9.4 Sets and Numbers 203

K = 2" —1 (the all-ones vector, corresponding to the universe). The reduction
seems complete!

But there is a “bug” in this reduction: Binary integer addition is different
from set union in that it has carry. For example, 3 + 5+ 7 = 15 in bit-vector
form is 0011 +0101+0111 = 1111; but the corresponding sets {3, 4},{2,4}, and
{2,3,4} are not disjoint, neither is their union {1, 2, 3,4}. There is a simple and
clever way around this problem: Think of these vectors as integers not in base
2, but in base n + 1. That is, set S; becomes integer w; = }:jesz (n+ 1)3m—J,
Since now there can be no carry in any addition of up to n of these numbers, it is
straightforward to argue that there is a set of these integers that adds up to K =
E;":O_l(n-k 1)7 if and only if there is an exact cover among {51, S,...,S,}. O

Pseudopolynomial Algorithms and Strong NP-completeness

In view of Theorem 9.10, the following result seems rather intriguing:

Proposition 9.4: Any instance of KNAPSACK can be solved in O(nW) time,
where n is the number of items and W is the weight limit.

Proof: Define V(w,i) to be the largest value attainable by selecting some
among the i first items so that their total weight is exactly w. It is easy to see
that the nW entries of the V(w, i) table can be computed in order of increasing
i, and with a constant number of operations per entry, as follows:

V(w,i+1) = max{V(w,?),viy1 + V(w — wiy1,1)}

To start, V(w,0) = 0 for all w. Finally, the given instance of KNAPSACK is a
“yes” instance if and only if the table contains an entry greater than or equal
to the goal K. [J

Naturally, Proposition 9.4 does not establish that P = NP (so, keep on
reading this book!). This is not a polynomial algorithm because its time bound
nW is not a polynomial function of the input: The length of the input is
something like nlog W. We have seen this pattern before in our first attempt
at an algorithm for MAX FLOW in Section 1.2, when the time required was again
polynomial in the integers appearing in the input (instead of their logarithms,
which is always the correct measure). Such “pseudopolynomial” algorithms are
a source not only of confusion, but of genuinely positive results (see Chapter
13 on approximation algorithms).

In relation to pseudopolynomial algorithms, it is interesting to make the
following important distinction between KNAPSACK and the other problems
that we showed NP-complete in this chapter—SAT, MAX CUT, TSP (D), CLIQUE,
TRIPARTITE MATCHING, HAMILTON PATH, and many others. All these latter
problems were shown NP-complete via reductions that constructed only polyno-
mially small integers. For problems such as CLIQUE and SAT, in which integers

204 Chapter 9: NP-COMPLETE PROBLEMS

are only used as node names and variable indices, this is immediate. But even
for TSP (D), in which one would expect numbers to play an important role as
intercity distances, we only needed distances no larger than two to establish NP-
completeness (recall the proof of the Corollary to Theorem 9.7)T. In contrast,
in our NP-completeness proof for KNAPSACK we had to create exponentially
large integers in our reduction.

If a problem remains NP-complete even if any instance of length n is
restricted to contain integers of size at most p(n), a polynomial, then we say
that the problem is strongly NP-complete. All NP-complete problems that we
have seen so far in this chapter, with the single exception of KNAPSACK, are
strongly NP-complete. It is no coincidence then that, of all these problems, only
KNAPSACK can be solved by a pseudopolynomial algorithm: It should be clear
that strongly NP-complete problems have no pseudopolynomial algorithms,
unless of course P = NP (see Problem 9.5.31).

We end this chapter with a last interesting example: A problem which
involves numbers and bearing a certain similarity to KNAPSACK, but turns out
to be strongly NP-complete.

BIN PACKING: We are given N positive integers a;, as,...,an (the items), and
two more integers C' (the capacity) and B (the number of bins). We are asked
whether these numbers can be partitioned into B subsets, each of which has
total sum at most C.

Theorem 9.11: BIN PACKING is NP-complete.

Proof: We shall reduce TRIPARTITE MATCHING to it. We are given a set of
boys B = {b1,b2,...,bs}, a set of girls G = {g1,92,...,9n}, a set of homes
H = {h1,hs,...,h,}, and a set of triples T = {t1,...,tm} C B X G X H; we
are asked whether there is a set of n triples in T', such that each boy, girl, and
home is contained in one of the n triples.

The instance of BIN PACKING that we construct has N = 4m items—one
for each triple, and one for each occurrence of a boy, girl, or home to a triple.
The items corresponding to the occurrences of b;, for example, will be denoted
by b1[1],b1[2],...,b1[N(b1)], where N(b;) is the' number of occurrences of b; in
the triples; similarly for the other boys, the girls, and the homes. The items
corresponding to triples will be denoted simply ¢;.

The sizes of these items are shown in Figure 9.11. M is a very large
number, say 100n. Notice that one of the occurrences of each boy, girl, and
home (arbitrarily the first) has different size than the rest; it is this occurrence
that will participate in the matching. The capacity C of each bin is 40M*+15—

t To put it otherwise, these problems would remain NP-complete if numbers in their
instances were represented in unary—even such wasteful representation would increase
the size of the instance by a only polynomial amount, and thus the reduction would still
be a valid one.

9.4 Sets and Numbers 205

just enough to fit a triple and one occurrence of each of its three members as
long as either all three or none of the three are a first occurrence. There are m
bins, as many as triples.

Item Size
first occurrence of a boy b;[1] 10M* +iM +1
other occurrences of a boy b;[gl,¢ >1 |11M*+iM +1
first occurrence of a girl g;(1] 10M* + jM? +2
other occurrences of a girl g;[q],¢ >1 |11M*+jM? +2
first occurrence of a home hy[1] 10M* + kM3 + 4
other occurrences of a home hx[q],q¢ > 1|8M* + kM3 + 4
triple (b;, g5, hx) € T 10M* + 8-

—iM — jM? — kM3

Figure 9.11. The items in BIN PACKING.

Suppose that there is a way to fit these items into m bins. Notice imme-
diately that the sum of all items is mC (the total capacity of all bins), and
thus all bins must be exactly full. Consider one bin. It must contain four items
(proof: all item sizes are between § and % of the bin capacity). Since the sum
of/the items modulo M must be 15 (C mod M = 15), and there is only one
wéy of creating 15 by choosing four numbers (with repetitions allowed) out of
1, 2, 4, and 8 (these are the residues of all item sizes, see Figure 9.11), the
bin must contain a triple that contributes 8 mod M, say (b;, g5, hx), and occur-
rences of a boy by, a girl g;-, and a home hy, contributing 1, 2, and 4 mod 15,
respectively. Since the sum modulo M2 must be 15 as well, we must have
(i —4)- M + 15 = 15 mod M2, and thus i = i’. Similarly, taking the sum
modulo M? we get j = j/, and modulo M* we get k = k’. Thus, each bin
contains a triple ¢ = (b;, gj, hx), together with one occurrence of b;, one of g;,
and one of hx. Furthermore, either all three occurrences are first occurrences,
or none of them are—otherwise 40M* cannot be achieved. Hence, there are
n bins that contain only first occurrences; the n triples in these bins form a
tripartite matching.

Conversely, if a tripartite matching exists, we can fit all items into the m
bins by matching each triple with occurrences of its members, making sure that
the triples in the matching get first occurrences of all three members. The proof
is complete. []

Notice that the numbers constructed in this reduction are polynomially
large —O(|z|*), where z is the original instance of TRIPARTITE MATCHING.
Hence, BIN PACKING is strongly NP-complete: Any pseudopolynomial algo-

206 Chapter 9: NP-COMPLETE PROBLEMS

rithm for BIN PACKING would yield a polynomial algorithm for TRIPARTITE
MATCHING, implying P = NP.

BIN PACKING is a useful point of departure for reductions to problems in
which numbers appear to play a central role, but which, unlike KNAPSACK (at
least as far as we know), are strongly NP-complete.

