Se dice que una clausula es de Horn si posee, a lo sumo, un literal positivo.

El problema SAT-HORN es el siguiente:

Dada una formula proposicional en forma normal conjuntiva tal que to-
das sus cldusulas son de Horn, determinar si es satisfactible.

Probar que el problema SAT-HORN pertenece a la clase P.

Indicaciones:

(a) Téngase presente que todas las clausulas que tengan exactamente un literal
positivo son, realmente, férmulas del tipo implicacion.

(b) Disenar un algoritmo determinista de coste en tiempo polinomial que, dada una
formula de entrada ¢ del citado problema, devuelva una valoracion oy, que haga
verdaderas todas las clausulas que son formulas del tipo implicacion.

(c) En el disenio del algoritmo anterior se aconseja identificar una valoracién con el
conjunto de las variables a las que le asigna el valor verdadero.

(d) Probar que toda valoracién 7 que hace verdadera la férmula ¢, contiene a la
valoracion oy (es decir, es una extension de o).

(e) Probar que la formula ¢ es satisfactible si y sélo si og(p) = 1.

78 Chapter 4: BOOLEAN LOGIC

normal form for two reasons: First, we know that all expressions can in prin-
ciple be so represented. And second, this special form of satisfiability seems to
capture the intricacy of the whole problem (as Example 4.2 perhaps indicates).

It is of interest to notice immediately that SAT can be solved in O(n?2™)
time by an exhaustive algorithm that tries all possible combinations of truth
values for the variables that appear in the expression, and reports “yes” if one of
them satisfies it, and “no” otherwise. Besides, SAT can be very easily solved by
a nondeterministic polynomial algorithm, one that guesses the satisfying truth
assignment and checks that it indeed satisfies all clauses; hence SAT is in NP.
As with another important member of NP, TSP (D), presently we do not know
whether SAT is in P (and we strongly suspect that it is not).

Horn Clauses

Still, there is an interesting special case of SAT that can be solved quite easily.
We say that a clause is a Horn clause if it has at most one positive literal.
That is, all its literals, except possibly for one, are negations of variables. The
following clauses are therefore Horn: (—z2 V z3), (-z1 V -z2 V m23 V z4), and
(z1). Of these clauses, the second is a purely negative clause (it has no positive
literals), while the rest do have a positive literal, and are called implications.
They are called so because they can be rewritten as (21 AZ2 A... AZm) = Yy)
—where y is the positive literal. For example, the two implications among the
three clauses above can be recast as follows: (z2 = z3), and (true = z;) (in
the last clause, the conjunction of no variables was taken to be the “expression”
true).

Are all these clauses satisfiable? There is an efficient algorithm for testing
whether they are, based on the implicational form of Horn clauses. To make the
description of the algorithm clear, it is better to consider a truth assignment
not as a function from the variables to {true, false}, but rather as a set T of
those variables that are true.

We wish to determine whether an expression ¢, the conjunction of Horn
clauses, is satisfiable. Initially, we only consider the implications of ¢. The
algorithm builds a satisfying truth assignment of this part of ¢. Initially, T' := 0;
that is, all variables are false. We then repeat the following step, until all
implications are satisfied: Pick any unsatisfied implication ((z1Az2A. . . AZp) =
y) (that is, a clause in which all the z;s are true and y is false), and add y to
T (make it true).

This algorithm will terminate, since T gets bigger at each step. Also,
the truth assignment obtained must satisfy all implications in ¢, since this is
the only way for the algorithm to end. Finally, suppose that another truth
assignment T also satisfies all implications in ¢; we shall show that T C T".
Because, if not, consider the first time during the execution of the algorithm at
which T ceased being a subset of T”: The clause that caused this insertion to

4.3 Boolean Functions and Circuits 79

T cannot be satisfied by T".

We can now determine the satisfiability of the whole expression ¢. We
claim that ¢ is satisfiable if and only if the truth assignment T obtained by
the algorithm just explained satisfies ¢. For suppose that there is a purely
negative clause of ¢ that is not satisfied by T—say (—z1 V -z V...V 2Zy).
Thus {z1,...,Zm} C T. It follows that no superset of T' can satisfy this clause,
and we know that all truth assignments that satisfy ¢ are supersets of T'.

Since the procedure outlined can obviously be carried out in polynomial
time, we have proved the following result (where by HORNSAT we denote the
satisfiability problem in the special case of Horn clauses; this is one of many
special cases and variants-of SAT that we shall encounter in this book).

Theorem 4.2: HORNSAT is in P. [

4.3 BOOLEAN FUNCTIONS AND CIRCUITS

Definition 4.3: An n-ary Boolean function is a function f{true,false}" —
{true, false}. For example, V, A, =, and & can be thought of as four of
the sixteen possible binary Boolean functions, since they map pairs of truth
values (those of the constituent Boolean expressions) to {true, false}. —is a
unary Boolean function (the only other ones are the constant functions and the
identity function). More generally, any Boolean expression ¢ can be thought
of as an n-ary Boolean function fs, where n = |X(9)|, since, for any truth
assignment T of the variables involved in ¢, a truth value of ¢ is defined: true
if T |= ¢, and false if T |~ ¢. Formally, we say that Boolean expression ¢ with
variables z1, ..., , expresses the n-ary Boolean function f if, for any n-tuple of
truth values t = (¢1,...,tn), f(t) is true if T |= ¢, and f(t) is false if T |~ @,
where T'(z;) =t; fori=1,...,n.

So, every Boolean expression expresses some Boolean function. The con-
verse is perhaps a little more interesting.

Proposition 4.3: Any n-ary Boolean function f can be expressed as a Boolean
expression ¢y involving variables x,,...,Z,.

Proof: Let F be the subset of {true, false}™ consisting of all n-tuples of truth
values such that make f true. For each t = (t1,...,t,) € F, let D¢ be the
conjunction of all variables z; with t; = true, with all negations of variables
—z; such that t; = false. Finally, the required expression is ¢; = \/¢cp Dy
(notice that it is already in disjunctive normal form). It is easy to see that, for
any truth assignment T appropriate to ¢, T |= ¢; if and only if f(t) = true,
where t; = T'(z;). O

The expression produced in the proof of Proposition 4.3 has length (number
of symbols needed to represent it) O(n?2"). Although many interesting Boolean
functions can be represented by quite short expressions, it can be shown that in

