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Abstract. In [1], an example of a P system generating exactly all theuspiof natural numbers
greater than 1 is given. Nevertheless, only an informalaeiag of this result is presented. In this
paper we study a similar P system to it (only one evolutioe islmodified). A formalization of
the syntax of the P system following [3] is given, and we stageverification of the given P system
through soundness and completeness: (a) every successfpltation of the P system generate a
square greater or equal todoundness (b) every natural number greater or equal to 1 is the output
of a successful computation of the systararipletene3s Then we establish the formal verification
through the study of theritical pointsof the computations of the P system that give to us important
information to characterize the successful computations.

1. Introduction

In October 1998, Gheorghe Paun ([1]) introduces a new ctaibity model, of a distributed parallel
type, based on the notion ofembrane structureThis model, calledransition P systemstart from the
observation that the processes which take place in the exmsplucture of a living cell can be considered
computationsFollowing [1], we can consider the P systems as devicestwgeoerate numbers: the sum
of multiplicities of objects in the output membrane is thegeated number.

In [1], the following P system, where 4 membrane is the ougmé. Also, it is said that the set of
natural numbers generated by the above P systé{if) = {n?: n > 1}.
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This paper is structured in the following way. In section gheqreliminaries about formalization of
transition P systems is presented, following [3]. In setBahe formal syntax, following section 2, of
is given. In section 4 characterizations of successful agatpns of above P system is established. In
section 5 we show that the output of every successful corigur of I1 encodes the square of a natural
number greater than 1 (soundness of the P system) and, alsthéhsquare of every natural number
greater than 1 is generated by some successful computditibricmmpleteness of the P system).

2. Preliminaries about transition P systems

Following [3], amembrane structures a rooted tree, where the nodes are cattembranesthe root is
calledskin and the leaves are calletementary membranet/sually, we represent a rooted tree by an
ordered pair such that the first component of the pair is thé abthe tree and the second component
is the adjacency list that consistsofist, one for each vertek The list for vertex; contains just those
vertices adjacent from

A cell (or super-cel) over an alphabetd, is a pair(u, M), wherey = (V(u), E(u)) is @ membrane
structure (we consideE™*(u) as follows: (z,y) € E*(u) <= y is a child ofz in ), and M is an
application,M : V(u) — M(A) (the set of multisets ovedt).

Let (u, M) a cell over an alphabet}. Letz € V(u). An evolution ruleassociated ta is a 3-tuple
r = (d,, #,,0,) whered, is a multiset overd; . is a function with domair/ (1) U {here, out} and
range contained iM(A) wherehere,out ¢ V(u) (here# out); andd, € {—4,46}, with =4, ¢ A
(=0 # 0).

A collection R of evolution rulesassociated t¢' is a function with domair’ () such that for every
membrane: € V(u), R, = {r{,...,r; } is afinite set (possibly empty) of (evolution) rules assteda
to z. A priority relation over R is a function, p, with domainV'(x) such that for every membrane
x € V(u), p 1S a strict partial order oveR,, (possibly empty).

A transition P-systenis a 4-tuplell = (A, Cy, R,1ip), WhereA is a non-empty finite set (usually
called base alphabet))y = (1o, My) is a cell overA; R is an ordered paifR, p) whereR is a collection
of (evolution) rules associated &), andp is a priority relation overR; andig is a node ofu, which
specifies the output membranel®f
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A configuration C, of a P systemlI = (A4, Cy, R, i) with Cy = (uo, My), is a cellC = (u, M)
over A, whereV (1) C V(up), andu has the same root ag. The configuratiorCy will be called the
initial configuration ofIl. Letz € V(up). We say that the (evolution) rulec R, is semi-applicabldo
C if: (a) the membrane associated to nadexists inC, that is,z € V' (u); (b) dissolution is not allowed
in root node, that is, if: is the root node ofi, thend,, = —4; (c) the membrane associatedatdnas all
the necessary objects to apply the rule, thatljs< M (z); and (d) nodes where the rule tries to send
objects (by means af,) are children ofz, that is,Yy € V(1) (¥, (y) # 0 — (z,y) € E*(p)).

We say that the rule € R, is applicableto C, if it is semi-applicable ta” and there is no semi-
applicable rules ik, with higher priority. Thatis=3r' (r' € R, A p,(r',7) Ar' semi-applicable t@).

We will say thaty € NN is anapplicability vectoroverz € V(i) for C, and we will denote it as
7 € Ap(z,C), if:(a) the node is still alive, that igj # 0 = z € V(x); (b) it has correct size, that is,
Vi(j>ss — p(j) =0), (wWheres, is the number of rules associatedd) (c) every rule can be applied
as many times as the vectgindicates, thatisyj (1 < j < s, — p(j) < Nay(rf,C,z)); (d) all the

—

rules can be applied simultaneously, thatE;”;lp(j) ® J}}c < M(z); and (e) it is maximal, that is,
-37e NN (< ¥ A 7€ Ap(z,C)).

We will say thatP : V(ug) — NN is anapplicability matrixover C, denotedP € Ma,(C), if
for everyz € V(1) we have tha’(z) € Ap(z,C). We define

AP,C)={z: 2 V(i) ATj (1<) <50 APli) #0 A Gz =0)}

If P is an applicability matrix oveC' = (u, M) andV'(u) = {i1,...,ix}, then we denote® =
(15 P8 )y (P15 P )

For each node € V(u), we define thelonorsof x for C'in the application ofP as follows:

0 Jif 2 € A(P,C)

Don(z,P,C) =4 {yeV(p):ye AP,C) ANz ~,y A

Jif z ¢ A(P,C)
ANYzeV(p)(z ~, 2z~ y— 2z APC))}

We define theexecutionof P over C, denotedP(C'), as the configuration dofl, C' = (u/, M),
where:

e 1’ is the rooted tree obtained fromby means of:

- V() =V(p) - AP,C)
= If z,y € V(i'), then:

(z,y) € E*(1) < Fzoy... 2y € V(u)(Z1y..  2n—1 € A(P,C) A zg = A
T =y ANVi(0<i<n—=(x;,zit1) € E*(un)))

MU |J M) e APC)
. M’($) = y€Don(z,P,C)
0 Lif z € A(P,C)

We will say that a configuratiod'; of a P systemII yields a configuratiorCy by atransition in
one stepof II, denoted”; =1 Cs, if there exists a non—zero applicability matrix ovéy, P, such that
P(Cy) = Cs.
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Thecomputation tree of & systenil, denotedComp(II), is a rooted labeled maximal tree defined
as follows: the root of the tree is the initial configuratiary, of TI. The children of a node are the
configurations that follow in one step of transition. Nodad adges are labeled by configurations and
applicability matrices, respectively, in such way that taleeled node§’, C’ are adjacent it€omp(11),
by means an edge labeled with if and only if P € M, (C) — {0} A C" = P(C). The maximal
branches ofComp(IT) will be calledcomputationf IT. We will say that a computation af haltsif it
is a finite branch. The configurations verifyidd a, (C) = {0} will be calledhalting configurations

We say that a computatiah = Cy = C; =11 ... =11 C, of a P systemIl = (A, Cy, R,ip) IS
successfuif this computation halts and}, is a leaf of the rooted trege,,, whereC,, = (u,, My,). Then
we will say that configuratiort”,, is successfulandn is thelengthof C. The numerical outputof a
successful computatior;, is O(C) = |M¢, (i0)| whereC,, is the successful configuration 6f The
output of aP systemlIl is O(IT) = {O(C) : C is a successful computation Bf}.

LetIl = (A, Cy, R,ip) a P system. The set of natural numbers generatefl pgtenotedN (IT), is
defined as followsN(II) = {O(C) : C is a successful computation Hf}.

3. Formalization of the syntax of the P systenil

Next, we are going to formalize the syntax of the P sysk&rfollowing the definitions of above section.
The P systenil is a 4—tuple( A, Cy, R, 7o), where:

(@) The base alphabetis= {a,b,V,c, f}.

(b) The initial configuration(Cy = (10, My), is defined as follows:
Ko = (17 ((L 2)? (2v L3, 4)? (37 2)a (4a 2)))
That is, g is the membrane structure given by means of the followingeatree:

1

M, is the application from{1,2,3,4} to M(A) defined as:My(1) = My(2) = Mp(4) =0y
My(3) = {af}.

() R = (R, p), where:

e R is a collection of rules associated &; that is, R is an application with domain in
{1,2,3,4}, defined asR(1) = R(4) = 0, R(2) = {r},r3,7r3,r3} y R(3) = {r},r3,r3},
where:

-r?= (d,2,v,2,6,2), with d,.» = {v'}, vp2  {1,2,3,4} U {here, out} — M(A) given
asv,2(1) = v,2(2) = v,2(3) = v,2(4) = v,2(out) = 0; v,2(here) = {b}, and, also,
0,2 = —0.

1
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r2 V25 0p2), With ds = {b}, v, : {1,2,3,4} U {here, out} — M(A) given as
v,,%(l) = Ur§(2) = v,,%(3) = U3 (out) = 0; Vp3 (4) = {c},vrg(here) = {b}, and also,
d,2=—4

-r?= (drg,vrg,(irg), withd,.» = {ff}, Up2 {1,2,3,4} U {here,out} — M(A) given
asv2(1) = v,2(2) = v,2(3) = v,2(4) = v,2(out) = 0; v,z (here) = {f}, and, also,
0y = —9.

—r? = (d.2,v,2,0,2), with d,> = {f}, v,2 : {1,2,3,4} U {here, out} — M(A) given
asv2(1) = v i(2) = 0,2(3) = v,2(4) = v,2(out) = 0; v,z (here) = {a}, and, also,
(5 2= +4.

-7} = (d.3,v,3,0,3), with ds = {a}, v3 : {1,2,3,4} U {here,out} — M(A) given
asv,3(l) =v §(2) = 1,3(3) = v,3(4) = v,3(out) = 0; v3(here) = {ab'}, and, also,
G,3 = —0.

-3 = (dr3,v,3,0,3), With d,s = {a}, vz : {1,2,3,4} U {here,out} — M(A) given
asv3(1) = v 3(2) = 0,3(3) = v,3(4) = v,3(out) = 0; v,3(here) = {v'}, and, also,
(5 3= +4.

-3 = (d3,v,3,0,2), With d.s = {f}, v,3 : {1,2,3,4} U {here, out} — M(A) given
asv,3(1) =v 3(2) = 1,3(3) = v,3(4) = v,3(out) = 0; v3(here) = {ff}, and, also,
d,3 = —0.

3

e p is the application with domain if1,2,3,4} defined as:p(1) = p(3) = p(4) = 0 and
p(2) = {(r3,m3)}.

(d) The output membraneig = 4

4. Characterizing successful configurations ofl

LetIT be a P system designed to generate dBsaftnatural numbers. To establish the verificatioilah
relation to the seB, a predicate over configurations (that is, oggrmp(II) x N), being, in some way,
an invariant of the whole process of generation of the P sy§lgis searched. That is, this predicate will
be true for every computatiod, of IT and every natural number. Also, the truth of the predicat alt
the configurations off must extract important information to establish the so@sdrand completeness
of I1 related to the generation of the get

The process of verification of a P systefi, is based on the analysis of the content of every
membrane in every computation that can be obtainel.inGiven a computation¢, of I, we will
denoteCy =1 C1 =1 -.. = Cx =n .... Thatis,C, represents the configuration obtained af-
ter the execution of: steps in the computatioG. In a natural way, a partial functior§TEP :
Comp(IT) x N x V(ug)— — M(A), can be defined to assign to every computatiorof I1, every
natural numbefk and every membraneof the P system, the content of the membraaéter the execu-
tion of k£ steps in the computatiai. If, after the execution of thé-th step, the membrands dissolved,
thenSTEP(C, k, i) is not defined, in this case, we will den@&EP (C, k,:) 1. In other case, we will
denoteSTEP (C, k,4) |. In general, we will denot8 TEP(C, k,i) = Cr(i). We denotgC| the length
of the computatior® that, eventually, can be infinite.
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Definition 4.1. For every membrane, and every computatio@ of II, we definej(C,i) = min{m :

Cm(i) T}

Having in mind that no membrane is dissolved in the initiaiftgguration of a every P systehf, we
have that/(C,7) > 1, for everyC € Comp(II) and every membraneof II.

Given a P systenil and a membrané of II, we can define in a natural way a partial function
D; : Comp(II)— — N — {0}, as follows: D;(C) = §(C,4). That is,D; assign to every computatiah
of IT a natural number representing the instant where the membrHT is dissolved (if any).

To establish that the considered P systégenerates the sét? : n > 1}, we will try to characterize
the successful computations 1af

For that, first we will give a predicate over the configurasiasf IT to be an invariant along the
execution of the P systeii. Let us consider the formula
0(C,n) = (n < 8(C,3) — Cn = (10, (0,0, ab'™ f2",0))) A (n = 8(C,3) — C successA O(C) = n?)

To make easier the proofs, and following section 2, the agbiliity vector will be expressed with a
finite number of components (so many as rules the membrafe\Weaswill denote byo the vector with
all null components, no attending the size of it.

If C = (u, M) is a cell, whereV (u) = {a1,...,a,} C Nwitha; < --- < a,, we will note
M = (M(a1),...,M(ay)). For simplicity of notation, we will represent the multiséty means of the
associated word, arfiwill be the empty multiset.

First, we are going to determine every configuration of thgd®esn before membrane 3 is dissolved.

Proposition 4.1. For revery computatio@ of IT we have:
Vn (n < 8(C,3) = Cp = (ko, (0,0,ab™ ", 0)))

Proof:
Let C be a computation ofl. Let us prove the result by induction en For the base case,= 0, it is
enough to consider thatC, 3) > 1 andCy = (o, (0,0, af,D)).

Letn € N such thatn < §(C,3) — Cn = (o, (0,0,ab'™f2",0)). If n +1 < §(C,3) thenn <
§(C,3) and, henceG,, = (uo, (0,0, ab’™ 2", 0)). AsCy,1(3) |, we deduce that the configurati6p, ; is
obtained fronC,, applying the matrixp’' = (0, 0, (1,0, 2™), 0) (applicability matrix ove(,,), since no dis-
solution is applied over membrane 3. The, we have@hat = 5(Cn) = (1o, (0,0, ab’ 1 £2"7 ).

0

Next, we will proof that ecritical point of the computations of the P systdinis in the instant when
the membrane 3 is dissolved. That is, we will justify that Wimg when membrane 3 is dissolved is
important to characterize the successful computation$. of

Proposition 4.2. For every computatiod of the P systenil such that. = §(C, 3) < oo, we have:
1. Co = (W, (0,6 F7",0)), wherep = (1, ((1,2),(2,1,4),(4,2))).

2. For everyk such thaD < k < n — 1, we have tha€, 1,1, = (', (0,57 f2" "', ")), wherey/
is as above.

3. Cong1 = (", (ab™, ™)), wherey” = (1, ((1,4), (4,1))).
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4. The computatio is successful, its length |§| = 2n + 1, and, also, the numerical output of this

computation ig)(C) = n?.

Proof:

1. Ifn =46(C,3) < cothend < n -1 < §(C,3). From proposition 4.1, we deduce tlat ; =
(1o, (0,0, ab’ =D £2"7" )}, Having in mind thats(C,3) = n, we obtain that the configuration
C, is obtained fronC,, ; executing the applicability matrix = (0,0, (0,1,2"~'),0) overC, ;.
Hence(, = ﬁ(cn—l) = (,ula (@, b,nf2nv @)), Where// = (1v ((17 2)7 (27 L, 4)7 (4v 2)))

2. Let us prove by induction oh. For the base casé,= 0, let us observe that from (1) we obtain
thatC, = (¢/, (0, f2",)). In this situation, since > 1, itis possible to apply the rule to the
membrane 2 and then, by the strong sense in which the prisrityerpreted, the rule? can not
be applied tC,, (this rule would dissolve the membrane 2). Hence, the onlgrirnapplicability
overC, will be 7 = (0, (n,0,2"!,0),0). In consequenc&,, .1 = 5(Cn) = (i, (0,5" f2" ", 0)).

Let k be such thad < k < n — 1, and let us suppose thé 14, = (', (0,67 f2" 7", k).
Sincen — k — 1 > 0, we deduce that it is possible to apply the rufeto membrane 2 and then,
the only applicability matrix ove€,, 1 is7 = (0, (0,n,2"¥=2,0),0). Hence, we have that

Cog1krs = (1, (0,67 f2" "2 clbtny)

3. By applying (2) to the case = n — 1, we obtain thats, = (i, (0, b" f, "~ 1)),
)

Then, the only applicability matrix ovets,, is p = (0, (0,n,0,1),0). Hence, we have that the
configurationCy, 1 = (4", (ab™, ¢"’)), wheren” = (1, ((1,4), (4,1))).

4. From (3) we deduce thab, ., = (4", (ab™,c")). Having in mind thatV (x”) = {1,4} and
Ry = Ry = () we deduce thaM A, (C2n+1) = {(0,0)}. Then the configuratiofs,,+, is a halting
configuration. Also, sincé € V(u") and 4 is a leaf of.” results that the configuratiafy,, 1 is
successful. Hence, the computatidis successful, its length & + 1, and its numerical output
iSO(C) = |Copy1(4)| = n.

O

As a first consequence from this proposition, let us see that the instant the membrane 3 is
dissolved, the P system evolves in a “deterministic” way.

Corollary 4.1. For everyn > 1 and evenyC,C’ € Comp(II) such thatr = §(C,3) = 4(C’, 3) we have
thatVk (n <k <2n+1— C, =C}).

Proof:
The casé: = n follows from (1) in above proposition, the case< k£ < 2n follows from (2), and the
casek = 2n + 1 follows from (3). O

Next, let us see that if two computations have the same insfatissolution to membrane 3, then these
computations are equal.
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Corollary 4.2. For everyn > 1 and evenyC,C’ € Comp(II) such thatn = §(C,3) = 4(C’, 3) we have
thatC = C'.

Proof:

Letn > 1 andC,C’ € Comp(II) such thatn = §(C,3) = 6(C’, 3). By applying (4) in proposition 4.2,
and above corollary, it's enough to prove that (0 < £ < n — 1 = C, = C). But, this last relation
follows directly from proposition 4.1. |

Corollary 4.3. There exists, at most, a computationlbfiot to be successful.

Proof:
LetC be a computation dfl not to be successful. From proposition 4.2 we deducesth@k < §(C, 3)).
Hence, from proposition 4.1 results th&t = (uo, (0,0, ab’* £2°,0))). Then,C is unique. O

Next, let us see that the formuldC, n) is true for every configuratio6,, of the P systenil.

Corollary 4.4. The formulad(C,n) is an invariant of the P systefi. That is,VC € Comp(II) Vn €
N (6(C,n)).

Proof:
It follows directly from proposition 4.1 and (4) in propasit 4.2. O

Next, we are going to characterize the successful compuagtfIl through the instant the mem-
brane 3 is dissolved.

Corollary 4.5. LetC be a computation difl. The following are equivalents:
(a) Cis a successful computation.
(b) 4(C,3) < oo.

(c) §(C,3) < o and|C| =2-4(C,3) + 1.

Proof:
Let C be a successful computation. Let= |C|. Thenl < k < co. Let us see thai(C,3) < k. In
other case, from proposition 1 we have tfiat=(uo, (0,0, ab’* f2*,0)). Which contradicts: = |C|,
since from the existence of no null applicability matrix @ (for example, = (0,0, (1,0, 2%), 0))
we would have thaf, is not a halting configuration.

If 6(C,3) < oo then, from (4) in proposition 4.2, results théf = 2n + 1. Finally, (¢) = (a) results
directly from (4) in proposition 4.2.

|
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5. Soundness and Completeness of thié systemll

To establish that the set of natural numbers generatdd isyV (IT) = {n? : n > 1} we must to prove
two results:

e The numerical output of any successful computation of thgsemII encodes the square of a
natural number greater or equal tosb(ndnessf the P system).

e Foreveryn > 1there exists, at least, a successful computatigof,the P systenil with numerical
outputO(C) = n? (completenessf the P system).

Theorem 5.1. (Soundnes$ If C is a successful computation of the P sysfénthen there exista > 1
such that the output @f is O(C) = n?.

Proof:

Let C be a successful computationIaf If n = §(C, 3) then, from corollary 4.2, results that< n < co.
Since the formul@(C, n) is true andn = §(C, 3), we deduce that the computati6ris successful and,
also,0(C) = n?. 0

To establish the completenesslibto generate the sét? : n > 1}, we consider the formula(n) =
AC € Comp(Il) (n = §(C,3)). Let us see that this formula is true for every natural nungpeater or
equal to 1.

Proposition 5.1. For every natural number > 1 there exists a unique computatiah,of IT such that
4(C,3) =n.

Proof:

Let us prove the existence by induction mnFor the base case, = 1, the configuratiorC;, obtained
from the initial configuration(Cy, by applying the matrixp' = (0,0, (0,1,1),0) (applicability matrix
overCy), is considered. Since = a — b5, we obtain thas(C, 3) = 1.

Letn > 1 and let us suppose the result is true for Let C be a computation ofl such that
§(C,3) = n. From proposition 4.1, we deduce that 1 = (xo, (0,0, ab/ ™= f2" 7" §))).

The set of applicability matrices ovéf,_ is Map(Cp—1) = {p1,P>2}, where

1 = (0,0,(0,1,2"71),0), p» = (0,0, (1,0,2"~1),0)

Let C, = p2(Ch_1). ThenC), = (uo,(0,0,ab™f>",0)). LetCl,, = p3(C,), whereps =
(0,0,(0,1,2"),0), in this step membrane 3 is dissolved. Ti#&n, = (u', (0,1 2" ), where
the membrane structure js = (1,((1,2),(2,1,4), (4,2))). Hence, the computatiof’ = Cy =
Ci=n...=2nCi—1=>nC,=>nC,,, =n...,verifies thav(C’,3) = n + 1.

Givenn > 1, the uniqueness of the computatiGrverifying 6(C,3) = n, follows directly from
corollary 4.2.

O

Proposition 5.2. There exists an unique computatiah,of IT not to be successful.
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Proof:
First, let us prove that such computation exists. For e¥efyN, let us consider the configuratigh =
(1o, (0,0,ab’™® £2°0))). If we take the matrixy’ = (0,0, (1,0, 2%),0) then we have that k (Cpy =

p(Ck)). ThenC = Cy =n C1 =1 ...Cr =1 Cry1 =1 -.. IS a computation ofl. Also, from the
construction, it is obvious that is not halting computation.
The uniqueness of such computation follows from corollaB; 4 O

Corollary 5.1. For everyn > 1 the formulap(n) is true.

Corollary 5.2. The partial functionD3 : Comp(IT)— — N — {0}, defined asD3(C) = §(C,3) is a
bijection from the setS(II), of successful configurations of to the sefN — {0}.

Note: Dy = D, = (), and D, is not bijective.

Theorem 5.2. (Completenes} For every natural number > 1 exists a successful computatiah, of
the P systenil, and verifying, that its numerical output¥(C) = n2.

Proof:

Letn € N such thatn > 1. since the formulay(n) is true, there exists a computatiah, of IT such
thato(C, 3) = n. Having in mind that the formul@(C, n) is true, we conclude that the computati©ms
successful, and, als®)(C) = n>. ]

6. Conclusions

The formal verification of mechanical process of a computiraglel is usually a hard task. If the proce-
dures in the model are not defined through an imperative Eggyuthen this task is harder. This is the
case of P systems, that, basically, is a procedural computirdel.

Formal verification of a P system is based in the charact@izof its successful computations, for
this, an analysis of the content of its membranes in everfigumation is needed. The study cftical
pointsof the computations can give formulas over the configuratitiat will be invariants of the whole
process of evolution of the P system. Also, the truth of swecmtila in every configuration must give
important information to characterize the successful agatons.

In this paper the formal verification of a P system given byriP@1]) to generate squares of natural
numbers greater or equal to 1 has been established. Thesprafoeerification is based in the analysis of a
critical point appearing in every halting configuration: the instant wheglevant membrane. Moreover,
in this work a detailed study adfverycomputations of the P system is given, and a classificatidhisf
computations is obtained. The formalization and study efvrification of P systems must represent an
important step to the treatment of them through reasonistesys.
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