{N}$ tal que $A \neq \emptyset$. Entonces $\exists m \ (m \in A \land \forall y < m \ (y \notin A))$

* Notación: m = min(A) (m es el menor elemento de A).

Ejercicio.

* Probar que todo número natural $n \ge 2$ es divisible por un número primo.

Indicación: considérese el conjunto $A=\{x\mid x>1 \land x \text{ divide a } n\}$, pruébese que es no vacío y justifíquese que el menor elemento de ese conjunto es un número primo.

El principio de inducción débil

Teorema: Sea $\theta(x)$ un predicado 1-ario sobre $\mathbb N$ tal que se verifica $\theta(0)$ y $\forall x (\theta(x) \longrightarrow \theta(x+1))$. Entonces se tiene que $\forall x \ \theta(x)$.

Corolario: Sean $\theta(x)$ un predicado 1-ario sobre $\mathbb N$ y $a \in \mathbb N$ tales que se verifica $\theta(a)$ y $\forall x \geq a \ (\theta(x) \longrightarrow \theta(x+1))$. Entonces se tiene que $\forall x \geq a \ (\theta(x))$.

Ejercicios.

- * Probar que para cada $n \in \mathbb{N}$ se tiene que $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$
- * Probar que para cada $n \in \mathbb{N}$ se tiene que $\sum_{i=0}^{n} (2i+1) = (n+1)^2$

El principio de inducción fuerte

Teorema: Sea $\theta(x)$ un predicado 1-ario sobre $\mathbb N$ tal que se verifica $\theta(0)$ y $\forall x ([\forall p \leq x \ \theta(p)] \longrightarrow \theta(x+1))$. Entonces se tiene que $\forall x \ \theta(x)$.

Corolario: Sean $\theta(x)$ un predicado 1-ario sobre $\mathbb N$ y $a \in \mathbb N$ tales que se verifica $\theta(a)$ y $\forall x \geq a$ ($[\forall p \geq a (p \leq x \longrightarrow \theta(p))] \longrightarrow \theta(x+1)$). Entonces $\forall x \geq a \ (\theta(x))$.

Ejercicio.

* Probar que todo número natural $n \ge 2$ se puede descomponer en un producto de números primos.

