Teoría de la Complejidad Computacional

Tema 8: Una nueva metodología para atacar el problema P versus NP

David Orellana Martín

Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

dorellana@us.es

Máster Universitario en Lógica, Computación e Inteligencia Artificial
Curso 2023-2024

Índice

- * El problema P versus NP.
- * Tratabilidad e intratabilidad de problemas abstractos.
- * Eficiencia y presumible eficiencia de modelos de computación.
- Nueva metodología para atacar el problema P versus NP.
- * Fronteras de la tratabilidad en Computación Celular con Membranas.

El problema P versus NP (I)

 Informalmente, el problema central de la Teoría de la Complejidad Computacional, consiste en:

- Encontrar soluciones versus comprobar la corrección de las soluciones.
- * Demostración versus verificación de su corrección.

El problema P versus NP (II)

Es creencia generalizada que es más difícil:

 resolver un problema que comprobar si una posible solucion del mismo es una solucion correcta.

Es decir, la comunidad científica está convencida de que $P \neq NP$.

Atacando la resolución del problema P versus NP

Aproximación clásica (1970):

- P ≠ NP
 - * Encontrar un problema NP-completo que no pertenece a la clase P.
- $\bullet P = NP.$
 - * Encontrar un problema NP-completo que pertenece a la clase P.

En este tema, se proporciona una nueva metodología para atacar el problema P versus NP y, en particular, se usa el paradigma de Membrane Computing.

Problemas tratables e intratables

Problema tratable respecto de una medida de complejidad:

* Existe una MTD que resuelve el problema y usa una cantidad de recursos (respecto de esa medida) que es polinomial en el tamaño de la entrada.

Problema intratable respecto de una medida de complejidad:

* Toda MTD que resuelve el problema requiere una cantidad de recursos (respecto de esa medida) que es, al menos, exponencial en el tamaño de la entrada.

Problemas tratables e intratables

- En cualquier modelo de computación y respecto de <u>cualquier medida</u> de complejidad, <u>existen problemas intratables</u>.
- P es la clase de complejidad de los problemas tratables respecto de la medida de complejidad tiempo.
- Si P = NP entonces los problemas NP-completos son tratables, respecto de la medida de complejidad tiempo.
- Si P ≠ NP entonces los problemas NP-completos son intratables, respecto de la medida de complejidad tiempo.
- Es creencia generalizada que P ≠ NP. Por ello, a los problemas NP-completos se les denomina presuntamente intratables (respecto de la medida de complejidad tiempo).

Eficiencia de un modelo de computación

A partir de ahora, vamos a centrarnos en la medida de complejidad tiempo.

Modelo de computación eficiente: capacidad para resolver problemas intratables en tiempo polinomial.

De acuerdo con esta definición y respecto de la medida de complejidad tiempo:

- * El modelo de las MTDs no es eficiente.
- ★ Si P ≠ NP entonces el modelo de las MTNDs es eficiente (ya que, en este caso, los problemas NP-completos son intratables).

Modelo de computación presumiblemente eficiente: capacidad para resolver problemas NP-completos en tiempo polinomial.

De acuerdo con esta definición y respecto de la medida de complejidad tiempo:

- * El modelo de las MTNDs es presumiblemente eficiente.
- ★ Si P ≠ NP entonces los modelos presumiblemente eficientes son modelos eficientes.

Extensión de un modelo de computación

Sean M_1 y M_2 dos modelos de computación.

* M_2 es una **extensión** de M_1 (o bien, M_1 es un **submodelo** de M_2) si <u>todo</u> procedimiento mecánico de M_1 **es**, así mismo, un procedimiento mecánico de M_2 .

Si un modelo de computación M_2 es una extensión de un modelo de computación M_1 , entonces:

- Toda solución S de un problema abstracto X en M_1 es, así mismo, una solución de X en M_2 .
- Los procedimientos mecánicos de M₂ se obtienen a partir de los de M₁ añadiendo una serie de ingredientes sintácticos y/o semánticos.

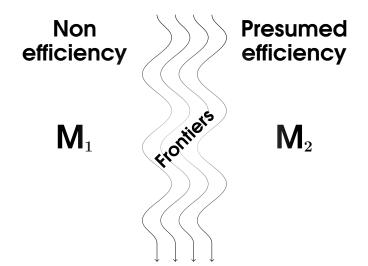
Fronteras entre no eficiencia y presumible eficiencia

Sean M_1 y M_2 dos modelos de computación tales que:

- \star M_1 es un modelo modelo no eficiente.
- \star M_2 es un modelo presumiblemente eficiente.
- * M_2 es una extensión de M_1 .

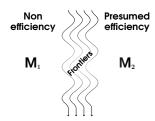
Entonces, una frontera entre la no eficiencia y la presumible eficiencia se obtiene al "pasar" del modelo M_1 al modelo M_2 . Es decir:

★ Los ingredientes añadidos a M₁ para obtener M₂ proporcionan una frontera entre la no eficiencia y la presumible eficiencia.



!!! Cada una de esas fronteras proporciona una nueva forma de atacar el problema P versus NP !!!

Atacando el problema P versus NP



- ★ Hallar <u>una</u> solucion eficiente S de <u>un</u> problema **NP**-completo, X, en M_2 tal que:
 - A partir de S, se pueda diseñar una solución eficiente de X en M₁ (los ingredientes añadidos a M₁ para obtener M₂ no juegan un papel relevante en esa solución S).

$P \neq NP$

- * Hallar <u>una</u> solucion eficiente S de <u>un</u> problema **NP**-completo, X, en M_2 tal que:
 - A partir de S, no se pueda diseñar una solución eficiente de X en M₁ (los ingredientes añadidos a M₁ para obtener M₂ juegan un papel relevante en esa solución S).

Uso de la metodología en el paradigma de la computación celular

Sea \mathcal{R} un modelo de computación en el paradigma de la computación celular; es decir, \mathcal{R} es una clase de sistemas de membranas reconocedores.

- * \mathcal{R} es no eficiente sii $PMC_{\mathcal{R}} = P$.
- * \mathcal{R} es presumiblemente eficiente sii $NP \cup co-NP \subseteq PMC_{\mathcal{R}}$.

Recuérdese que:

- * NAM denota el modelo de computación de los sistemas P reconocedodores con membranas activas y sin reglas de división.
- * AM denota el modelo de computación de los sistemas P reconocedores con membranas activas y con reglas de división.

Entonces se verifica lo siguiente:

- * $PMC_{NAM} = P$ (establecido en ¹).
- \star El modelo de computación \mathcal{NAM} es no eficiente.
- * SAT \in PMC_{AM} (establecido en 2) y, por tanto, NP \cup co-NP \subseteq PMC_{AM}.
- * El modelo de computación \mathcal{AM} es presumiblemente eficiente.

A. E. Porreca. Computational complexity classes for membrane systems. *Master Degree Thesis*, Università di Milano-Bicocca, Italy, 2008.

²M.J. Pérez-Jiménez, A. Romero, F. Sancho. Complexity classes in models of cellular computing with membranes. *Natural Computing*, 2, 3 (2003), 265-285.

Así pues, "pasar" del modelo de computación \mathcal{NAM} al modelo \mathcal{AM} equivale a "pasar" de la **no eficiencia** a la **presumible eficiencia**. Por tanto:

* El ingrediente añadido al modelo \mathcal{NAM} para obtener el modelo \mathcal{AM} (la regla de división) proporciona una frontera entre la no eficiencia y la presumible eficiencia.

En consecuencia, en el marco de los sistemas P reconocedores con membranas activas y bajo el supuesto de que $P \neq NP$:

- La regla de división proporciona una frontera de la eficiencia (o de la tratabilidad de problemas).
 - Específicamente, permitir o no las reglas de división en el modelo de computación de los sistemas P reconocedores con membranas activas, equivale a "pasar" de la eficiencia a la no eficiencia.

Consideremos el modelo de computación \mathcal{AM}^0 de los sistemas P reconocedores con membranas activas y sin polarizaciones.

En estos sistemas, las reglas son del siguiente tipo:

(a)
$$[a \rightarrow u]_i$$
 evolución

(b)
$$a[\]_i \rightarrow [\ b\]_i \ (i \neq 1)$$
 comunicación-in

(c)
$$[a]_i \rightarrow b[]_i$$
 comunicación-out

(d)
$$[a]_i \rightarrow b \ (i \neq 1 \ e \ i \neq i_{out})$$
 disolución

(e)
$$[a]_i \rightarrow [b]_i [c]_i$$
 $(i \neq 1, i \neq i_{out} e i elemental) división elemental$

(f)
$$[\]_j\ [\]_k\]_i\ \rightarrow [\ [\]_j\]_i\ [[\]_k\]_i\ (i\neq 1,\ i\neq i_{out}\ e\ i\ no\ elemental)$$
 división no elemental

1 es la etiqueta de la mebrana piel, e iout es la etiqueta de la zona de salida.

Las notaciones $\mathcal{AM}^0(\alpha, \beta)$, con $\alpha \in \{-d, +d\}$ y $\beta \in \{-ne, +ne\}$ significan lo siguiente:

- $\star \alpha = -d$: se prohibe el uso de reglas de disolución.
- $\star \alpha = +d$: se permite el uso de reglas de disolución.
- \star $\beta=-ne$: se <u>prohibe el uso</u> de reglas de división para membranas no elementales.
- * $\beta = +ne$: se permite el uso de reglas de división para membranas elementales y no elementales.

Recuérdese que SAT $\in PMC_{\mathcal{AM}(-d)}$.

Algunos resultados importantes:

- * $PMC_{\mathcal{AM}^0(-d,+ne)} = P^3$ (técnica del grafo de dependencia).
- * $Subset Sum \in PMC_{AM^0(+d,+ne)}^{-1}$.
- ¿Se pueden resolver problemas NP-completos mediante familias de AM⁰(+d, -ne), en tiempo polinomial?
- * Conjetura de Păun (2005): $PMC_{\mathcal{AM}^0(+d,-ne)} = P$.

³M.A. Gutiérrez, M.J. Pérez-Jiménez, A. Riscos, F.J. Romero. On the power of dissolution in P systems with active membranes. Lecture Notes in Computer Science, 3850 (2006), 224-240.

Nuevas fronteras entre la no eficiencia y la presumible eficiencia:

- * Pasar de $\mathcal{AM}^0(-\mathbf{d})$ a $\mathcal{AM}(-\mathbf{d})$: la polarización.
- * Pasar de $\mathcal{AM}^0(-d, +ne)$ a $\mathcal{AM}^0(+d, +ne)$: las reglas de disolución.

Para cada $k \geq 1$,

- * TC(k): modelo de computación de los sistemas P reconocedores de tejidos con reglas de comunicación que tienen longitud, a lo sumo, k.
- * TDC(k): modelo de computación de los sistemas P reconocedores de tejidos con reglas de división celular y cuyas reglas de comunicación tienen longitud, a lo sumo, k.

Se verifica lo siguiente:

- * $P = PMC_{\mathcal{TC}(k)} = PMC_{\mathcal{TDC}(1)}$ (resultado establecido en ⁴)
- * Los modelos de computación $\mathcal{TC}(k)$ y $\mathcal{TDC}(1)$ son no eficientes,
- ★ $\text{HAM} \text{CYCLE} \in \text{PMC}_{\mathcal{TDC}(2)}$ (resultado establecido en ⁵)
- * El modelo de computación $\mathcal{TDC}(2)$ es presumiblemente eficiente.

⁴R. Gutiérrez-Escudero, M.J. Pérez-Jiménez, M. Rius-Font. Characterizing tractability by tissue-like P systems. *Lecture Notes in Computer Science*, 5957 (2010), 289-300.

⁵A.E. Porreca, N. Murphy, M.J. Pérez-Jiménez. An optimal frontier of the efficiency of tissue P systems with cell division. In M. García-Quismondo, L.F. Macías-Ramos, Gh. Paun, I. Pérez Hurtado, L. Valencia-Cabrera (eds.) Proceedings of the Tenth Brainstorming Week on Membrane Computing, Volume II, Seville, Spain, January 30-February 3, 2012, Report RGNC 01/2012, Fénix Editora, 2012, pp. 141-166.

"Pasar" del modelo de computación $\mathcal{TC}(2)$ al modelo $\mathcal{TDC}(2)$ equivale a "pasar" de la **no eficiencia** a la **presumible eficiencia**. Por tanto:

El ingrediente añadido al modelo \(\mathcal{TC}(2)\) para obtener \(\mathcal{TDC}(2)\) (permitir reglas de divisi\(\overline{n}\)) proporciona una frontera entre la no eficiencia y la presumible eficiencia.

En consecuencia, en el marco de los sistemas P de tejidos con reglas de comunicación de longitud, a lo sumo, 2, y bajo el supuesto de que $P \neq NP$:

- Las reglas de división proporcionan una frontera de la tratabilidad de problemas.
 - Específicamente, permitir o no reglas de división en el modelo de computación $\mathcal{TC}(2)$ equivale a "pasar" de la eficiencia a la no eficiencia.

"Pasar" del modelo de computación $\mathcal{TDC}(1)$ al modelo $\mathcal{TDC}(2)$ equivale a "pasar" de la **no eficiencia** a la **presumible eficiencia**. Por tanto:

* El ingrediente añadido al modelo $\mathcal{TDC}(1)$ para obtener $\mathcal{TDC}(2)$ (permitir reglas de comunicación de longitud 2) proporciona una frontera entre la no eficiencia y la presumible eficiencia.

En consecuencia, en el marco de los sistemas P de tejidos con reglas de división celular y reglas de comunicación, y bajo el supuesto de que $P \neq NP$:

- La longitud de las reglas de comunicación proporciona una frontera de la eficiencia (o de la tratabilidad de problemas).
 - Específicamente, permitir o no reglas de comunicación de longitud 2 en el modelo de computación TDC(1) equivale a "pasar" de la eficiencia a la no eficiencia.

