Nace en la Universidad de Sevilla el IAI-Lab: Laboratorio de Inteligencia Artificial Inmersiva con el objetivo de proporcionar a los miembros de la Universidad un lugar donde investigar cómo integrar los últimos avances de la IA/ML con las técnicas más novedosas para experiencias inmersivas (AR+VR). Pulsa aquí para saber más.
Nuevo Lab: IAI-Lab
Sistemas Deductivos Proposicionales
En temas anteriores hemos visto algunos algoritmos para resolver el problema de la deducción, por ejemplo, por medio de Tableros Semánticos o DPLL, todos ellos basados en el hecho de que: $\Sigma\models A \Leftrightarrow \Sigma \cup \{\neg A\}\mbox{ es insatisfactible}$. Sin embargo, esta forma (que sería algo parecido a hacer una reducción al absurdo) no es la más habitual (ni más clásica) de abordar el problema de la deducción. En muchas áreas (por ejemplo, matemáticas, sitio por excelencia de la deducción formal) es más normal acudir al concepto de demostración, que parte de un conjunto de enunciados básico que actúa como conjunto de axiomas (o hipótesis), y que asumimos como ciertos inicialmente, y de un proceso constructivo por el que vamos obteniendo una sucesión de enunciados intermedios, deducibles unos a partir de otros, hasta llegar al resultado que queremos demostrar.
Formas Prenex, de Skolem y Teorema de Herbrand
Al igual que vimos cómo extender los Tableros Semánticos de LP a LPO, en este capítulo vamos a ver los fundamentos necesarios para extender las Formas Normales y Formas Clausales vistas en LP a un formato igualmente útil en LPO. El objetivo no solo es disponer de fórmulas equivalentes, sino ver hasta qué punto podemos trasladar los algoritmos que se desarrollan para LP al contexto de Primer Orden.
Formas Normales, Cláusulas y Algoritmo DPLL
En este tema vamos a abordar los métodos más comunes de preprocesamiento de fórmulas LP, que también serán aplicables a fórmulas LPO, y mostraremos uno de los algoritmos centrales para $SAT$ que hace uso de este preprocesamiento, $DPLL$, en el que se basan la gran mayoría de métodos actuales que abordan ese problema.
Construir un buscador desde cero
En esta entrada vemos cómo se pueden implementar de forma muy sencilla buscadores en Espacios de Estados en un lenguaje con características funcionales. La idea no es presentar implementaciones muy eficientes, sino únicamente encontrar patrones comunes y flexibles que permiten estas representaciones y posibles ampliaciones y adaptaciones futuras.
- « Página anterior
- 1
- 2
- 3
- 4
- …
- 25
- Página siguiente »
ALGUNAS ENTRADAS ANTERIORES ... AL AZAR
Bases de Datos en Grafo
En los últimos años ha aparecido una buena colección de bases de datos basadas en grafo mpara dar soluciones a diversos problemas que venían apareciendo en el mundo de las bases de datos. Algunas de estas soluciones se han convertido en productos disponibles en el mercado (como Neo4j, InfiniteGraph o Dex), mientras que otras se han creado como soluciones particulares para ser integradas en sistemas que precisaban de soluciones inmediatas.
Algoritmos Genéticos
Los primeros ejemplos de lo que hoy podríamos llamar algoritmos genéticos aparecieron a finales de los 50 y principios de los 60, programados en computadoras por biólogos evolutivos que buscaban explícitamente realizar modelos de aspectos de la evolución natural. A ninguno de ellos se le ocurrió que esta estrategia podría aplicarse de manera más general a los problemas artificiales, pero ese reconocimiento no tardaría en llegar: "La computación evolutiva estaba definitivamente en el aire en los días formativos de la computadora electrónica"