Check for
Updates

Feature Articles

A Polynomial Time Algorithm for the N-Queens Problem!

Rok Sosic and Jun Gu
Department of Computer Science?
University of Utah
Salt Lake City, UT 84112

Summary

The n-queens problem is a classical combinatorial problem in
the artificial intelligence (AI) area. Since the problem has a sim-
ple and regular structure, it has been widely used as a testbed to
develop and benchmark new Al search problem-solving strate-
gies. Recently, this problem has found practical applications in
VLSI testing and traffic control. Due to its inherent complexity,
currently even very efficient Al search algorithms developed so
far can only find asolution for the n-queens problem withn up to
about 100. In this paper we present a new, probabilistic local
search algorithm which is based on a gradient-based heuristic.
This efficient algorithm is capable of finding a solution for ex-
tremely large size n-queens problems. We give the execution sta-
tistics for this algorithm with n up to 500.,000.

Keywords: Artificial intelligence (AI), combinatorial search, gra-
dient-based heuristic, local search, the n-queens problem, non-
backtracking search. fast search algorithm.

1. Introduction

The n-queens problem is a classical combinatorial problem in
the Alsearch area. We are particularly interested in the n-queens
problem since it is a relatively simple yet nontrivial case study and
testbed in which to explore general issues of designing efficient
Al search algorithms and predicting their performance [3]. Also,
it has recently found applications in VLSI testing and traffic con-
trol. Due to the exponential growth of the search load in the n—
queens problem, even very efficient Al search algorithms can
only handle the complexity (i.e., find out a solution) for about 100
queens [5, 11}. There has been little progress in solving the n-
queens problem for larger sizes during the last decade.

In this paper we give a new, probabilistic local search algorithm
which is based on a gradient-based heuristic [8, 9]. This algo-
rithm is capable of providing a solution for an extremely large size
n-queens problem in several CPU hours on a NeXT personal
computer. We give the execution statistics of this fast algorithm
with 7 up to 500,000. We believe that this new algorithm, its
search technique, and the results of the n~queens problem may
shed light on understanding other constraint-based Al search
problems.

1. This Research has been supported in part by the University of Utah research fellowships, in part by the Research Council of Slove-

In Section 2, the n—queens problem is briefly introduced. Our
new algorithm and its search techniques for the n-queens prob-
lem are described in Section 3. We show the run-time behavior of
this new algorithm in Section 4. The conclusions are given in Sec-
tion 5.

2. The N-Queens Problem

The 4-queens problem is the simplest instance of the n-queens
problem with solutions. The problem is to place four queens on a
4 x 4 chessboard so that no two queens can capture each other.
That is, no two queens are allowed to be placed on the same row,
the same column, or the same diagonal. In the general n-queens
problem. a setof n queens is to be placed on an nx n chessboard
so that no two queens attack each other.

In the following discussion, we assume that each row will be occu-
pied by a single queen. The four queens, in the 4-queens prob-
lem. are labeled with the numbers 1 through 4. Any possible solu-
tion of the 4-queens problem can be represented as the 4-tuple
(91 - , q4). where q ; is a column position on which the queen in
the i~th row is placed.

Inalittle known work, Ahrens [1] describes a method to compose
asolution to the general n-queens problem by patching together
solutions to the smaller sized problems. This analytical solution
has an inherent limitation in that it will generate only a very re-
stricted class of solutions. This is not the case with search based
algorithms.

One method for solving the n-queens problem which systemati-
cally generates all possible solutions is known as backtracking
search. Since the nature of backtracking search is exponential in
time, backtracking search is not able to solve the large size n-
queens problem [3, 4,7, 2, 10, 11]. Recent results indicate that we
may only solve the n-queens problem with n up to about 100 [5,
11].

It is desirable to investigate some alternative search approaches
in which there is no backtrack overhead involved. In the next sec-
tion, we give a new probabilistic local search algorithm that is
based on a gradient-based heuristic. The algorithm runs in poly-
nomial time, does not use backtracking, and is capable of finding

nia, in part by the 1987-88 and 1988-89 ACM/IEEE academic scholarship awards.
2. Jun Gu is also with Department of Electrical Engineering, University of Calgary, Calgary, Canada T2N IN4. E-mail: sos-

ic@cs.utah.edu,gu@enel. UCalgary.CA.

SIGART Bulletin, Vol. 1, No. 3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F101340.101343&domain=pdf&date_stamp=1990-10-01

a solution for an extremely large size n-queens problem within a
reasonably short time period.

function queen_search(queen : array [1..n] of integer)
begin
repeat
Generate a random permutation of queen; to queeny;
forall i, j; where queen; or queen; is attacked do
if swap(queen;,queen;) reduces collisions
then perform_swap(queen;, queen;);
until no collisions;
end;

N N

Figure 1: A Fast N-Queens Search Algorithm
3. A Fast Algorithm for the N-Queens Problem

Let:

L @())(¢ = L. n)be a permutation for integer numbers 1, ..., n,
and

2. {row;, column 41;,} (i = 1, ..., n) be n coordinates of positions for
n queens on a chessboard.

Since there is only one queen to be placed on each row, row, can
be represented by index i, and the exact position of the n queens
on the chessboard can be fully specified by the column numbers
(an n-tuple) of the n queens. This n-tuple of column numbers
can be represented in a linear array of size n. That is. let {column
Tr)}» or abbreviated as {m())} (¢ = 1, ..., n), be the n positions of n
queens on a chessboard.

For any permutation, the above formulation of the queens’ posi-
tions guarantees that no two queens will attack each other on the
same row or the same column. The problem then remains to re-
solve any collisions among queens that may occur on the diago-
nals.

Our new algorithm is shown in Figure 1. At the beginning of a
search, a random permutation of the column positions of the
queens is generated. This initial permutation of column positions
generally produces collisions among queens on the diagonals.
The number of collisions can be counted by tracing each negative
(slope) diagonal line and each positive (slope) diagonal line using
the method described below.

Let i be a row index and j be a column index, then the sum of both
indexes is constant on any negative diagonal line, and the differ-
ence of both indexes is constant on any positive diagonal line. The
values of the sum on different diagonal lines are different, so are
the values of differences. Corresponding to row index i and column
index j, since the column positions of # queens are specified by a
permutation T, the sum is calculated as i + (/) and the difference
asi- @) fori =1, .., n

For the n-queens problem, there are 2n - 1 negative diagonal
lines and 2 n - 1 positive diagonal lines on the chessboard. There
is an array of size 2n - 1, called d, that keeps track of the number
of queens, i.e., the number of collisions, on each of the 27 -1 neg-
ative diagonal lines. If there are k queens on the mth negative di-
agonal line, there are k - 1 collisions on this diagonal line. The
number k is written into the mth element of the 4, array. Similar-
ly, we choose another array with size 2n - 1, called d,, for 2n - 1
positive diagonal lines.

As described in Figure 1, a random permutation of the column
positions for n queens is generated at the beginning of the search.
This initial permutation generally causes some collisions on the
diagonals. The number of collisions on diagonals is counted and
stored into arrays d; and d>.

SIGART Bulletin, Vol. 1, No. 3

A gradient-based heuristic, as shown in Figure 2 (i.e., lines 5-7 in
Figure 1), plays an important role in this fast queen search algo-
rithm to navigate the search activity through a simple local
search. The main idea behind this heuristic is to swap a pair of
queens so that the total number of collisions (on both negative
and positive diagonals) is reduced. Before a swap action is taken,
a local search is performed. We must first determine the *“‘direc-
tion” to proceed. i.e., the “*gradient direction” in the search space
that points to the direction that may reduce the number of colli-
sions among the queens. The idea is pretty simple. Before and
after the swap of a pair of queens, the number of collisions on the
diagonals are compared. If a swap of a pair of queens reduces the
number of collisions, the swap action is performed; otherwise. no
action is taken.

1 repeat

2 swaps_performed := 0;

3 for i in (1..n] do

4. for j in [(i + 1)..n} do

5. if queen; is attacked or gueen; is attacked then

6 if swap(queen;, queen;) reduces collisions then begin
7 perform swap(queen;, queen;);

8 swaps.performed := swaps.performed + 1;

9. end;

10. until swaps_performed = 0;

Figure 2: A Gradient-Based Heuristic

In the fast search algorithm, the gradient-based heuristic is
applied to all possible pairs of queens (see Figure 1) until there
are no collisions left, that is, a solution is found. If no solution
could be found for that initial permutation, a new permutation is
generated and a new search process is started.

The swap action incrementally updates arrays d; and d,. Since
one queen can affect at most two diagonals (i.e., one negative di-
agonal and one positive diagonal), correspondingly at most two
values in arrays d; and &5, i.e., i + w(i)and i - w(7), are affected. A
swap of two queens can affect at most eight diagonals: four for
both “source’™ queens and four for both “destination” queens. In
order to test if a swap reduces the number of collisions we need
only to check these eight diagonals. The number of operations in
a swap action is therefore constant, and obviously does not de-
pend on n. This test operation and a possible subsequent swap
operation are repeated for all possible pairs of queens until a so-
lution is found. If no more swaps can be performed and collisions
still exist, a new permutation is invoked. The implementation of
the above algorithm is straightforward.

The running time of the algorithm can be estimated as follows.
The generation of a random permutation (line 4 in Figure 1)can
be done in linear time [6]. Regardless of the board size, the test-
ing and swap operations (lines 5-9 in Figure 2) can be evaluated
in constant time as described above. Therefore, the number of
testing and swap operations determines algorithm performance.
In the worst case, each iteration of the repeat loop in Figure 2
requires O(n?) evaluations since there are two for loops (lines 3-4
in Figure 2). Since each execution of the repeat loop must de-
crease the number of collisions, which is at most # - 1, the upper
bound on the running time of the gradient-based heuristic is

o).

For an initial permutation, if no solution is found after the com-
pletion of the repeat loop, a new permutation is generated and a
new search process is started. However, the number of permuta-
tions required to find a solution is very small. With increasing n,
the number of permutations required to find a solution goes to 1.
That is, for large n, the first permutation will always find a solu-
tion (See Table 4 in Section 4). Experimental results collected
during the last several years show that the actual running time of

the algorithm is, in practice. approximately O(n log n). These re-
sults are shown in the next section.

4. Results

Among the algorithm features we have studied, the following ob-
servations are of particular interest. We summarize some exper-
imental data below.

- Real execution time of the algorithm.

- The probabilistic behavior of the algorithm.

- Number of initial collisions generated by a random permuta
tion.

- The maximum number of queens on the same diagonal in a
random permutation.

1. Real execution time of the algorithm.

The real execution time of our fast search algorithm. pro-
grammed in C and run on a NeXT personal computer (with a 25
MHz Motorola 68030 processor), is illustrated in Table 1. Since
our algorithm takes polynomial time, it is incomparably faster
than any present well-known Al search algorithms, all of which
run in exponential time. Due to the memory limitation of our
computer, the largest problem size we were able to run was
500,000.

2. Number of initial collisions generated by a random

The second observation made involved the number of collisions
generated by a random permutation (See Table 2). This indicates
the maximum number of swaps which may be required to find a
solution. The results collected in Table 2 were based on the aver-
age of 100 random permutations. Theoretically, no more than n ~
1 collisions are possible on a board of size 7, when alln queens are
aligned on the same diagonal. So the number of collisions which
must be resolved may increase only linearly in ». It is indicated
from numerous real algorithm runs that the ratio between the
number of collisions and the board size » in a random permuta-
tion approaches 0.5285 as n increases up to 500,000. Individual
sample runs have shown a very small deviation from this number.
Numbers in Table 2 actually present the upper bound on the
number of swaps that may be performed to find a solution from
an initial random permutation.

3. The maximum number of queens on the
same diagonal.

As illustrated in Table 3, the maximum number of queens that
attack each other on the same diagonal line was also analyzed. A
total of 100 random permutations were generated for each board
size shown and the maximum number of queens on one diagonal
was recorded. The minimum and maximum values from these
100 permutations are very similar. That is, the collisions among
queens on diagonals are basically evenly distributed. There are
no specific diagonals that contain a large number of queens

permutation.
| Number of Queens n] 10 [100 | 1,000 [10,000L100,000 @0,0001
Time of the 1st run <01| 04 2.1 27.7 1,098.4 | 7,500
Time of the 2nd run <01} 0.2 1.9 38.2 1,081.2 | 9,065
Time of the 3rd run <01]l<0.1] 1.8 42.6 997.6 12,617
Time of the 4th run <01lj<01] 31 34.9 979.9 11,730
Time of the 5th run <01|<01]| 19 343 | 1,286.4 | 9,934
Time of the 6th run <0.1|<01| 24 31.2 992.3 9,198
Time of the 7th run <0.1)] 0.2 1.9 41.2 | 1,425.5 | 9,789
Time of the 8th run <01{ 0.3 3.3 36.5 1,235.4 | 11,142
Time of the 9th run <0.1] 0.1 2.3 52.4 | 1,285.7 | 11,788
Time of the 10th run <01|<01} 21 35.1 | 1,285.4 | 8,300

LAve. Time to Find a Solution | < 0.1 | 0.1 J 2.3 | 37

| 1,167 | 10,106 |

Table 1: A Fast N-Queens Search Algorithm to Search for a Random Solution on an Next Machine with a 25Mhz Motorola 68030
Microprocessor (Average of 10 Runs; Time Units: seconds)

| Number of Queens n] 10 LlOO] 1,000 B0,000I 100,000]500,000J

[Num. of Collisions/n | 0.486 | 0.523 [0.5277 [0.5283 | 0.528694 | 0.528511 |

‘Table 2: Number of Collisions Among Queens in a Random Permutation (Average of 100 Permutations)

SIGART Bulletin, Vol. 1, No. 3

| Number of Queens n [10 | 100 | 1,000 | 10,000 | 100,000 [500,000 |

Minimum 2 5
Maximum 5 7

10
10

7 7 9
7 9 9

Table 3: Maximum Number and Minimum Number of Queens on the most Populated Diagonal in a Random Permutation
(Average of 100 Runs)

L

Number of Queens n

[10T 100 [1,000 | 10,000 | 100,000 | 500,000]

Solution in the First Permutation | 2 6 8 10 10 10
Max. Num. of Permutations 10 3 2 1 1 1
Table 4: Permutation Statistics (Average of 10 Runs)
|_Number of Queens n | 10 | 100 [1,000 | 10,000 | 100,000 | 500,000 |
Num. of Pairs Tested | 353 | 13,525 | 253,671 | 4,827,973 | 110,186,345 | 967,924,234
Num. of Swaps Tested | 198 | 2,385 15,116 166,215 2,034,907 11,447,508

Table 5: Swap Statistics (Average of 10 Runs)

4. The probabilistic behavior of the algorithm.

Table 4 and Table 5 were obtained from 10 sample algorithm
runs. The algorithm is probabilistic. That is, if the algorithm
could not find a solution from a given random permutation, a
new permutation is generated and the algorithm starts a new
search.

Table 4 shows the probabilistic behavior regarding algorithm suc-
cess in finding a solution from an initial random permutation.
The solution in the first permutation represents, among 10 sample
algorithm runs, the number of times a solution is found based on
an initial (the first) permutation. The maximum number of per-
mutations is, within 10 sample algorithm runs, the maximum
number of permutations that were required to find a solution in
one program run. It can be seen that the number of required per-
mutations decreases with increasing n. For n equal to 100, the
algorithm succeeded in the first permutation in 6 of 10 sample
runs. In the worst case, only 3 permutations were required. In our
measurements, for n greater than 10,000, the algorithm always
finds a solution in the first permutation.

Table 5 shows parts of the program on which the most time was
spent. The number of pairs tested gives the total number of pairs
checked for collision (line 5 in Figure 2). The number of swaps
tested indicates a total number of calls to the swap testing (line 6
in Figure 2).

SIGART Bulletin, Vol. 1, No. 3

5. Conclusion

An efficient, fast search algorithm able to find a solution for mil-
lions of queens is presented. The algorithm runs in polynomial
time as compared to the exponential time of the present Al
search algorithms. This performance is achieved by applying a
clever, gradient-based heuristic within a local search.

6. Acknowledgement
We thank Vladimir Batagelj who pointed out a reference to the

earlier work by Ahrens [1]. We appreciate the relevant and in-
structive comments provided by several reviewers.

References

[1] W. Ahrens. Mathematische Unterhaltungen und Spiele (in Ger-
man). B.G. Teubner (Publishing Company), Leipzig, 1918-1921.

{2] R. Dechter and J. Pearl. Network-Based Heuristics for Com-
straint-Satisfaction Problems. Artificial Intelligence, 34:1-38,
1988.

[3] J. Gasching. Performance Measurements and Analysis of Cer-
tain Search Algorithms. PhD thesis, Carnegie-Mellon University,
Dept. of Computer Science, May 1979.

10

[4] R. M. Haralick and G. Elliot. Increasing Tree Search Efficien-
cy for Constraint Satisfaction Problems. Artificial Intelligence,
14:263-313, 1980.

[5] Panel Discussion: Parallel Processing for Non-Numeric
Applications. International Conference on Parallel Processing,
Chicago. August 15, 1990.

[6] L.E. Moses and R.V. Oakford. Tables of Random Permuta-
tions. Stanford University Press, Palo Alto, California, 1963.

[7] B.A. Nadel. Representation Selection for Constraint Satisfac-

tion: A Case Study Using n-Queens. IEEE Fxpert, pages 16-23,
Jun. 1990.

11

[8] R. Sosic and J. Gu. Fast N-queen Search on VAX and Bobcat
Machines. Al Project Report, Feb. 1988.

[9]R.Sosicand J. Gu. How to Search For Million Queens. Techni-
cal Report UUCS-TR-88-008, Dept. of Computer Science.
Univ. of Utah, Feb. 1988.

[10] H.S. Stone and P Sipala. The Average Complexity of
Depth-first Search with Backtracking and Cutoff. IBM J. Res.
Develop., 30 (3):242-258, May 1986.

[11] H.S. Stone and J.M. Stone. Efficient Search Techniques -

An Empirical Study of the N-Queens Problem. IBM J Res. De-
velop., 31(4).464-474, July 1987.

SIGART Bulletin, Vol. 1, No. 3

