
Attacking the Common Algorithmic Problem by

Recognizer P Systems

Mario J. Pérez Jiménez and Francisco J. Romero Campero�

Dpto. Computer Science and Artificial Intelligence
E.T.S. Ingenieŕıa Informática. Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, España

{Mario.Perez, Francisco-Jose.Romero}@cs.us.es

Abstract. Many NP-complete problems can be viewed as special cases
of the Common Algorithmic Problem (CAP). In a precise sense, which
will be defined in the paper, one may say that CAP has a property of
local universality. In this paper we present an effective solution to the
decision version of the CAP using a family of recognizer P systems with
active membranes. The analysis of the solution presented here will be
done from the point of view of complexity classes in P systems.

Keywords: Membrane Computing, Common Algorithmic Problem, Cellular
Complexity Classes.

1 Introduction

Membrane Computing is an emergent branch of Natural Computing. This un-
conventional model of computation is a kind of distributed parallel system, and
it is inspired by some basic features of biological membranes.

Since Gh. Paun introduced it in [4], many different classes of such computing
devices, called P systems, have already been investigated. Most of them are
computationally universal, i.e., able to compute whatever a Turing machine can
do, as well as computationally efficient, i.e., are able to trade space for time and
solve in this way presumably intractable problems in a feasible time.

This paper deals with the Common Algorithmic Problem. This problem has
the nice property (we can call this property local universality) that several other
NP–complete problems can be reduced to it in linear time – we can say that
they are subproblems of CAP. This property was already considered in [2], will
be precisely defined in Section 2, and further illustrated in the paper.

Our study is focused on the design of a family of recognizer P systems solving
it. We have followed the ideas and schemes used to solve other numerical NP-
complete problems, such as Subsetsum in [6] and the Knapsack problem in [7].
� This work is supported by the Ministerio de Ciencia y Tecnoloǵıa of Spain, by

the Plan Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01), cofinanced by
FEDER funds, and by a FPI fellowship (of the second author) from the University
of Seville.

M. Margenstern (Ed.): MCU 2004, LNCS 3354, pp. 304–315, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Attacking the Common Algorithmic Problem by Recognizer P Systems 305

Due to the strong similarities of the design of these solutions the idea of a cellular
programming language seems possible as it is suggested in [1].

The analysis of the presented solution will be done from the point of view of
the complexity classes presented within the framework of the complexity classes
in P systems studied in [5] and [9].

The paper is organized as follows. In the next section the Common Algo-
rithmic Problem is presented as well as six NP-complete problems that can
be viewed as “subproblems” of it. Section 3 recalls recognizer P systems with
active membranes. In section 4 a polynomial complexity class for P systems is
briefly introduced. Sections 5, 6 and 7 present a cellular solution to the Common
Algorithmic Decision Problem. Conclusions are given in section 8.

2 The Common Algorithmic Problem

The Common Algorithmic Problem (CAP) [2] is the following: let S be a finite
set and F be a family of subsets of S. Find the cardinality of a maximal subset
of S which does not include any set belonging to F . The sets in F are called
forbidden sets.

The Common Algorithmic Problem is an optimization problem, which can
be transformed into a roughly equivalent decision problem by supplying a target
value to the quantity to be optimized, and asking the question whether or not
this value can be attained.

The Common Algorithmic Decision Problem (CADP) is the following: Given
S a finite set, F a family of subsets of S, and k ∈ N, we ask if there exists a
subset A of S such that |A| ≥ k, and which does not include any set belonging
to F .

Definition 1. We say that a problem X is a subproblem of another problem Y
if there exists a linear–time reduction from X to Y (using a logarithmic bounded
space).

That is, X is a subproblem of Y if we can pass from problem X to problem Y
through a simple rewriting process.

Next, we present some NP–complete problems that are subproblems of the
CAP (or CADP).

2.1 The Maximum Independent Set Problem

The Maximum Independent Set Problem (MIS) is the following: Given an undi-
rected graph G, find the cardinality of a maximal independent subset I of G.

The Independent Set Decision Problem (ISD) is the following: Given an undi-
rected graph G, and k ∈ N, determine whether or not G has an independent set
of size at least k.

Theorem 1. MIS (resp. ISD) is a subproblem of CAP (resp. CADP).

306 M.J. Pérez Jiménez and F.J. Romero Campero

2.2 The Minimum Vertex Cover Problem

The Minimum Vertex Cover Problem (MVC) is the following: Given an undi-
rected graph G, find the cardinality of a minimal set of a vertex cover of G.

The Vertex Cover Decision Problem (VCD) is the following: Given an undi-
rected graph G, and k ∈ N, determine whether or not G has a vertex cover of
size at most k.

Theorem 2. MV C (resp. VCD) is a subproblem of CAP (resp. CADP).

2.3 The Maximum Clique Problem

The Maximum Clique Problem (MAX-CLIQUE) is the following: Given an undi-
rected graph G, find the cardinality of a largest clique in G.

The Clique Decision Problem is the following: Given an undirected graph G,
and k ∈ N, determine whether or not G has a clique of size at least k.

Theorem 3. MAX-CLIQUE (resp. Clique Decision problem) is a subproblem
of CAP (resp. CADP).

2.4 The Satisfiability Problem

The Satisfiability Problem (SAT) is the following: For a given set U of boolean
variables and a finite set C of clauses over U , is there a satisfying truth assign-
ment for C?

Theorem 4. Let ϕ ≡ c1 ∧ · · · ∧ cp be a boolean formula in conjunctive nor-
mal form. Let Var(ϕ) = {x1, . . . , xn}, ci = li,1 ∨ · · · ∨ li,ri (1 ≤ i ≤ p), and
S = {x1, . . . , xn} ∪ {x1, . . . , xn}. For each i (1 ≤ i ≤ p) let Ai = {li,1, . . . , li,ri},
considering x = x. Let F = {{x1, x1}, . . . , {xn, xn}, A1, . . . , Ap}. Then the for-
mula ϕ is satisfiable if and only if the solution of the CAP on input (S, F) is n.

2.5 The Undirected Hamiltonian Path Problem

The Undirected Hamiltonian Path Problem is the following: Given an undirected
graph and two distinguished nodes u, v, determine whether or not there exists a
path from u to v visiting each node exactly once.

Theorem 5. Let G = (V, E) be an undirected graph, with V = {v1, . . . , vn}.
Then the following conditions are equivalent:

(a) The graph G has a Hamiltonian path from v1 to vn.
(b) The solution of the CAP on input (S, F) is n − 1, where: S = E, and

F =
⋃n

i=1 Fi, with Fi = {B : B ⊆ Bi |B| = 2}, for i = 1, n, and Fi = {B :
B ⊆ Bi ∧ |B| = 3}, for all 1 < i < n, with Bi = {{vi, u} : {vi, u} ∈ E}.

Attacking the Common Algorithmic Problem by Recognizer P Systems 307

2.6 The Tripartite Matching Problem

The Tripartite Matching Problem is the following: Given three sets B, G, and H,
each containing n elements, and a ternary relation T ⊆ B × G × H, determine
whether or not there exists a subset T ′ of T such that |T ′| = n and no two of
triples belonging to T ′ have a component in common.

We say that T ′ is a tripartite matching associated with (B, G, H, T).

Theorem 6. Let B = {b1, . . . , bn}, G = {g1, . . . , gn}, and H = {h1, . . . , hn}, be
sets containing n elements. Let T be a subset of B ×G×H. Then the following
conditions are equivalent:

(a) There exists a tripartite matching associated with (B, G, H, T).
(b) The solution of the CAP on input (S, F) is n, where S = T and F =⋃n

i=1(Fbi ∪Fgi ∪Fhi), with Fbi = {A : |A| = 2 ∧ A ⊆ {(bi, g, h) : (bi, g, h) ∈
T }}, Fgi = {A : |A| = 2 ∧ A ⊆ {(b, gi, h) : (b, gi, h) ∈ T }}, and Fhi =
{A : |A| = 2 ∧ A ⊆ {(b, g, hi) : (b, g, hi) ∈ T }}, for all 1 ≤ i ≤ n.

3 Recognizer P Systems with Active Membranes

Definition 2. A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is a
P system, with working alphabet Γ , with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input) alphabet
strictly contained in Γ ; the initial multisets are over Γ − Σ; and (c) iΠ is the
label of a distinguished (input) membrane.

Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with input
m is (µ,M1, . . . ,MiΠ ∪ m, . . .Mp).

Definition 3. Let µ = (V (µ), E(µ)) be a membrane structure. The membrane
structure with environment associated with µ is the rooted tree such that: (a)
the root of the tree is a new node that we will denote env; (b) the set of nodes is
V (µ) ∪ {

env
}
; and (c) the set of edges is E(µ) ∪ {{env, skin}}. The node env

is called the environment of the structure µ.

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way as for standard P systems – see
[3]– but with a slight change. Now the configurations consist of a membrane
structure with environment, and a family of multisets of objects associated with
each region and with the environment.

Next we introduce P systems able to accept or reject multisets considered
as inputs. Therefore, these systems will be suitable to attack the solvability of
decision problems.

Definition 4. A recognizer P system is a P system with input (Π, Σ, iΠ), and
with external output such that: (a) the working alphabet contains two distin-
guished elements Y ES, NO; (b) all its computations halt; and (c) if C is a com-
putation of Π, then either the object Y ES or the object NO (but not both) have
to be sent out to the environment, and only in the last step of the computation.

308 M.J. Pérez Jiménez and F.J. Romero Campero

Definition 5. We say that C is an accepting computation (respectively, rejecting
computation) if the object Y ES (respectively, NO) appears in the environment
associated with the corresponding halting configuration of C.

These recognizer P systems are specially adequate when we are trying to solve
a decision problem. In this paper we will deal with P systems with active mem-
branes. We refer to [3] (see chapter 7, section 7.2) for a detailed definition of
evolution rules, transition steps, configurations and computations in this model.

Let us denote by AM the class of recognizer P systems with active mem-
branes using 2-division (for elementary membranes).

4 The Complexity Class PMCF

Roughly speaking, a computational complexity study of a solution to a problem
is an estimation of the resources (time, space, etc) that are required through all
processes that take place in the way from the bare instance of the problem up
to the final answer.

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were obtained
using variants of P systems that lack an input membrane. Thus, the constructive
proofs of such results need to design one system for each instance of the problem.

This drawback can be easily avoided if we consider P systems with input.
Then, the same system could solve different instances of the problem, provided
that the corresponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer de-
signing a family of P systems such that each element of the family decides all
the instances of “equivalent size” of the problem.

Let us now introduce some basic concepts before the definition of the com-
plexity class itself.

Definition 6. Let L be a language, and Π = (Π(n))n∈N be a family of P sys-
tems with input. A polynomial encoding of L in Π is a pair (g, h) of polynomial-
time computable functions g : L → ⋃

n∈N IΠ(n) and h : L → N, such that for
every u ∈ L we have g(u) ∈ IΠ(h(u)).

That is, for each string u ∈ L, we have a multiset g(u) and a number h(u)
associated with it such that g(u) is an input multiset for the P system Π(h(u)).

Lemma 1. Let L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2 be languages. Let Π = (Π(n))n∈N a
family of P systems with input. If r : Σ∗

1 → Σ∗
2 is a polynomial time reduction

from L1 to L2, and (g, h) is a polynomial encoding of L2 in Π, then (g ◦ r, h ◦ r)
is a polynomial encoding of L1 in Π.

For a detailed proof, see [9].

Definition 7. Let F be a class of recognizer P systems. A decision problem X =
(IX , θX) is solvable in polynomial time by a family of P systems Π = (Π(n))n∈N

from F , and we denote this by X ∈ PMCF , if the following is true:

Attacking the Common Algorithmic Problem by Recognizer P Systems 309

– The family Π is consistent with regard to the class F ; that is, ∀t ∈ N (Π(t) ∈
F).

– The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(t) from t in polynomial
time.

– There exists a polynomial encoding (g, h) from IX to Π such that:
• The family Π is polynomially bounded with regard to (X, g, h); that is,

there exists a polynomial function p, such that for each u ∈ IX every
computation of Π(h(u)) with input g(u) is halting and, moreover, it per-
forms at most p(|u|) steps.

• The family Π is sound with regard to (X, g, h); that is, for each u ∈ IX ,
if there exists an accepting computation of Π(h(u)) with input g(u), then
θX(u) = 1.

• The family Π is complete with regard to (X, g, h); that is, for each u ∈
IX , if θX(u) = 1, then every computation of Π(h(u)) with input g(u) is
an accepting one.

In the above definition we have imposed to every P system Π(n) to be confluent,
in the following sense: every computation with the same input produces the same
output; that is, for every input multiset m, either every computation of Π(n)
with input m is an accepting computation, or every computation of Π(n) with
input m is a rejecting computation.

Proposition 1. Let F be a class of recognizer P systems. Let X, Y be problems
such that X is reducible to Y in polynomial time. If Y ∈ PMCF , then X ∈
PMCF .

For a detailed proof, see [9].

5 Solving CADP by Recognizer P Systems

We will address the resolution of this problem via a brute force algorithm, in
the framework of recognizer P systems with active membranes using 2-division,
and without cooperation nor priority among rules. Our strategy will consist in
the following phases:

– Generation stage:
1. At the beginning there will be only one internal membrane which will

represent the set A = S.
2. For each subset B ∈ F do:

if B ⊆ A then
for each e ∈ B do:
Using membrane division generate one membrane
representing the subset A − { e }

end if
– Calculation stage: In this stage the system calculates the cardinality of the

subset associated with each membrane.

310 M.J. Pérez Jiménez and F.J. Romero Campero

– Checking stage: Here the system checks whether or not the cardinality of
each generated subset exceeds the goal k.

– Output stage: According to the previous stage, one object Y ES or one object
NO is sent out to the environment.

Now we construct a family of P systems with active membranes using 2-division
solving the Common Algorithmic Decision Problem.
Let us consider a polynomial bijection, 〈 〉, between N

3 and N (e.g., 〈x, y, z 〉 =
〈 〈x, y 〉, z 〉) induced by the pair function 〈x, y〉 = (x + y) · (x + y + 1)/2 + x).

The family of P systems with input considered here is
Π = { (Π(〈n, m, k〉), Σ(n, m, k), i(n, m, k)) : (n, m, k) ∈ N

3 }
For each (n, m, k) ∈ N

3, we have Σ(n, m, k) = { sij : 1 ≤ i ≤ m, 1 ≤ j ≤ n},
i(n, m, k) = 2, and Π(〈n, m, k〉) = (Γ (n, m, k), {1, 2}, µ,M1,M2, R) is defined
as follows:

– Working alphabet:

Γ (n, m, k) = Σ(n, m, k) ∪ {ai : 1 ≤ i ≤ m } ∪ {ci : 0 ≤ i ≤ 2n + 1 }
∪ {chi : 0 ≤ i ≤ 2k + 1 } ∪ {fj : 1 ≤ j ≤ n + 1 }
∪ {ei, j, l : 1 ≤ i ≤ m, 1 ≤ j ≤ n,−1 ≤ l ≤ j + 1 }
∪ {gj : 0 ≤ j ≤ nm + m + 1 }
∪ {z, s+, s−, S+, S−, S, o, Õ, O, p, t, neg, i1, i2}
∪ {Y ES0, Y ES1, Y ES2, Y ES, preNO, NO }.

– Membrane structure: µ = [[]2]1 (we will say that every membrane with
label 2 is an internal membrane).

– Initial multisets: M1 = ∅; M2 = {g0, z
m, sn

+, ok}.
– The set of evolution rules, R, consists of the following rules:

(1) [s1, j → fj]02 , for 1 ≤ j ≤ n,
[si, j → ei, j, j]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n.

The objects si, j encode in the initial configuration the forbidden sets. The
presence of an object si, j indicates that sj ∈ Bi. The objects of type f
represent the elements of the forbidden set that is being analized and the
objects e represent the rest of the forbidden sets.
(2) [f1]02 → [�]02 [s−]+2 .
The goal of these rules is to generate membranes for subsets A of S such
that ∀B ∈ F (B � A). The system, in order to ensure the condition B � A,
eliminates from A one element of the forbidden set B.
(3) [fj′ → fj′−1]02 , for 2 ≤ j′ ≤ n + 1,

[ei, j, l → ei, j, l−1]02 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n, 0 ≤ l ≤ j + 1.
During the computation for a forbidden subset, B, the above rules perform
a rotation of the subscript of the objects f and of the third subscript of
the objects e. These subscripts represent the order in which the elements are
considered to be eliminated from the subset A associated with the membrane
in order to ensure the condition B � A.
(4) [fj′ → �]+2 , for 1 ≤ j′ ≤ n + 1,

[ei, j, 0 → ai−1]+2 , for 2 ≤ i ≤ m, 1 ≤ j ≤ n.

Attacking the Common Algorithmic Problem by Recognizer P Systems 311

When the polarization of an internal membrane is positive during the gen-
eration stage the associated subset A fulfills the condition B � A, where B
is the forbidden set that is being analized. In this situation the elements of
the current forbidden set are erased by these rules. Moreover, if the element
removed from A is a member of the forbidden set Bi, then the object ai−1

appears in the membrane to certify that the associated subset also fulfills
the condition Bi � A.
(5) [ei, j,−1 → ei−1, j, j+1]+2 , for 3 ≤ i ≤ m , 1 ≤ j ≤ n,

[ei, j, l → ei−1, j, j+1]+2 , for 3 ≤ i ≤ m , 1 ≤ j ≤ n , 1 ≤ l ≤ j + 1,
[e2, j, l → fj+1]+2 , for 1 ≤ j ≤ n , 1 ≤ l ≤ j + 1,
[e2, j,−1 → fj+1]+2 , for 1 ≤ j ≤ n,
[ai′ → ai′−1]+2 , for 2 ≤ i′ ≤ m.

In order to continue the computation for the next forbidden subset B, these
rules perform a rotation of the subscripts of the objects e and a. Note that
the subscript representing the position of the element to be analized is set
one position ahead in order to allow the system to check whether the current
associated subset A satisfies the condition B � A.
(6) [a1]02 → � []+2 ; [a1 → �]+2 .
The presence of object a1 in a neutrally charged internal membrane means
that the forbidden set which is going to be analized already satisfies the
condition B � A; consequently this object changes the polarization of the
membrane to positive in order to skip the computation for this forbidden
subset.
(7) [z]+2 → � []02.
The object z sets the polarization of the internal membranes to neutral once
the generation stage for one forbidden set has taken place.
(8) [gj → gj+1]02, [gj → gj+1]+2 , for 0 ≤ j ≤ nm + m,

[gnm+m+1 → neg, c0]02.
The objects g are counters used in the generation stage.
(9) [neg]02 → � []−2 , [z]−2 → �.
The multiplicity of the object z represents the number of forbidden sets that
do not satisfy the condition B � A. So, if there is an object z in an internal
membrane when the generation stage is over, then the membrane is dissolved.
(10) [s+ → S+]−2 , [s− → S−]−2 , [o → Õ]−2 .
The multiplicity of the object s+ represents the cardinality of S, the multi-
plicity of the object s− represents the number of removed elements from S
and the multiplicity of the object o represents the constant k. At the begin-
ing of the calculation stage the objects s+, s−, and o are renamed to S+, S−,
and Õ in order to avoid the interference with the previous stage.
(11) [S−]−2 → � []+2 , [S+]+2 → �[]−2 .
These rules are used to calculate the cardinality of the subsets associated
with the internal membranes.
(12) [ci → ci+1]−2 , [ci → ci+1]+2 , for 0 ≤ i ≤ 2n,

[c2n+1 → t, ch0]−2 .
The objects c are counters used in the calculation stage.
(13) [t]−2 → � []02, [S+ → S]02, [Õ → O]02.

312 M.J. Pérez Jiménez and F.J. Romero Campero

The object t will change the polarization of the internal membranes to neu-
tral starting the checking stage. In this stage the objects S+ and Õ are
renamed to S and O, in order to avoid the interference with the previous
stages.
(14) [S]02 → � []+2 , [O]+2 → � []02
These rules are used to compare the multiplicity of the objects S and O.
(15) [chi → chi+1]02, [chi → chi+1]+2 , 0 ≤ i ≤ 2k.
The objects ch are counters in the checking stage.
(16) [ch2k+1]+2 → Y ES0 []−2 , [ch2k+1 → p, i1]02.
The checking stage finishes when the object ch2k+1 appears in the internal
membranes. These rules are used to send the object Y ES0 to the skin, if the
charge is positive, and to check whether the answer must be NO.
(17) [p]02 → � []+2 , [i1 → i2]+2 ,

[i2]+2 → Y ES []−2 , [i2]02 → preNO []−2 .
These rules decide if there are any objects O in the internal membranes when
the checking stage is over, in order to send out the right answer.
(18) [Y ESi → Y ESi+1]01 , for 0 ≤ i ≤ 1,

[Y ES2 → Y ES]01, [preNO → NO]01.
These rules are used to sinchronize the output stage.
(19) [Y ES]01 → Y ES []+1 , [NO]01 → NO []−1 .
These rules send out the answer to the environment.

6 An Overview of the Computation

First of all we define a polynomial encoding for the CADP in Π in order to
study its computational complexity. Let h(u) = 〈n, m, k 〉 and g(u) = { si, j :
sj ∈ Bi }, for a given CADP–instance u = ({ s1, . . . , sn }, (B1, . . . , Bm), k).
Next we informally describe how the system Π(h(u)) with input g(u) works.

In the first step of the computation, according to the rules in (1), the objects
s evolve to the objects f and e. The objects f represent the elements of the
forbidden set that is being analized and the objects e represent the others.

The generation stage takes place following the rules from group (2) - (8).
The systems generates subsets of S with the greatest possible cardinalities and
associates them with internal membranes. Let us describe the evolution of the
subsets associated with internal membranes during the generation stage.

The subset associated with the initial internal membrane is A = S.
When the object f1 appears in a neutrally charged internal membrane, during

the generation stage for a forbidden set B, using the rule in (2) the system produ-
ces two new membranes: one (positively charged) where the analized element is
removed, and another one (neutrally charged) where an element of B (different
from f1) is removed in order to achieve the condition B � A. These two new
membranes behave in a different way.

On the one hand in order to study the next element, in the neutrally charged
membrane the rules in (3) perform a rotation of the subscript of the objects f
and of the third subscript of the objects e, which represent the order in which
the elements are considered.

Attacking the Common Algorithmic Problem by Recognizer P Systems 313

On the other hand, in the positively charged membrane an object s− appears,
indicating that one element has been removed from the associated subset A.
The system moves on to analize the remaining forbidden sets rotating the first
subscripts of the objects e according to the rules in (4) and (5), and erasing the
objects f . Note that the third subscript of the objects e and the subscript of
the object f are set one position ahead in order to check whether the condition
imposed by the forbidden set is satisfied. The computation corresponding to a
forbidden set finishes when an object z changes the polarization from positive to
neutral following the rule in (7).

In the first step of the computation for a forbidden set the position of the
elements in which they will be studied are one position ahead and so the system
has a step to check whether there exists an object a1 which means that the
associated subset already fulfills the condition B � A. This is done applying the
rules in (6). The objects a appear by applying the second rule in (4) when the
system removes an element belonging to several forbidden sets.

The generation stage ends when the object gnm+m+1 appears. Between the
generation stage and the calculation stage there is a gap of two steps of transition.
In the first step, according to the last rule in (8), the object gnm+m+1 evolves to
the object c0 (a counter for the calculation stage) and the object neg. This object
changes the polarization of the internal membranes to negative using the first
rule in (9). In the second step, one dissolves the membranes whose associated
subsets A have the property that there exists B ∈ F such that B ⊆ A. The
number of sets in F verifying B ⊆ A is represented by the multiplicity of the
object z. So, at the end of the generation stage, when the polarization is negative,
if there is an object z, then the membrane is dissolved by the second rule in (9).
Moreover, in this step the objects s+, s−, and o are renamed to S+, S−, and Õ
by the rules in (10), in order to avoid interference with the previous stage.

The multiplicity of the object S+ encodes the cardinality of the set S and
the multiplicity of the object S− encodes the number of elements that have
been removed from S to construct the final associated subset A. Thus, in order
to calculate the cardinality of A the system applies the rules in (11), which
implement the subtraction multiplicity(S+)−multiplicity(S−) in each internal
membrane.

The calculation stage ends when the object c2n+1 evolves to the object ch0

(a counter in the checking stage) and the object t. By using the rule in (13), t
changes the polarization of the internal membranes from negative to neutral.

In the transition stage from the calculation stage to the checking stage the
objects S+ and Õ are renamed to S and O using the rules in (13) in order to
avoid interference with the previous stages.

In the checking stage, by using the rules in (14), the system decides in each
internal membrane if the multiplicity of the object S, encoding the cardinality
of the associated subset, is greater than or equal to the multiplicity of the object
O, encoding the constant k.

The checking stage ends when the object ch2k+1 appears in the internal
membrane and then the output stage starts. If the object ch2k+1 appears when

314 M.J. Pérez Jiménez and F.J. Romero Campero

the membrane is positively charged, then the number of objects S exceeded the
number of object O and so, by using the first rule in (16), the object Y ES0 is
sent to the skin region. This object has to evolve to Y ES1, Y ES2 and, finally,
to Y ES in order to synchronize the output stage. On the other hand, if the
object ch2k+1 appears in a neutrally charged membrane, then the number of
objects S was less than or equal to the number of objects O. In this situation
the object ch2k+1, following the second rule in (16), evolves to i1 and p. This
object changes the polarization of the internal membranes to positive in order to
allow any remaining objects O to set it again to neutral according to the rules in
(14). While the membrane is positively charged the object i1 evolves to i2. If i2
appears in a positively charged internal membrane, then there were no objects
O, therefore the multiplicity of the object S was equal to the multiplicity of the
object O, and so the object Y ES is sent to the skin region according to the
rules in (17). On the other hand, if the object i2 appears in a neutrally charged
membrane, then there were objects O and so the object preNO is sent to the
skin region.

In the last step of the computation the rules in (19) send out the answer
to the environment. Note that the occurrence of the objects NO is delayed one
step, by the rule [preNO → NO]01, in order to allow the system to send out
the object Y ES, if any.

7 Required Resources

The presented family of recognizer P systems solving the Common Algorithmic
Decision Problem is polynomially uniform by Turing machines. Note that the
definition of the family is done in a recursive manner from a given instance, in
particular, from the constants n, m, and k. Futhermore, the resources required
to build an element of the family are the following:

– Size of the alphabet: n2m+4nm+2n+3m+2k+24 ∈ O((max{n, m, k})3).
– Number of membranes: 2 ∈ Θ(1).
– |M1| + |M2| = n + m + k + 1 ∈ O(n + m + k).
– Sum of the rules’ lengths: 12n2m +12n2 + 49nm+71n+25m+ 30k + 242 ∈

O((max{n, m, k})3).
The instance u = ({ s1, . . . , sn }, ({ s1

1, . . . , s1
r1
}, . . . , { sm

1 , . . . , sm
rm

}), k) is in-
troduced in the initial configuration through an input multiset; that is, it is
encoded in an unary representation and, thus, we have that |u| ∈ O(n + m + k).

The number of steps in each stage are the following:

1. Generation stage: nm + m + 1 steps.
2. Transition to the calculation stage: 2 steps.
3. Calculation stage: 2n + 1 steps.
4. Transition to the checking stage: 2 steps.
5. Checking stage: 2k + 2 steps.
6. Output stage: 6 steps.

So, the overall number of steps is nm + 2n + m + 2k + 14 ∈ O(max{n, m, k}2).

Attacking the Common Algorithmic Problem by Recognizer P Systems 315

From these discussions we deduce the following results:

Theorem 7. CADP ∈ PMCAM.

Corollary 1. NP ⊆ PMCAM, and NP ∪ co − NP ⊆ PMCAM.

8 Conclusions

Many NP-complete problems can be viewed as special cases of an optimization
problem called Common Algoritmic Problem. In this work the importance of
this problem is emphasized by the presentation of six relevant NP-complete
problems that are “subproblems” of it (or of its corresponding decision version).
Furthermore, a solution to the Common Algoritmic Decision Problem by a family
of recognizer P systems with active membranes is presented.

The study and design of solutions to locally universal problems as CAP and
CADP within the framework of unconventional computing models like P systems
seems very interesting because these solutions may give, in some sense, patterns
that can be used for attacking the solvability of many NP-complete problems.

References

1. Gutiérrez–Naranjo, M.A.; Pérez–Jiménez, M.J.; Riscos–Núñez, A. Towards a pro-
gramming language in cellular computing. In: Gh. Păun; A. Riscos–Núñez, A.
Romero–Jiménez; F. Sancho–Caparrini (eds.) Proceedings of the Second Brain-
storming Week on Membrane Computing, Report RGNC 01/04, University of
Seville, Spain, 2004, 247–257.

2. Head, T.; Yamamura, M.; Gal, S. Aqueous computing: writing on molecules. Pro-
ceedings of the Congress on Evolutionary Computation 1999, IEEE Service Center,
Piscataway, NJ, 1999, 1006–1010.

3. Păun, Gh.: Membrane Computing. An Introduction, Springer-Verlag, 2002
4. Păun, Gh.: Computing with membranes. Journal of Computer and Systems Sci-

ences, 61(1), 2000, 108–143.
5. Pérez–Jiménez, M.J.; Romero–Jiménez, A.; Sancho–Caparrini, F.: Teoŕıa de la

Complejidad en modelos de computacion celular con membranas, Ed. Kronos, 2002.
6. Pérez-Jiménez, M.J.; Riscos-Núñez, A. Solving the Subset-Sum problem by active

membranes, submitted.
7. Pérez–Jiménez, M.J.; Riscos–Núñez, A. A linear-time solution for the Knapsack

problem using active membranes. Lecture Notes in Computer Science, 2933 (2004)
140–152.

8. Pérez–Jiménez, M.J.; Romero–Campero, F.J. A CLIPS simulator for recognizer
P systems with active membranes. In: Gh. Păun; A. Riscos–Núñez; A. Romero–
Jiménez; F. Sancho–Caparrioni (eds.) Proceedings of the Second Brainstorming
Week on Membrane Computing, Report RGNC 01/04, University of Seville, Spain,
2004, 387–413.

9. Pérez–Jiménez, M.J.; Romero–Jiménez, A.; Sancho–Caparrini, F. A polynomial
complexity class in P systems using membrane division. In: E. Csuhaj-Varjú;
C. Kintala; D. Wotschke; Gy. Vaszil (eds.) Proceedings of the Fifth International
Workshop on Descriptional Complexity of Formal Systems, 2003, 284–294.

	Introduction
	The Common Algorithmic Problem
	Recognizer P Systems with Active Membranes
	The Complexity Class ${bf PMC}_{cal F}$
	Solving CADP by Recognizer P Systems
	An Overview of the Computation
	Required Resources
	Conclusions

