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Abstract. In [1], an example of a P system generating exactly all the squares of natural numbers
greater than 1 is given. Nevertheless, only an informal reasoning of this result is presented. In this
paper we study a similar P system to it (only one evolution rule is modified). A formalization of
the syntax of the P system following [3] is given, and we statethe verification of the given P system
through soundness and completeness: (a) every successful computation of the P system generate a
square greater or equal to 1 (soundness); (b) every natural number greater or equal to 1 is the output
of a successful computation of the system (completeness). Then we establish the formal verification
through the study of thecritical pointsof the computations of the P system that give to us important
information to characterize the successful computations.

1. Introduction

In October 1998, Gheorghe Păun ([1]) introduces a new computability model, of a distributed parallel
type, based on the notion ofmembrane structure. This model, calledtransition P system, start from the
observation that the processes which take place in the complex structure of a living cell can be considered
computations. Following [1], we can consider the P systems as devices which generate numbers: the sum
of multiplicities of objects in the output membrane is the generated number.

In [1], the following P system, where 4 membrane is the outputone. Also, it is said that the set of
natural numbers generated by the above P system isN(�) = fn

2

: n � 1g.
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This paper is structured in the following way. In section 2 some preliminaries about formalization of
transition P systems is presented, following [3]. In section 3 the formal syntax, following section 2, of�
is given. In section 4 characterizations of successful computations of above P system is established. In
section 5 we show that the output of every successful configuration of� encodes the square of a natural
number greater than 1 (soundness of the P system) and, also that the square of every natural number
greater than 1 is generated by some successful computation of � (completeness of the P system).

2. Preliminaries about transition P systems

Following [3], amembrane structureis a rooted tree, where the nodes are calledmembranes, the root is
calledskin, and the leaves are calledelementary membranes. Usually, we represent a rooted tree by an
ordered pair such that the first component of the pair is the root of the tree and the second component
is the adjacency list that consists ofn list, one for each vertexi. The list for vertexi contains just those
vertices adjacent fromi.

A cell (or super-cell) over an alphabet,A, is a pair(�;M), where� = (V (�); E(�)) is a membrane
structure (we considerE�

(�) as follows: (x; y) 2 E

�

(�) () y is a child ofx in �), andM is an
application,M : V (�) �!M(A) (the set of multisets overA).

Let (�;M) a cell over an alphabet,A. Let x 2 V (�). An evolution ruleassociated tox is a 3-tuple
r = (

~

d

r

; ~v

r

; Æ

r

) where ~d
r

is a multiset overA; ~v
r

is a function with domainV (�) [ fhere; outg and
range contained inM(A) wherehere; out =2 V (�) (here 6= out); andÆ

r

2 f:Æ; Æg, with :Æ; Æ =2 A

(:Æ 6= Æ).
A collectionR of evolution rulesassociated toC is a function with domainV (�) such that for every

membranex 2 V (�), R
x

= fr

x

1

; : : : ; r

x

s

x

g is a finite set (possibly empty) of (evolution) rules associated
to x. A priority relation overR is a function,�, with domainV (�) such that for every membrane
x 2 V (�), �

x

is a strict partial order overR
x

(possibly empty).
A transition P-systemis a 4-tuple� = (A;C

0

;R; i

0

), whereA is a non-empty finite set (usually
called base alphabet);C

0

= (�

0

;M

0

) is a cell overA;R is an ordered pair(R; �) whereR is a collection
of (evolution) rules associated toC

0

, and� is a priority relation overR; andi
0

is a node of�
0

, which
specifies the output membrane of�.
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A configuration, C, of a P system,� = (A;C

0

;R; i

0

) with C

0

= (�

0

;M

0

), is a cellC = (�;M)

overA, whereV (�) � V (�

0

), and� has the same root as�
0

. The configurationC
0

will be called the
initial configuration of�. Letx 2 V (�

0

). We say that the (evolution) ruler 2 R

x

is semi-applicableto
C if: (a) the membrane associated to nodex exists inC, that is,x 2 V (�); (b) dissolution is not allowed
in root node, that is, ifx is the root node of�, thenÆ

r

= :Æ; (c) the membrane associated tox has all
the necessary objects to apply the rule, that is,~

d

r

� M(x); and (d) nodes where the rule tries to send
objects (by means ofin

y

) are children ofx, that is,8 y 2 V (�)(~v

r

(y) 6=

~

0! (x; y) 2 E

�

(�)).
We say that the ruler 2 R

x

is applicableto C, if it is semi-applicable toC and there is no semi-
applicable rules inR

x

with higher priority. That is::9 r0 (r0 2 R

x

^ �

x

(r

0

; r)^ r

0 semi-applicable toC).
We will say that~p 2 NN is anapplicability vectoroverx 2 V (�) for C, and we will denote it as

~p 2 Ap(x;C), if:(a) the node is still alive, that is,~p 6= ~

0 ) x 2 V (�); (b) it has correct size, that is,
8 j (j > s

x

! ~p(j) = 0), (wheres
x

is the number of rules associated tox); (c) every rule can be applied
as many times as the vector~p indicates, that is,8 j (1 � j � s

x

! ~p(j) � N

Ap

(r

x

j

; C; x)); (d) all the

rules can be applied simultaneously, that is,
P

s

x

j=1

~p(j) 


~

d

r

x

j

� M(x); and (e) it is maximal, that is,

:9~v 2 N

N

(~p < ~v ^ ~v 2 Ap(x;C)).
We will say thatP : V (�

0

) �! N

N is anapplicability matrixoverC, denotedP 2 M

Ap

(C), if
for everyx 2 V (�

0

) we have thatP (x) 2 Ap(x;C). We define
�(P;C) = fx : x 2 V (�) ^ 9 j (1 � j � s

x

^ P

x

(j) 6= 0 ^ Æ

r

x

j

= Æ)g

If P is an applicability matrix overC = (�;M) andV (�) = fi

1

; : : : ; i

k

g, then we denoteP =

((p

i

1

1

; : : : ; p

i

1

s

i

1

); : : : ; (p

i

k

1

; : : : ; p

i

k

s

i

k

)).

For each nodex 2 V (�), we define thedonorsof x for C in the application ofP as follows:

Don(x; P;C) =

8

>

<

>

:

; ; if x 2 �(P;C)

fy 2 V (�) : y 2 �(P;C) ^ x 

�

y ^

^ 8 z 2 V (�)(x 

�

z  

�

y ! z 2 �(P;C))g

; if x =2 �(P;C)

We define theexecutionof P overC, denotedP (C), as the configuration of�, C 0

= (�

0

;M

0

),
where:

� �

0 is the rooted tree obtained from� by means of:

– V (�

0

) = V (�)��(P;C)

– If x; y 2 V (�

0

), then:

(x; y) 2 E

�

(�

0

), 9x

0

; : : : ; x

n

2 V (�)(x

1

; : : : ; x

n�1

2 �(P;C) ^ x

0

= x^

x

n

= y ^ 8 i (0 � i < n! (x

i

; x

i+1

) 2 E

�

(�)))

� M

0

(x) =

8

>

<

>

:

M

00

(x) [

[

y2Don(x;P;C)

M

00

(y) ; if x =2 �(P;C)

; ; if x 2 �(P;C)

We will say that a configurationC
1

of a P system� yields a configurationC
2

by a transition in
one stepof �, denotedC

1

)

�

C

2

, if there exists a non–zero applicability matrix overC

1

, P , such that
P (C

1

) = C

2

.
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Thecomputation tree of aP system�, denotedComp(�), is a rooted labeled maximal tree defined
as follows: the root of the tree is the initial configuration,C

0

, of �. The children of a node are the
configurations that follow in one step of transition. Nodes and edges are labeled by configurations and
applicability matrices, respectively, in such way that twolabeled nodesC;C 0 are adjacent inComp(�),
by means an edge labeled withP , if and only if P 2 M

Ap

(C) � f0g ^ C

0

= P (C). The maximal
branches ofComp(�) will be calledcomputationsof �. We will say that a computation of� halts if it
is a finite branch. The configurations verifyingM

Ap

(C) = f0g will be calledhalting configurations.
We say that a computationC � C

0

)

�

C

1

)

�

: : : )

�

C

n

of aP system� = (A;C

0

;R; i

0

) is
successfulif this computation halts andi

0

is a leaf of the rooted tree�
n

, whereC
n

= (�

n

;M

n

). Then
we will say that configurationC

n

is successful, andn is the length of C. The numerical outputof a
successful computation,C, is O(C) = jM

C

n

(i

0

)j whereC
n

is the successful configuration ofC. The
output of aP system� isO(�) = fO(C) : C is a successful computation of�g.

Let � = (A;C

0

;R; i

0

) aP system. The set of natural numbers generated by�, denotedN(�), is
defined as follows:N(�) = fO(C) : C is a successful computation of�g.

3. Formalization of the syntax of the P system�

Next, we are going to formalize the syntax of the P system�, following the definitions of above section.
The P system� is a 4–tuple(A;C

0

;R; i

0

), where:

(a) The base alphabet isA = fa; b; b

0

; 
; fg.

(b) The initial configuration,C
0

= (�

0

;M

0

), is defined as follows:
�

0

= (1; ((1; 2); (2; 1; 3; 4); (3; 2); (4; 2)))

That is,�
0

is the membrane structure given by means of the following rooted tree:

1

2

43

M

0

is the application fromf1; 2; 3; 4g to M(A) defined as:M
0

(1) = M

0

(2) = M

0

(4) = ; y
M

0

(3) = fafg.

(c) R = (R; �), where:

� R is a collection of rules associated toC
0

; that is,R is an application with domain in
f1; 2; 3; 4g, defined as:R(1) = R(4) = ;, R(2) = fr

2

1

; r

2

2

; r

2

3

; r

2

4

g y R(3) = fr

3

1

; r

3

2

; r

3

3

g,
where:

– r

2

1

= (d

r

2

1

; v

r

2

1

; Æ

r

2

1

), with d

r

2

1

= fb

0

g, v
r

2

1

: f1; 2; 3; 4g [ fhere; outg ! M(A) given
asv

r

2

1

(1) = v

r

2

1

(2) = v

r

2

1

(3) = v

r

2

1

(4) = v

r

2

1

(out) = ;; v
r

2

1

(here) = fbg, and, also,
Æ

r

2

1

= �Æ.
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– r

2

2

= (d

r

2

2

; v

r

2

2

; Æ

r

2

2

), with d

r

2

2

= fbg, v
r

2

2

: f1; 2; 3; 4g [ fhere; outg !M(A) given as
v

r

2

2

(1) = v

r

2

2

(2) = v

r

2

2

(3) = v

r

2

2

(out) = ;; v
r

2

2

(4) = f
g; v

r

2

2

(here) = fbg, and also,
Æ

r

2

2

= �Æ.

– r

2

3

= (d

r

2

3

; v

r

2

3

; Æ

r

2

3

), with d

r

2

3

= fffg, v
r

2

3

: f1; 2; 3; 4g [ fhere; outg !M(A) given
asv

r

2

3

(1) = v

r

2

3

(2) = v

r

2

3

(3) = v

r

2

3

(4) = v

r

2

3

(out) = ;; v
r

2

3

(here) = ffg, and, also,
Æ

r

2

3

= �Æ.

– r

2

4

= (d

r

2

4

; v

r

2

4

; Æ

r

2

4

), with d

r

2

4

= ffg, v
r

2

4

: f1; 2; 3; 4g [ fhere; outg ! M(A) given
asv

r

2

4

(1) = v

r

2

4

(2) = v

r

2

4

(3) = v

r

2

4

(4) = v

r

2

4

(out) = ;; v
r

2

4

(here) = fag, and, also,
Æ

r

2

4

= +Æ.

– r

3

1

= (d

r

3

1

; v

r

3

1

; Æ

r

3

1

), with d

r

3

1

= fag, v
r

3

1

: f1; 2; 3; 4g [ fhere; outg ! M(A) given
asv

r

3

1

(1) = v

r

3

1

(2) = v

r

3

1

(3) = v

r

3

1

(4) = v

r

3

1

(out) = ;; v
r

3

1

(here) = fab

0

g, and, also,
Æ

r

3

1

= �Æ.

– r

3

2

= (d

r

3

2

; v

r

3

2

; Æ

r

3

2

), with d

r

3

2

= fag, v
r

3

2

: f1; 2; 3; 4g [ fhere; outg ! M(A) given
asv

r

3

2

(1) = v

r

3

2

(2) = v

r

3

2

(3) = v

r

3

2

(4) = v

r

3

2

(out) = ;; v
r

3

2

(here) = fb

0

g, and, also,
Æ

r

3

2

= +Æ.

– r

3

3

= (d

r

3

3

; v

r

3

3

; Æ

r

3

3

), with d

r

3

3

= ffg, v
r

3

3

: f1; 2; 3; 4g [ fhere; outg ! M(A) given
asv

r

3

3

(1) = v

r

3

3

(2) = v

r

3

3

(3) = v

r

3

3

(4) = v

r

3

3

(out) = ;; v
r

3

3

(here) = fffg, and, also,
Æ

r

3

3

= �Æ.

� � is the application with domain inf1; 2; 3; 4g defined as:�(1) = �(3) = �(4) = ; and
�(2) = f(r

3

2

; r

4

2

)g.

(d) The output membrane isi
0

= 4.

4. Characterizing successful configurations of�

Let� be a P system designed to generate a setB of natural numbers. To establish the verification of� in
relation to the setB, a predicate over configurations (that is, overComp(�)�N), being, in some way,
an invariant of the whole process of generation of the P system�, is searched. That is, this predicate will
be true for every computation,C, of � and every natural number. Also, the truth of the predicate over all
the configurations of� must extract important information to establish the soundness and completeness
of � related to the generation of the setB.

The process of verification of a P system,�, is based on the analysis of the content of every
membrane in every computation that can be obtained in�. Given a computation,C, of �, we will
denoteC

0

)

�

C

1

)

�

: : : )

�

C

k

)

�

: : : . That is,C
k

represents the configuration obtained af-
ter the execution ofk steps in the computationC. In a natural way, a partial function,STEP :

Comp(�) � N � V (�

0

)� ! M(A), can be defined to assign to every computationC, of �, every
natural numberk and every membranei of the P system, the content of the membranei after the execu-
tion of k steps in the computationC. If, after the execution of thek-th step, the membranei is dissolved,
thenSTEP(C; k; i) is not defined, in this case, we will denoteSTEP(C; k; i) ". In other case, we will
denoteSTEP(C; k; i) #. In general, we will denoteSTEP(C; k; i) = C

k

(i). We denotejCj the length
of the computationC that, eventually, can be infinite.
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Definition 4.1. For every membrane,i, and every computationC of �, we defineÆ(C; i) = minfm :

C

m

(i) "g

Having in mind that no membrane is dissolved in the initial configuration of a every P system�, we
have thatÆ(C; i) � 1, for everyC 2 Comp(�) and every membranei of �.

Given a P system� and a membranei of �, we can define in a natural way a partial function
D

i

: Comp(�)� ! N� f0g, as follows:D
i

(C) = Æ(C; i). That is,D
i

assign to every computationC
of � a natural number representing the instant where the membrane i of � is dissolved (if any).

To establish that the considered P system� generates the setfn2 : n � 1g, we will try to characterize
the successful computations of�.

For that, first we will give a predicate over the configurations of � to be an invariant along the
execution of the P system�. Let us consider the formula
�(C; n) � (n < Æ(C; 3) ! C

n

= (�

0

; (;; ;; ab

0n

f

2

n

; ;))) ^ (n = Æ(C; 3) ! C success.̂ O(C) = n

2

)

To make easier the proofs, and following section 2, the applicability vector will be expressed with a
finite number of components (so many as rules the membrane has). We will denote by0 the vector with
all null components, no attending the size of it.

If C = (�;M) is a cell, whereV (�) = fa

1

; : : : ; a

n

g � N with a

1

< � � � < a

n

, we will note
M = (M(a

1

); : : : ;M(a

n

)). For simplicity of notation, we will represent the multisets by means of the
associated word, and; will be the empty multiset.

First, we are going to determine every configuration of the P system before membrane 3 is dissolved.

Proposition 4.1. For revery computationC of � we have:
8n (n < Æ(C; 3)! C

n

= (�

0

; (;; ;; ab

0n

f

2

n

; ;)))

Proof:
Let C be a computation of�. Let us prove the result by induction onn. For the base case,n = 0, it is
enough to consider thatÆ(C; 3) � 1 andC

0

= (�

0

; (;; ;; af; ;)).
Let n 2 N such that(n < Æ(C; 3) ! C

n

= (�

0

; (;; ;; ab

0n

f

2

n

; ;)). If n + 1 < Æ(C; 3) thenn <

Æ(C; 3) and, hence,C
n

= (�

0

; (;; ;; ab

0n

f

2

n

; ;)). AsC
n+1

(3) #, we deduce that the configurationC
n+1

is
obtained fromC

n

applying the matrix~p = (0;0; (1; 0; 2

n

);0) (applicability matrix overC
n

), since no dis-
solution is applied over membrane 3. The, we have thatC

n+1

= ~p(C

n

) = (�

0

; (;; ;; ab

0(n+1)

f

2

n+1

; ;)).
ut

Next, we will proof that acritical point of the computations of the P system� is in the instant when
the membrane 3 is dissolved. That is, we will justify that knowing when membrane 3 is dissolved is
important to characterize the successful computations of�.

Proposition 4.2. For every computationC of the P system� such thatn = Æ(C; 3) <1, we have:

1. C
n

= (�

0

; (;; b

0n

f

2

n

; ;)), where�0 = (1; ((1; 2); (2; 1; 4); (4; 2))).

2. For everyk such that0 � k � n� 1, we have thatC
n+1+k

= (�

0

; (;; b

n

f

2

n�k�1

; 


kn

)), where�0

is as above.

3. C
2n+1

= (�

00

; (ab

n

; 


n

2

)), where�00 = (1; ((1; 4); (4; 1))).
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4. The computationC is successful, its length isjCj = 2n+ 1, and, also, the numerical output of this
computation isO(C) = n

2.

Proof:

1. If n = Æ(C; 3) < 1 then0 � n � 1 < Æ(C; 3). From proposition 4.1, we deduce thatC
n�1

=

(�

0

; (;; ;; ab

0(n�1)

f

2

n�1

; ;)). Having in mind thatÆ(C; 3) = n, we obtain that the configuration
C

n

is obtained fromC
n�1

executing the applicability matrix~p = (0;0; (0; 1; 2

n�1

);0) overC
n�1

.
Hence,C

n

= ~p(C

n�1

) = (�

0

; (;; b

0n

f

2

n

; ;)), where�0 = (1; ((1; 2); (2; 1; 4); (4; 2))).

2. Let us prove by induction onk. For the base case,k = 0, let us observe that from (1) we obtain
thatC

n

= (�

0

; (;; b

0n

f

2

n

; ;)). In this situation, sincen � 1, it is possible to apply the ruler2
3

to the
membrane 2 and then, by the strong sense in which the priorityis interpreted, the ruler2

4

can not
be applied toC

n

(this rule would dissolve the membrane 2). Hence, the only matrix applicability
overC

n

will be ~p = (0; (n; 0; 2

n�1

; 0);0). In consequence,C
n+1

= ~p(C

n

) = (�

0

; (;; b

n

f

2

n�1

; ;)).

Let k be such that0 � k < n � 1, and let us suppose thatC
n+1+k

= (�

0

; (;; b

n

f

2

n�k�1

; 


kn

)).
Sincen � k � 1 > 0, we deduce that it is possible to apply the ruler

2

3

to membrane 2 and then,
the only applicability matrix overC

n+1+k

is ~p = (0; (0; n; 2

n�k�2

; 0);0). Hence, we have that

C

n+1+k+1

= (�

0

; (;; b

n

f

2

n�k�2

; 


(k+1)n

))

3. By applying (2) to the casek = n� 1, we obtain thatC
2n

= (�

0

; (;; b

n

f; 


(n�1)n

)).

Then, the only applicability matrix overC
2n

is ~p = (0; (0; n; 0; 1);0). Hence, we have that the
configurationC

2n+1

= (�

00

; (ab

n

; 


n

2

)), where�00 = (1; ((1; 4); (4; 1))).

4. From (3) we deduce thatC
2n+1

= (�

00

; (ab

n

; 


n

2

)). Having in mind thatV (�00) = f1; 4g and
R

1

= R

4

= ; we deduce thatM
Ap

(C

2n+1

) = f(0;0)g. Then the configurationC
2n+1

is a halting
configuration. Also, since4 2 V (�

00

) and 4 is a leaf of�00 results that the configurationC
2n+1

is
successful. Hence, the computationC is successful, its length is2n+ 1, and its numerical output
isO(C) = jC

2n+1

(4)j = n

2.
ut

As a first consequence from this proposition, let us see that after the instant the membrane 3 is
dissolved, the P system evolves in a “deterministic” way.

Corollary 4.1. For everyn � 1 and everyC; C0 2 Comp(�) such thatn = Æ(C; 3) = Æ(C

0

; 3) we have
that8k (n � k � 2n+ 1! C

k

= C

0

k

).

Proof:
The casek = n follows from (1) in above proposition, the casen < k � 2n follows from (2), and the
casek = 2n+ 1 follows from (3). ut

Next, let us see that if two computations have the same instant of dissolution to membrane 3, then these
computations are equal.
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Corollary 4.2. For everyn � 1 and everyC; C0 2 Comp(�) such thatn = Æ(C; 3) = Æ(C

0

; 3) we have
thatC = C

0.

Proof:
Let n � 1 andC; C0 2 Comp(�) such thatn = Æ(C; 3) = Æ(C

0

; 3). By applying (4) in proposition 4.2,
and above corollary, it’s enough to prove that8 k (0 � k � n � 1 ! C

k

= C

0

k

). But, this last relation
follows directly from proposition 4.1. ut

Corollary 4.3. There exists, at most, a computation of� not to be successful.

Proof:
Let C be a computation of� not to be successful. From proposition 4.2 we deduce that8k (k < Æ(C; 3)).
Hence, from proposition 4.1 results thatC

k

= (�

0

; (;; ;; ab

0k

f

2

k

; ;))). Then,C is unique. ut

Next, let us see that the formula�(C; n) is true for every configurationC
n

of the P system�.

Corollary 4.4. The formula�(C; n) is an invariant of the P system�. That is,8C 2 Comp(�) 8n 2

N (�(C; n)).

Proof:
It follows directly from proposition 4.1 and (4) in proposition 4.2. ut

Next, we are going to characterize the successful computations of� through the instant the mem-
brane 3 is dissolved.

Corollary 4.5. Let C be a computation of�. The following are equivalents:

(a) C is a successful computation.

(b) Æ(C; 3) <1.

(c) Æ(C; 3) <1 andjCj = 2 � Æ(C; 3) + 1.

Proof:
Let C be a successful computation. Letk = jCj. Then1 � k < 1. Let us see thatÆ(C; 3) � k. In
other case, from proposition 1 we have thatC

k

= (�

0

; (;; ;; ab

0k

f

2

k

; ;)). Which contradictsk = jCj,
since from the existence of no null applicability matrix over C

k

(for example,~p = (0;0; (1; 0; 2

k

);0))
we would have thatC

k

is not a halting configuration.
If Æ(C; 3) <1 then, from (4) in proposition 4.2, results thatjCj = 2n+1. Finally, (
)) (a) results

directly from (4) in proposition 4.2.
ut
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5. Soundness and Completeness of theP system�

To establish that the set of natural numbers generated by� isN(�) = fn

2

: n � 1g we must to prove
two results:

� The numerical output of any successful computation of the P system� encodes the square of a
natural number greater or equal to 1 (soundnessof the P system).

� For everyn � 1 there exists, at least, a successful computation,C,of the P system�with numerical
outputO(C) = n

2 (completenessof the P system).

Theorem 5.1. (Soundness) If C is a successful computation of the P system�, then there existsn � 1

such that the output ofC isO(C) = n

2.

Proof:
Let C be a successful computation of�. If n = Æ(C; 3) then, from corollary 4.2, results that1 � n <1.
Since the formula�(C; n) is true andn = Æ(C; 3), we deduce that the computationC is successful and,
also,O(C) = n

2. ut

To establish the completeness of� to generate the setfn2 : n � 1g, we consider the formula'(n) �
9C 2 Comp(�) (n = Æ(C; 3)). Let us see that this formula is true for every natural numbergreater or
equal to 1.

Proposition 5.1. For every natural numbern � 1 there exists a unique computation,C, of � such that
Æ(C; 3) = n.

Proof:
Let us prove the existence by induction onn. For the base case,n = 1, the configurationC

1

, obtained
from the initial configuration,C

0

, by applying the matrix~p = (0;0; (0; 1; 1);0) (applicability matrix
overC

0

), is considered. Sincer3
2

� a! b

0

Æ, we obtain thatÆ(C; 3) = 1.
Let n � 1 and let us suppose the result is true forn. Let C be a computation of� such that

Æ(C; 3) = n. From proposition 4.1, we deduce thatC
n�1

= (�

0

; (;; ;; ab

0(n�1)

f

2

n�1

; ;))).
The set of applicability matrices overC

n�1

isM
Ap

(C

n�1

) = f~p

1

; ~p

2

g, where
~p

1

= (0;0; (0; 1; 2

n�1

);0), ~p
2

= (0;0; (1; 0; 2

n�1

);0)

Let C0
n

= ~p

2

(C

n�1

). Then C0
n

= (�

0

; (;; ;; ab

0n

f

2

n

; ;)). Let C0
n+1

= ~p

3

(C

0

n

), where~p
3

=

(0;0; (0; 1; 2

n

);0), in this step membrane 3 is dissolved. ThenC0
n+1

= (�

0

; (;; b

0(n+1)

f

2

n+1

; ;)), where
the membrane structure is�0 = (1; ((1; 2); (2; 1; 4); (4; 2))). Hence, the computationC0 � C

0

)

�

C

1

)

�

: : :)

�

C

n�1

)

�

C

0

n

)

�

C

0

n+1

)

�

: : : , verifies thatÆ(C0; 3) = n+ 1.
Givenn � 1, the uniqueness of the computationC verifying Æ(C; 3) = n, follows directly from

corollary 4.2.
ut

Proposition 5.2. There exists an unique computation,C, of � not to be successful.
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Proof:
First, let us prove that such computation exists. For everyk 2 N, let us consider the configurationC

k

=

(�

0

; (;; ;; ab

0k

f

2

k

; ;))). If we take the matrix~p = (0;0; (1; 0; 2

k

);0) then we have that8 k (C

k+1

=

~p(C

k

)). ThenC � C

0

)

�

C

1

)

�

: : : C

k

)

�

C

k+1

)

�

: : : is a computation of�. Also, from the
construction, it is obvious thatC is not halting computation.

The uniqueness of such computation follows from corollary 4.3. ut

Corollary 5.1. For everyn � 1 the formula'(n) is true.

Corollary 5.2. The partial functionD
3

: Comp(�)� ! N � f0g, defined asD
3

(C) = Æ(C; 3) is a
bijection from the set,S(�), of successful configurations of� to the setN� f0g.

Note: D
1

= D

4

= ;, andD
2

is not bijective.

Theorem 5.2. (Completeness) For every natural numbern � 1 exists a successful computation,C, of
the P system�, and verifying, that its numerical output isO(C) = n

2.

Proof:
Let n 2 N such thatn � 1. since the formula'(n) is true, there exists a computation,C, of � such
thatÆ(C; 3) = n. Having in mind that the formula�(C; n) is true, we conclude that the computationC is
successful, and, also,O(C) = n

2. ut

6. Conclusions

The formal verification of mechanical process of a computingmodel is usually a hard task. If the proce-
dures in the model are not defined through an imperative language, then this task is harder. This is the
case of P systems, that, basically, is a procedural computing model.

Formal verification of a P system is based in the characterizations of its successful computations, for
this, an analysis of the content of its membranes in every configuration is needed. The study ofcritical
pointsof the computations can give formulas over the configurations that will be invariants of the whole
process of evolution of the P system. Also, the truth of such formula in every configuration must give
important information to characterize the successful computations.

In this paper the formal verification of a P system given by Păun ([1]) to generate squares of natural
numbers greater or equal to 1 has been established. The process of verification is based in the analysis of a
critical point appearing in every halting configuration: the instant when arelevant membrane. Moreover,
in this work a detailed study ofeverycomputations of the P system is given, and a classification ofthis
computations is obtained. The formalization and study of the verification of P systems must represent an
important step to the treatment of them through reasoning systems.
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