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THE HAMILTONIAN PATH PROBLEM

Recall that the Hamiltonian path problem asks whether the input graph contains
a path from s to ¢ that goes through every node exactly once.

T H E o R E M 7.46 --------------------------------------------------------------
HAMPATH is NP-complete.

PROOF IDEA  We showed that HAMPATH is in NP in Section 7.3. To show
that every NP-problem is polynomial time reducible to HAMPATH, we show
that 384T is polynomial time reducible to HAMPATH. We give a way to convert
Jenf-formulas to graphs in which Hamiltonian paths correspond to satisfying
assignments of the formula. The graphs contain gadgets that mimic variables
and clauses. The variable gadget is a diamond structure that can be traversed in
either of two ways, corresponding to the two truth settings. The clause gadget
is a node. Ensuring that the path goes through each clause gadget corresponds
to ensuring that each clause is satisfied in the satisfying assignment.

PROOF We previously demonstrated that HAMPATH is in NP, so all that
remains to be done is to show 3SAT <p HAMPATH. For each 3cnf-formula ¢
we show how to construct a directed graph G with two nodes, s and ¢, where a
Hamiltonian path exists between s and ¢ iff ¢ is satisfiable.

We start the construction with a 3cnf-formula ¢ containing k clauses:

(15:((11\/61\/01>/\(a2\/bg\/62)/\ /\(ak\/kack),

where each a, b, and ¢ is a literal z; or Z;. Let z1, ..., z; be the [ variables of ¢.
Now we show how to convert ¢ to a graph G. The graph G that we construct
has various parts to represent the variables and clauses that appear in ¢.
We represent each variable z; with a diamond-shaped structure that contains
a horizontal row of nodes, as shown in the following figure. Later we specify the
number of nodes that appear in the horizontal row.

FIGURE 7.47
Representing the variable z; as a diamond structure
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We represent each clause of ¢ as a single node, as follows.
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FIGURE 7.48
Representing the clause ¢; as a node

The following figure depicts the global structure of G. It shows all the ele-
ments of G and their relationships, except the edges that represent the relation-
ship of the variables to the clauses that contain them.
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FIGURE 7.49
The high-level structure of G
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Next we show how to connect the diamonds representing the variables to the
nodes representing the clauses. Each diamond structure contains a horizontal
row of nodes connected by edges running in both directions. The horizontal
row contains 3k + 1 nodes in addition to the two nodes on the ends belonging to
the diamond. These nodes are grouped into adjacent pairs, one for each clause,
with extra separator nodes next to the pairs, as shown in the following figure.

FIGURE 7.50
The horizontal nodes in a diamond structure

If variable x; appears in clause ¢;, we add the following two edges from the
jth pair in the ith diamond to the jth clause node.

FIGURE 7.51
The additional edges when clause ¢; contains z;

If 77 appears in clause ¢;, we add two edges from the jth pair in the ith dia-
mond to the jth clause node, as shown in Figure 7.52.

After we add all the edges corresponding to each occurrence of z; or 7; in
each clause, the construction of G is complete. To show that this construction
works, we argue that, if ¢ is satisfiable, a Hamiltonian path exists from s to ¢ and,
conversely, if such a path exists, ¢ is satisfiable.
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FIGURE 7.52
The additional edges when clause ¢; contains T;

Suppose that ¢ is satisfiable. To demonstrate a Hamiltonian path from s to
t, we first ignore the clause nodes. The path begins at s, goes through each
diamond in turn, and ends up at ¢. To hit the horizontal nodes in a diamond,
the path either zig-zags from left to right or zag-zigs from right to left, the
satisfying assignment to ¢ determines which. If z; is assigned TRUE, the path
zig-zags through the corresponding diamond. If z; is assigned FALSE, the path
zag-zigs. We show both possibilities in the following figure.
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FIGURE 7.53
Zig-zagging and zag-zigging through a diamond, as determined by the
satisfying assignment

So far this path covers all the nodes in G except the clause nodes. We can
easily include them by adding detours at the horizontal nodes. In each clause,
we select one of the literals assigned TRUE by the satisfying assignment.

If we selected z; in clause ¢;, we can detour at the jth pair in the ith diamond.
Doing so is possible because z; must be TRUE, so the path zig-zags from left to
right through the corresponding diamond. Hence the edges to the ¢; node are
in the correct order to allow a detour and return.

Similarly, if we selected 77 in clause ¢;, we can detour at the jth pair in the
ith diamond because x; must be FALSE, so the path zag-zigs from right to left
through the corresponding diamond. Hence the edges to the ¢; node again are
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in the correct order to allow a detour and return. (Note that each true literal in a
clause provides an aption of a detour to hit the clause node. As a result, if several
literals in a clause are true, only one detour is taken.) Thus we have constructed
the desired Hamiltonian path.

For the reverse direction, if G has a Hamiltonian path from s to ¢, we demon-
strate a satisfying assignment for ¢. If the Hamiltonian path is normal—it goes
through the diamonds in order from the top one to the bottom one, except for
the detours to the clause nodes—we can easily obtain the satisfying assignment.
If the path zig-zags through the diamond, we assign the corresponding variable
TRUE, and if it zag-zigs, we assign FALSE. Because each clause node appears on
the path, by observing how the detour to it is taken, we may determine which of
the literals in the corresponding clause is TRUE.

All that remains to be shown is that a Hamiltonian path must be normal.
Normality may fail only if the path enters a clause from one diamond but returns
to another, as in the following figure.

FIGURE 7.54
This situation cannot occur

The path goes from node a; to ¢, but instead of returning to a, in the same
diamond, it returns to b in a different diamond. If that occurs, either ag or a3
must be a separator node. If as were a separator node, the only edges entering
as would be from a; and agz. If ag were a separator node, a; and a; would be in
the same clause pair, and hence the only edges entering az would be from a4, as,
and c. In either case, the path could not contain node a,. The path cannot enter
ay from c or a; because the path goes elsewhere from these nodes. The path
cannot enter ap from as, because ag is the only available node that as points at,
so the path must exit ap via a3. Hence a Hamiltonian path must be normal. This
reduction obviously operates in polynomial time and the proof is complete.
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Next we consider an undirected version of the Hamiltonian path problem,
called UHAMPATH. ‘lo show that UHAMPATH is NP-complete we give a
polynomial time reduction from the directed version of the problem.

T H E o R E M 7.5 5 .........................................................................................................................
UHAMPATH is NP-complete.

PROOF The reduction takes a directed graph G with nodes s and ¢ and con-
structs an undirected graph G’ with nodes " and . Graph G has a Hamiltonian
path from s to ¢ iff G’ has a Hamiltonian path from s’ to . We describe G” as
follows.

Fach node u of G, except for s and ¢, is replaced by a triple of nodes '™, u™9,
and 4" in G’. Nodes s and ¢ in (G are replaced by nodes s°* and #" in G'. Edges
of two types appear in G'. First, edges connect u™d with »™ and %™, Second,
an edge connects u°* with +™ if an edge goes from u to v in G. That completes
the construction of (.

We can demonstrate that this construction works by showing that G has a
Hamiltonian path from s to ¢ iff G’ has a Hamiltonian path from s°* to #. To
show one direction, we observe that a Hamiltonian path P in G,

S, U, U2, - "U'k',t?

has a corresponding Hamiltonian path P’ in G/,

Sour, ,u’iln.’ ul]nid7 YL(]JM, u12n ug‘id, uaut . tin.

To show the other direction, we claim that any Hamiltonian path in G’ from
§°U to 1 in G’ must go from a triple of nodes to a triple of nodes, except for
the start and finish, as does the path P’ we just described. That would complete
the proof because any such path has a corresponding Hamiltonian path in G.
We prove the claim by following the path starting at node s°'*. Observe that
the next node in the path must be u" for some i because only those nodes are
connected to s°*. The next node must be 44, because no other way is available
to include ¢ in the Hamiltonian path. After «¢ comes u$"t because that is
the only other one to which " is connected. The next node must be » for
some j because no other available node is connected to u"'. ‘The argument then
repeats until ¢ is reached.

THE SUBSET SUM PROBLEM

Recall the SUBSET-SUM problem defined on page 269. In that problem, we
were given a collection of numbers x4, . .., 2 together with a target number ¢,
and were to determine whether the collection contains a subcollection that adds
up to t. We now show that this problem is NP-complete.



