
Formal verification of a transition P system

generating the set {2n + n2 + n : n ≥ 1}

Antonio Pérez-Jiménez; Mario J. Pérez-Jiménez and Fernando
Sancho-Caparrini

Dpto. Ciencias de la Computación e Inteligencia Artificial
E.T.S. Ingenieŕıa Informática. Universidad de Sevilla, Spain

Avda. Reina Mercedes s/n. 41012 - Sevilla. España

{pjimenez,marper,fsancho}@us.es

Abstract. In the foundational paper of membrane computing [1], an
example of a P system generating exactly all the squares of natural
numbers greater than or equal to 1 is given. Also, in the same paper
it is remarked that a slightly modification of that P system can generate
the set {2n + n

2 + n : n ≥ 1}. A formalization of the syntax of this
modification following [3] is presented, aa well as the verification of the
designed P system by studying the critical points of its computations.

1 Introduction

In October 1998, Gheorghe Păun ([1]) introduced a new computability model, of
a distributed and parallel type, based on the notion of membrane structure. This
model, called transition P systems, starts from the observation that the processes
which take place in the complex structure of a living cell can be considered
computations. Following [1], we can consider the P systems as devices which
generate numbers: the total number of objects in the output membrane is the
number generated by a computation.

In the cited paper, Gh. Păun suggests that the P system represented in Figure
1 (with membrane 1 as the output membrane) generates the set {2n + n2 + n :
n ≥ 1} of natural numbers.

a

a

f

a b’

b’ δ

b’

b

f f

b

b

f f

a f

>fa f a δ

c

1

2

3

Fig. 1

This paper follows the line started in [4]. We will present a formal description
of the syntax of such P system according to the formalization presented in [3].
Moreover, it is proven that the output of any successful configuration of Π
encodes a natural number of the form 2n+n2+n, with n ≥ 1, and, reciprocally,
every natural number of this form is generated by some computation of Π .

This paper is structured in the following way. In Section 2 some prelimina-
ries about formalization of transition P systems are presented, following [3].
In Section 3 the formal syntax of Π is given. In Section 4 characterizations
of successful computations of the above P system are established. In Section 5
we show that the output of every successful configuration of Π encodes some
2n + n2 + n, with n a natural number greater than or equal to 1 (soundness of
the P system) and, also, that 2n+n2+n, with n a natural number greater than
or equal to 1, is generated by some successful computation of Π (completeness
of the P system).

2 Preliminaries About Transition P Systems

Following [3], a membrane structure is a rooted tree, where the nodes are called
membranes, the root is called skin, and the leaves are called elementary mem-
branes. Usually, we represent a rooted tree by an ordered pair such that the first
component of the pair is the root of the tree and the second component is the
adjacency list that consists of n lists, one for each vertex i. The list for vertex i
contains just those vertices adjacent to i.

A cell over an alphabet, A, is a pair (µ,M), where µ = (V (µ), E(µ)) is a
membrane structure (from the tree associated to µ we can consider the relation
E∗(µ) as follows: (x, y) ∈ E∗(µ) ⇐⇒ y is a child of x in µ), and M is an
application, M : V (µ) −→ M(A) (the set of multisets over A; following [1] and
[2], the multisets are represented by strings).

Let (µ,M) be a cell over an alphabet A. Let x ∈ V (µ). An evolution rule
associated with x is a 3-tuple r = (dr,vr, δr), where (i) dr is a multiset over
A, (ii) vr is a function with domain V (µ) ∪ {here, out} and range contained in
M(A), where here, out /∈ V (µ) (here 6= out), and (iii) δr ∈ {¬δ, δ}, with ¬δ, δ /∈ A
(¬δ 6= δ).

A collection R of evolution rules associated with C is a function with domain
in V (µ) such that for every membrane x ∈ V (µ), Rx = {rx1 , . . . , r

x
sx
} is a finite

set (possibly empty) of (evolution) rules associated with x. A priority relation
over R is a function ρ, with domain in V (µ), such that for every membrane
x ∈ V (µ), ρx is a strict partial order over Rx (possibly empty).

A transition P system is a 4-tupleΠ = (A,C0,R, i0), where A is a non-empty
finite set (usually called base alphabet), C0 = (µ0,M0) is a cell over A, R is an
ordered pair (R, ρ) where R is a collection of (evolution) rules associated with
C0 and ρ is a priority relation over R, and i0 is a node of µ0 which specifies the
output membrane of Π .

A configuration, C, of a P system Π = (A,C0,R, i0) with C0 = (µ0,M0), is a
cell C = (µ,M) overA, where V (µ) ⊆ V (µ0), and µ has the same root as µ0. The

configuration C0 will be called the initial configuration of Π . Let x ∈ V (µ0). We
say that the (evolution) rule r ∈ Rx is semi-applicable to C if: (a) the membrane
associated to node x exists in C, that is, x ∈ V (µ); (b) dissolution is not allowed
in the root node, that is, if x is the root node of µ, then δr = ¬δ; (c) the
membrane associated with x has all the necessary objects to apply the rule, that
is, dr ≤ M(x); and (d) nodes where the rule tries to send objects (by means of
iny) are children of x, that is, ∀ y ∈ V (µ)(vr(y) 6= 0 → (x, y) ∈ E∗(µ)).

We say that the rule r ∈ Rx is applicable to C, if it is semi-applicable to
C and there is no semi-applicable rules in Rx with a higher priority. That is:
¬∃ r′ (r′ ∈ Rx ∧ ρx(r

′, r) ∧ r′ semi-applicable to C).
We say that p ∈ NN is an applicability vector over x ∈ V (µ) for C, and we

denote it as p ∈ Ap(x,C), if: (a) the node is still alive, that is, p 6= 0 ⇒ x ∈
V (µ); (b) it has correct size, that is, ∀ j (j > sx → p(j) = 0) (where sx is the
number of rules associated with x); (c) every rule can be applied as many times
as the vector p indicates; (d) all the rules can be applied simultaneously, that
is,

∑sx
j=1 p(j)⊗ drx

j
≤ M(x); and (e) it is maximal, that is,

¬∃v ∈ NN (p < v ∧ v ∈ Ap(x,C))
We say that P : V (µ0) −→ NN is an applicability matrix over C, denoted

P ∈ MAp(C), if for every x ∈ V (µ0) we have that P (x) ∈ Ap(x,C). We define

∆(P,C) = {x : x ∈ V (µ) ∧ ∃ j (1 ≤ j ≤ sx ∧ Px(j) 6= 0 ∧ δrx
j
= δ)}.

If P is an applicability matrix over C = (µ,M), and V (µ) = {i1, . . . , ik},
then we denote P = ((pi11 , . . . , pi1si1), . . . , (p

ik
1 , . . . , piksik

)).

For each node x ∈ V (µ), we define the donors of x for C in the application
of P as the set of nodes that will be dissolved by the application of P and will
give their contents to x.

We define the execution of P over C, denoted P (C), as the configuration
C′ = (µ′,M ′) of Π , where µ′ is the membrane structure obtained after the
application of the rules indicated by P , and M ′ is the new contents in the
membranes of µ′.

We say that a configuration C1 of a P system Π yields a configuration C2

by a transition in one step of Π , denoted C1 ⇒Π C2, if there exists a non–zero
applicability matrix over C1, P , such that P (C1) = C2.

The computation tree of a P system Π , denoted Comp(Π), is a rooted la-
belled maximal tree defined as follows: The root of the tree is the initial con-
figuration, C0, of Π . The children of a node are the configurations that follow
in one step of transition. Nodes and edges are labelled by configurations and
applicability matrices, respectively, in such a way that two labelled nodes C,C′

are adjacent in Comp(Π), by means an edge labelled with P , if and only if
P ∈ MAp(C)− {0} ∧ C′ = P (C). The maximal branches of Comp(Π) will be
called computations of Π . We will say that a computation of Π halts if it is a
finite branch. The configurations verifying MAp(C) = {0} will be called halting
configurations.

We say that a computation C ≡ C0 ⇒Π C1 ⇒Π . . . ⇒Π Cn of a P system
Π = (A,C0,R, i0) is successful if it halts and i0 is a leaf of the rooted tree µn,

where Cn = (µn,Mn). We will say that the configuration Cn is successful too,
and n is the length of C. The numerical output of a successful computation, C, is
O(C) = |MCn

(i0)| where Cn is the successful configuration of C. The output of
a P system Π is O(Π) = {O(C) : C is a successful computation of Π}.

Let Π = (A,C0,R, i0) be a P system. The set of natural numbers generated
by Π , denoted N(Π), is defined as follows:

N(Π) = {O(C) : C is a successful computation of Π}

3 A Formalization of the Syntax of the P System Π

Now we give a formalization of the syntax of the transition P system Π from
Figure 1, following the definitions of the above section.

The transition P system we deal with is Π = (A,C0,R, i0), where:

(a) The base alphabet is A = {a, b, b′, c, f}.
(b) The initial configuration, C0 = (µ0,M0), is defined as:

µ0 = (1, ((1, 2), (2, 3)))
That is, µ0 is the membrane structure given by means of the following rooted
tree (with membranes labelled by natural numbers):

1

2

3

M0 is the function from {1, 2, 3} to M(A) defined as: M0(1) = M0(2) = ∅, y
M0(3) = {af}.

(c) R = (R, ρ), where:
– R is a collection of rules associated with C0; that is, R is a function with

the domain {1, 2, 3}, defined as: R(1) = ∅, R(2) = {r12 , r
2
2 , r

3
2 , r

4
2} and

R(3) = {r13, r
2
3 , r

3
3}, where:

• r12 = (dr12 , vr12 , δr12), with dr12 = {b′}, vr12 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr12 (1) = vr12 (2) = vr12 (3) = vr12 (out) = ∅; vr12 (here) =
{b}, and δr12 = −δ.

• r22 = (dr22 , vr22 , δr22), con dr22 = {b}, vr22 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr22 (1) = vr22 (2) = vr22 (3) = vr22 (out) = ∅; vr22 (here) =
{bc}, and δr22 = −δ.

• r32 = (dr32 , vr32 , δr32), con dr32 = {ff}, vr32 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr32 (1) = vr32 (2) = vr32 (3) = vr32 (out) = ∅; vr22 (here) =
{af}, and δr32 = −δ.

• r42 = (dr42 , vr42 , δr42), con dr42 = {f}, vr42 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr42 (1) = vr42 (2) = vr42 (3) = vr42 (out) = ∅; vr42 (here) =
{a}, and δr42 = +δ.

• r13 = (dr13 , vr13 , δr13), con dr13 = {a}, vr13 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr13 (1) = vr13 (2) = vr13 (3) = vr13 (out) = ∅; vr13 (here) =
{ab′}, and δr13 = −δ.

• r23 = (dr23 , vr23 , δr23), con dr23 = {a}, vr23 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr23 (1) = vr23 (2) = vr23 (3) = vr23 (out) = ∅; vr23 (here) =
{b′}, and δr23 = +δ.

• r33 = (dr33 , vr33 , δr33), con dr33 = {f}, vr33 : {1, 2, 3} ∪ {here, out} →
M(A) given as vr33 (1) = vr33 (2) = vr33 (3) = vr33 (out) = ∅; vr33 (here) =
{ff}, and δr33 = −δ.

– ρ is the function with domain {1, 2, 3} defined as: ρ(1) = ρ(3) = ∅ and
ρ(2) = {(r32 , r

4
2)}.

(d) The output membrane is i0 = 1.

4 Characterizing the halting configurations of Π

The process of verifying the P system Π is based on the analysis of the content
of every membrane in all possible computations of Π . For this, we will consider
a function, denoted by STEP, that will associate to every computation, C, of Π ,
every membrane, i, and every natural number, k, the content of the i–th mem-
brane after the execution of k steps of the computation C. If after the execution
of the k–th step, the i–th membrane is dissolved, then the value of STEP(C, i, k)
will not be defined. In this last case, we will denote STEP(C, i, k) ↑, otherwise
we will denote STEP(C, i, k) ↓.

Given a computation C of Π we will denote C0 ⇒Π C1 ⇒Π . . . ⇒Π Ck ⇒Π

. . . . That is, Ck represent the configuration obtained after the execution of k
steps of the computation C. Usually, we will denote STEP(C, i, k) = Ck(i). Also,
we will denote by |C| the length of the computation C that, eventually, can be
infinite.

In order to characterize the successful computations of the P system Π , we
are going to study what happens in the instant when membrane 3 is dissolved.
For this, firstly we are going to determine the content of this membrane in every
instant of the computation when it has still not dissolved.

Proposition 1. For each m ∈ N and each computation C of Π such that
Cm(3) ↓ it is verified that Cm(3) = {a b

′m f2m} and Cm(1) = Cm(2) = ∅.

Proof. The proof is made by induction on m. In the case m = 0, it is enough
to having in mind that, according to the initial configuration of Π , we have
C0(3) = {a f} and C0(1) = C0(2) = ∅.

Let m ∈ N and let us suppose that the result is true for m. Let C be a
computation of Π such that Cm+1 ↓. Having in mind that the semantic of basic
P systems does not consider membrane creation, it has to verify that Cm(3) ↓.
Hence, from induction hypothesis we deduce that Cm(3) = {a b

′m f2m} and
Cm(1) = Cm(2) = ∅. Since Cm+1(3) ↓, it results that in the (m+1)–th step of the
computation of C the rules r13 ≡ a → ab′ and r33 ≡ f → ff have to be applied

(in a maximal manner). Consequently, Cm+1(3) = {a b
′(m+1) f2m+1

}. Moreover,
Cm(1) = ∅ ⇒ Cm+1(1) = ∅ and Cm(2) = ∅ ⇒ Cm+1(2) = ∅. This proves that the
result is true for m+ 1.

�

Following we prove that the critical points in the computations of the P
system Π happen in the instant when membrane 3 is dissolved.

Proposition 2. For each m ∈ N and each computation C de Π such that
Cm(3) ↓ and Cm+1(3) ↑ it is verified that:

1. Cm+1(1) = ∅ and Cm+1(2) = {b
′(m+1) f2m+1

}.
2. For every k (0 ≤ k ≤ m):

Cm+2+k(1) = ∅

Cm+2+k(2) = {bm+1 ck(m+1) f2m−ka2m+···+2m−k

}
3. C2m+3(1) = {bm+1 c(m+1)2 a2

m+1

} and C2m+3(2) ↑.
4. The computation C is successful, its length is |C| = 2m+3, and its output is

2(m+1)2 + (m+ 1)2 + (m+ 1).

Proof. (1) By induction on m. In the case m = 0 we consider a computation,
C, of Π such that C0(3) ↓ and C1(3) ↑. In this case, the computation C will
apply the rules r23 ≡ a → b′δ and r33 ≡ f → ff (in a maximal manner). Hence
C1(1) = C0(1) = ∅ and C1(2) = {b′ f2}.

Let m ∈ N and let us suppose that the result is true for m. Let C a
computation of Π such that Cm+1(3) ↓ and Cm+2(3) ↑. Having in mind that

Cm+1(3) ↓, from proposition 1 it is deduced that Cm+1(3) = {a b
′(m+1) f2m+1

}
and Cm+1(1) = Cm+1(2) = ∅. Having in mind that Cm+2(3) ↑, it results that in
the (m+1)–th step of the computation C, membrane 2 has to be dissolved; that is,
in this step the rules r23 ≡ a → b′δ and r33 ≡ f → ff have to be applied (in a max-

imal manner). Hence Cm+2(1) = Cm+1(1) = ∅ and Cm+2(2) = {b
′(m+2) f2m+2

}.
(2) Let m ∈ N. Let C be a computation of Π such that Cm(3) ↓ and Cm+1(3) ↑.
Let us see that for every k (0 ≤ k ≤ m) it is verified that Cm+2+k(1) = ∅ and

Cm+2+k(2) = {bm+1 ck(m+1) f2m−k
a2m+···+2m−k

}.
By bounded induction on k. In the case k = 0, let us observe that, from

item (1), it results that Cm+1(1) = ∅ and Cm+1(2) = {b
′(m+1) f2m+1

}. In this
situation, in the (m + 2)–th step of the computation C, the rules r12 ≡ b′ → b
and r32 ≡ ff → af will be applied (in a maximal manner). Hence Cm+2(1) =
Cm+1(1) = ∅ and Cm+2(2) = {bm+1 f2m a2

m

}.
Let k < m and let us suppose that the result is true for k. From induction

hypothesis it is deduced that the configuration Cm+2+k(1) = ∅ and the con-

figuration Cm+2+k(2) = {bm+1 ck(m+1) f2m−k
a2m+···+2m−k

}. In this situation, in
the (m + 2 + k + 1)–th step of the computation C, the rules r22 ≡ b → bc and
r32 ≡ ff → f will be applied (in a maximal manner). Hence

Cm+2+k+1(1) = Cm+2+k(1) = ∅

Cm+2+k+1(2) = {bm+1 cm+1 ck(m+1) f2m−k−1

a2
m−k−1a2m+···+2m−k

}

= {bm+1 c(k+1)(m+1) f2m−(k+1)
a2m+···+2m−k+2m−(k+1)

}

(3) Let m ∈ N. Let C be a computation of Π such that Cm(3) ↓ and Cm+1(3) ↑.
From item (3) it is deduced that the configuration C2m+2(1) = ∅ and the con-

figuration C2m+2(2) = {bm+1 cm(m+1) f a2
m+···+20}. In this situation, in the

(2m+ 3)–th step of the computation C, the rules r22 ≡ b → bc and r42 ≡ f → aδ
will be applied (in a maximal manner). Hence C2m+3(2) ↑ and C2m+3(1) =

{bm+1 cm+1 cm(m+1) a a2
m+···+20} = {bm+1 c(m+1)2 a2

m+1

}.
(4) Let m ∈ N. Let C be a computation of Π such that Cm(3) ↓ and Cm+1(3) ↑.
From item (3) it is deduced that C is successful, because only the membrane 1
is not dissolved and it has no rules. Moreover, C2m+3 is a halting configuration,
and the output is

|C2m+3(1)| = |{bm+1 c(m+1)2 a2
m+1

}| = 2m+1 + (m+ 1) + (m+ 1)2

�

Following, we characterize the successful computation of Π through the ins-
tant when membrane 3 is dissolved.

Proposition 3. Let C be a computation of Π. The following conditions are
equivalent:

(a) C is a successful computation.
(b) ∃m (|C| = 2m+ 3 ∧ Cm(3) ↓ ∧ Cm+1(3) ↑).

Proof. Let C be a successful computation of Π . Let k = |C|. Firstly, we note that

Ck(3) ↑. Otherwise, from proposition 1, it would result that Ck(3) = {a b
′k f2k}

and Ck(1) = Ck(2) = ∅. Then, the computation C would not be a halting compu-
tation, because there would be rules to be applied in membrane 3 (for example,
the rules r13 ≡ a → ab′ and r33 ≡ f → ff).

Hence, Ck(3) ↑. Having in mind that C0(3) ↓, an unique m ∈ N such that
Cm(3) ↓ and Cm+1(3) ↑ (with m + 1 ≤ k) exists. Consequently, from (4) of
proposition 2 it is deduced that |C| = 2m+ 3.

Reciprocally, let us suppose that there exists a natural number m such that
|C| = 2m+ 3 ∧ Cm(3) ↓ ∧ Cm+1(3) ↑. From (4) of proposition 2 it is deduced
that the computation C is successful.

�

5 Completeness and soundness of the P system Π

In order to give a formal verification of the fact that the P system Π generates all
the searched numbers, and no more, we must to prove the following two results:

– The output of every computation of the P system Π encodes a natural
number of the searched form (soundness of the P system).

– For every number in the searched form, there exists, at least, one computa-
tion of the P system Π encoding this number in its output (completeness of
the P system).

Theorem 1. (Soundness) If C is a successful computation of the P system Π,
then there exists m ∈ N such that the output of C encodes the number 2m+1 +
(m+ 1)2 + (m+ 1).

Proof. Let C be a successful computation of the P system Π . From proposition
3 it is deduced that there exists m ∈ N such that |C| = 2m + 3 and Cm(3) ↓
∧ Cm+1(3) ↑. Then, from (4) of proposition 2 it is deduced that the output of

the computation C is |C2m+3(1)| = 2(m+1)2 + (m+ 1)2 + (m+ 1).

�

Proposition 4. For every m ∈ N there exists a computation, C, of Π such that
Cm(3) ↓ ∧ Cm+1(3) ↑.

Proof. By induction on m. In the case m = 0, it is enough to consider the
configuration C1 obtained from the initial one, C0, by applying the rules r23 ≡
a → b′δ and r33 ≡ f → ff (in a maximal manner). Hence, C0(3) = {af} and
C1(3) =↑.

Let m ∈ N and let us suppose that the result is true for m. Then, there
exists a computation, C, of Π such that Cm(3) ↓ ∧ Cm+1(3) ↑. Let C′

m+1 the
configuration obtained from Cm by applying the rules r13 ≡ a → ab′ and r33 ≡ f →
ff (in a maximal manner). Let C′

m+2 be the configuration obtained from C′

m+1

by applying the rules r23 ≡ a → b′δ and r33 ≡ f → ff (in a maximal manner). Let
C′ be the computation C0 ⇒Π C1 ⇒Π . . . ⇒Π Cm ⇒Π C′

m+1 ⇒Π C′

m+2 ⇒Π
This computation verifies that

– C′

m+1(3) ↓, since from proposition 1 it is deduced that Cm(3) = {ab
′mf2m}

and, therefore, C′

m+1(3) = {ab
′(m+1)f2m+1

}.

– C′

m+2(3) ↑, because of the application of the rule r23 in membrane 3.

�

After an analysis of the previous proof, we can note that for a given m ∈ N,
there is only one computation, C, of Π verifying above conditions.

Theorem 2. (Completeness) For every m ∈ N there exists a computation,
C, of the P system Π such that C is successful and, also, its output encodes the
number 2m+1 + (m+ 1)2 + (m+ 1).

Proof. Let m ∈ N. From Proposition 4 we deduce that there exists a computa-
tion, C, of Π such that Cm(3) ↓ and Cm+1(3) ↑. From (4) in Proposition 2 we
have the computation C is successful and, also, the output is

|C2m+3(1)| = {bm+1 c(m+1)2 a2
m+1

} = 2m+1 + (m+ 1)2 + (m+ 1)

�

6 Conclusions

The formal verification of a transition P system is based in the characteriza-
tions of its successful computations, for this, an analysis of the content of its
membranes in every configuration is needed. The study of critical points of the
computations can give formulas over the configurations that will be invariants
of the whole process of evolution of the P system. Also, the veracity of such a
formula in every configuration must provide relevant information to characterize
the successful computations of the P system.

In this paper the formal verification of a transition P system generating the
set of natural numbers {2n+n2 +n : n ≥ 1} has been obtained. The process of
verification is based in the analysis of a critical point appearing in every halting
configuration: the instant when a relevant membrane is dissolved. Moreover, in
this work a detailed study of every computation of the P system is given, and a
classification of this computations is obtained.

The formalization and study of the verification of P systems must repre-
sent an important step to the treatment of them through automated reasoning
systems, as well as a way to improved their designs.

Acknowledgement

The authors wish to acknowledge the support of the project TIC2002-04220-
C03-01 of the Ministerio de Ciencia y Tecnoloǵıa of Spain, cofinanced by FEDER
funds.

References

1. Păun Gh. Computing with membranes, Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for Computer Science-TUCS Report No
208, 1998 (www.tucs.fi).

2. Păun, Gh.; Rozenberg, G. A guide to membrane computing, Theoretical Computer

Science, 287, 2002, 73–100.
3. Pérez–Jiménez, M.J.; F. Sancho-Caparrini, F. A formalization of basic P systems,

Fundamenta Informaticae, 49, 2002, 261–272.
4. Pérez–Jiménez, M.J.; Sancho-Caparrini, F.. Verifying a Psystem Generating

Squares. Romanian Journal of Information Science and Technology, 5, 1-2, 2002,
181–191.

