Hybrid Networks of Evolutionary
Processors

Carlos Martin-Vide! Victor Mitrana?*

Mario J. Pérez-Jiménez? Fernando Sancho-Caparrini?

'Research Group in Mathematical Linguistics
Rovira i Virgili University
Pca. Imperial Tarraco 1, 43005 Tarragona, Spain
cmv@correu.urv.es

2Faculty of Mathematics, University of Bucharest
Str. Academiei 14, 70109 Bucharest, Romania
mitrana@funinf.math.unibuc.ro

3Department of Computer Science and Artificial Intelligence
University of Seville
{Mario.Perez,Fernando.Sancho}@cs.us.es

Abstract

A hybrid network of evolutionary processors consists of several processors
which are placed in a node of a virtual graph and can perform one simple
operation only on the words existing in that node in accordance with some
strategies. Then the words which can pass the output filter of each node
navigate simultaneously through the network and enter those nodes whose
input filter was passed. We prove that these networks with filters defined
by simple random-context conditions, used as language generating devices,
are able to generate all linear languages in a very efficient way, as well as
non-context-free languages. Then, when using them as computing devices, we
present two linear solutions of the Common Algorithmic Problem.

*This work, done when this author was visiting the Department of Computer Science and
Artificial Intelligence of the University of Seville, was supported by the Generalitat de Catalunya,
Direccié General de Recerca (PTV2001-50)

1 Introduction

This work is a continuation of the investigation started in [1] and [2] where one has
considered a mechanism inspired from cell biology, namely networks of evolutionary
processors, that is networks whose nodes are very simple processors able to perform
just one type of point mutation (insertion, deletion or substitution of a symbol).
These nodes are endowed with a filter which is defined by some membership or
random context condition.

Another source of inspiration is a basic architecture for parallel and distributed
symbolic processing, related to the Connection Machine [13] as well as the Logic
Flow paradigm [6]. This consists of several processors, each of them being placed in
a node of a virtual complete graph, which are able to handle data associated with the
respective node. Each node processor acts on the local data in accordance with some
predefined rules, and, then local data becomes a mobile agent which can navigate
in the network following a given protocol. Only such data can be communicated
which can pass a filtering process. This filtering process may require to satisfy some
conditions imposed by the sending processor, by the receiving processor or by both of
them. All the nodes send simultaneously their data and the receiving nodes handle
also simultaneously all the arriving messages, according to some strategies, see, e.g.,
[7, 13].

Starting from the premise that data can be given in the form of strings, [4]
introduces a concept called network of parallel language processors in the aim of
investigating this concept in terms of formal grammars and languages. Networks
of language processors are closely related to grammar systems, more specifically to
parallel communicating grammar systems [3]. The main idea is that one can place
a language generating device (grammar, Lindenmayer system, etc.) in any node of
an underlying graph which rewrite the strings existing in the node, then the strings
are communicated to the other nodes. Strings can be successfully communicated if
they pass some output and input filter.

Our mechanisms introduced in [1] and [2] simplify as much as possible the net-
works of parallel language processors defined in [4]. Thus, in each node is placed
a very simple processor, called evolutionary processor, which is able to perform a
simple rewriting operation only, namely either insertion of a symbol or substitution
of a symbol by another, or deletion of a symbol. Furthermore, filters used in [4] are
simplified in some versions defined in [1, 2].

In spite of these simplifications, these mechanisms are still powerful. In [2] net-
works with at most six nodes having filters defined by the membership to a regular
language condition are able to generated all recursively enumerable languages no
matter the underlying structure. This result does not surprise since similar charac-
terizations have been reported in the literature, see, e.g., [5, 11, 10, 12, 14]. Then we

have considered networks with nodes having filters defined by random context condi-
tions which seem to be closer to the biological possibilities of implementation. Even
in this case, rather complex languages like non-context-free ones, can be generated.

However, these very simple mechanisms are able to solve hard problems in poly-
nomial time. In [1] it is presented a linear solution for an NP-complete problem,
namely the Bounded Post Correspondence Problem, based on networks of evolu-
tionary processors able to substitute a letter at any position in the string but insert
or delete a letter in the right end only.

This restriction was discarded in [2], but the new variants were still able to solve
in linear time another NP-complete problem, namely the “3-colorability problem”.

In the present paper, we consider hybrid networks of evolutionary processors in
which each deletion or insertion node has its own working mode (at any position, in
the left end, or in the right end) and its own way of defining the input and output
filter. Thus, in the same network one may co-exist nodes in which deletion is done
at any position and nodes in which deletion is done in the right end only. Also the
definition of the filters of two nodes, though both are random context ones, may
differ.

This model may be viewed as a biological computing model in the following
way: each node is a cell having a genetic information encoded in DNA sequences
which may evolve by local evolutionary events, that is point mutations (insertion,
deletion or substitution of a pair of nucleotides). Each node is specialized just
for one of these evolutionary operations. Furthermore, the biological data in each
node is organized in the form of arbitrarily large multisets of strings (each string
appears in an arbitrarily large number of copies), each copy being processed in
parallel such that all the possible evolutions events that can take place do actually
take place. Definitely, the computational process described here is not exactly an
evolutionary process in the Darwinian sense. But the rewriting operations we have
considered might be interpreted as mutations and the filtering process might be
viewed as a selection process. Recombination is missing but it was asserted that
evolutionary and functional relationships between genes can be captured by taking
into consideration local mutations only [15]. Furthermore, we were not concerned
here with a possible biological implementation, though a matter of great importance.

The paper is organized as follows: in the next section we recall the some basic
notions from formal language theory and define the hybrid networks of evolutionary
processors. Then, we briefly investigate the computational power of these networks
as language generating devices. We prove that all regular languages over an n-
letter alphabet can be generated in an efficient way by networks having the same
underlying structure and show that this result can be extended to linear languages.
Furthermore, we provide a non-context-free language which can be generated by such
networks. The last section is dedicated to hybrid networks of evolutionary processors

viewed as computing (problem solving) devices; we present two linear solutions of
the so-called Common Algorithmic Problem. The latter one needs linearly bounded
resources (symbols and rules) as well.

2 Preliminaries

We start by summarizing the notions used throughout the paper. An alphabet is
a finite and nonempty set of symbols. The cardinality of a finite set A is written
card(A). Any sequence of symbols from an alphabet V' is called string (word) over
V. The set of all strings over V is denoted by V* and the empty string is denoted
by . The length of a string x is denoted by |z| while the number of occurrences of
a letter a in a string x is denoted by |z|,. Furthermore, for each nonempty string z
we denote by alph(z) the minimal alphabet W such that x € W*.

We say that a rule @ — b, with a,b € V' U {e} is a substitution rule if both a and
b are not ¢; it is a deletion rule if a # ¢ and b = ¢; it is an insertion rule if a = ¢
and b # . The set of all substitution, deletion, and insertion rules over an alphabet
V' are denoted by Suby, Dely, and Insy, respectively.

Given a rule as above o and a string w € V*, we define the following actions of
o on w:

o I[f o =a— b€ Suby, then

{ubv : Ju,v € V* (w = uav)},
{w}, otherwise

fwozwwozawaz{
e If 0 =a — ¢ € Dely, then

{wv : Ju,v € V* (w = uav)},
{w}, otherwise

o'(w) = {W:w=u@,

{w}, otherwise

{v: w=av},

ol(w) = {{w}, otherwise

e If o =¢ — a € Insy, then

o*(w) = {uav : Ju,v € V* (w=uv)}, o' (w) = {wa}, o'(w) = {aw}.

a € {x,l,r} expresses the way of applying an evolution rule to a word, namely at
any position (a = x), in the left (o = [), or in the right (o = r) end of the word,

4

respectively. For every rule o, action a« € {x,l,r}, and L C V* we define the
a-action of o on L by:

weL

Given a finite set of rules M, we define the a-action of M on the word w and the
language L by:

M (w) = |J 0%(w) and ML) = |J M*(w).

oeM weL

respectively.

In what follows, we shall refer to the rewriting operations defined above as evo-
lutionary operations since they may be viewed as linguistical formulations of local
gene mutations. For two disjoint subsets PP and F' of an alphabet V' and a word over
V', we define the predicates

oW (w; P,F)= P Calph(w) A FnNalph(w) =10
@ (w; P,F) = alph(w) CP A FnNalph(w) =10
o3 (w; P,F)= P Calph(w) A F € alph(w)
oW (w;P,F)= alph(w) CP A F ¢ alph(w)

The construction of these predicates is based on random-context conditions de-
fined by the two sets P (permitting contexts) and F (forbidding contexts).
For every language L C V* and f € {(1),(2),(3), (4)}, we define:

¢’ (L, P,F) = {w € L | ¢"(w; P, F)}.
An evolutionary processor over V' is a tuple (M, PI, F'I, PO, FO), where:

e Either (M C Suby) or (M C Dely) or (M C Insy). The set M represents
the set of evolutionary rules of the processor. As one can see, a processor is
“specialized” in one evolutionary operation, only.

e PI, FI C V are the input permitting/forbidding contexts of the processor,
while PO, FO C V are the output permitting/forbidding contexs of the pro-
Cessor.

We denote the set of evolutionary processors over V by E Py .
An hybrid network of evolutionary processors (HNEP for short) is a 7-tuple
I'=(V,G,N,Cy,«a,f,ig), where:

e V is an alphabet.

G = (Xg, Eg) is an undirected graph, without loops, with the set of vertices
X and the set of edges Fg, each edge is given in the form of a set of two
nodes. G is called the underlying graph of the network.

e N : Xqg — EPy is a mapping which associates with each node x € X4 the
evolutionary processor N(x) = (M, PI,, FI,, PO,, FO,).

e O): X¢ — 2V is a mapping which identifies the initial configuration of the
network. It associates a finite set of words with each node of the graph G.

e a: Xg — {x1,r}; a(r) gives the action mode of the rules of node x on the
words existing in that node.

e 3:Xg — {(1),(2),(3),(4)} defines the type of the input/output filters of a
node. More precisely, for every node, x € X¢, the following filters are defined:

input filter: p,(-) = @*@(-; PI,, FI,),
output filter: 7,(-) = ¢*@(.; PO,, FO,).

That is, p,(w) (resp. 7,) indicates whether or not the string w can pass the
input (resp. output) filter of z. More generally, p, (L) (resp. 7,(L)) is the set
of strings of L that can pass the input (resp. output) filter of x.

e iy € Xg is the output node of the HNEP.

We say that card(X¢) is the size of I'. If a(x) = a(y) and §(z) = S(y) for any pair
of nodes =,y € X¢, then the network is said to be homogeneous. In the theory of
networks some types of underlying graphs are common, e.g., rings, stars, grids, etc.
We shall investigate here networks of evolutionary processors with their underlying
graphs having these special forms. Thus a HNEP is said to be a star, ring, or
complete HNEP if its underlying graph is a star, ring, grid, or complete graph,
respectively. The star, ring, and complete graph with n vertices is denoted by 5,
R,, and K, respectively.

A configuration of a HNEP T' as above is a mapping C' : Xg — 2" which
associates a set of strings with every node of the graph. A configuration may be
understood as the sets of strings which are present in any node at a given moment. A
configuration can change either by an evolutionary step or by a communication step.
When changing by an evolutionary step, each component C(x) of the configuration
C' is changed in accordance with the set of evolutionary rules M, associated with
the node x and the way of applying these rules a(z). Formally, we say that the
configuration C' is obtained in one evolutionary step from the configuration C,
written as C — (', iff

C'(x) = MW (C(x)) for all z € Xg.

6

When changing by a communication step, each node processor x € X sends one
copy of each string it has, which is able to pass the output filter of x, to all the node
processors connected to x and receives all the strings sent by any node processor
connected with x providing that they can pass its input filter.

Formally, we say that the configuration C’ is obtained in one communication
step from configuration C', written as C' - C" iff

C'(w) = (Clx) = m(C(@) U U ((Cy) Npx(C(y))) for all 2 € Xe.

Let I' an HNEP, a computation in I" is a sequence of configurations Cy, Cy, Cy, . . .,
where C) is the initial configuration of I', Cy; = Cy; 11 and Cy; 1 F Cy4o, for all
1 > 0. By the previous definitions, each configuration C; is uniquely determined by
the configuration C;_;. If the sequence is finite, we have a finite computation. If one
uses HNEPs as language generating devices, then the result of any finite or infinite
computation is a language which is collected in the output node of the network.

For any computation Cy, C, ..., all strings existing in the output node at some
step belong to the language generated by the network. Formally, the language
generated by I' is L(I") = Uy>o Cs(ig)-

The time complexity of computing a finite set of strings Z is the minimal number
s such that Z C Uj_, Cy(ip)-

3 Computational power of HNEP as language gen-
erating devices

First, we compare these devices with the simplest generative grammars in the Chom-
sky hierarchy. In [2], one proves that the families of regular and context-free lan-
guages are incomparable with the family of languages generated by homogeneous
networks of evolutionary processors. HNEPs are more powerful, namely

Theorem 1 Any regular language can be generated by any type (star, ring, com-
plete) of HNEP.

Proof. Let A =(Q,V,d,q, F) be a deterministic finite automaton; without loss
of generality we may assume that d(q, a) # qo holds for each ¢ € Q and each a € V.
Furthermore, we assume that card(V) = n. We construct the following complete
HNEP (the proof for the other underlying structures is left to the reader):

F == (U,KZn—{—B; N7CO7a7/87 f)

The alphabet U is defined by
U=VUV'UQU{s,|s€Q,aeV},

where V' = {a’ | a € V}. The set of nodes of the complete underlying graph is
{zo,z1, 2, UV UV’ and

| Node || M | PI] FI |PO[FO|Cy|a] B]
o 19 = sb}s(s.)=¢ 0 {sptsp U0} | 0 | 0 | F | x| (1)
aeV e—d {84}s UV Q U 0 0117112
aeV' {8q = s}s {da'} Q 0 0 0 | *|(1)
T {b’ — b}b (Z) {Sb}s,b @ @ (Z) * (1)
Tf g — € {qo0} 4 ol vI]er]@®
Table 1.

In Table 1, s and r are generic states from () and symbols from V', respectively.
One can easily prove by induction that

1. 6(¢q,x) € F for some ¢ € Q \ {qo} if and only if zq € Cy;(0).
2. x is accepted by A (z € L(A)) if and only if x € C,(f) for any p > 8|z| + 1.

Therefore, L(A) is exactly the language generated by T'. a

Surprisingly enough, the size of the above HNEP, hence its underlying structure,
does not depend on the number of states of the given automaton. In other words,
this structure is common to all regular languages over the same alphabet, no matter
the state complexity of the automata recognizing them. Furthermore, all strings of
the same length are generated simultaneously.

Since each linear grammar can be transformed into an equivalent linear grammar
with rules of the form A — aB, A — Ba, A — ¢ only, the proof of the above theorem
can be adapted for proving the next result.

Theorem 2 Any linear language can be generated by any type of HNEP.

We do not know whether these networks are able to generate all context-free
languages, but they can generate non-context-free languages as shown below.

Theorem 3 There are non-context-free languages that can be generated by any type

of HNEP.

Proof. We construct the following complete HNEP which generates the non-
context-free language L = {wcx | € {a,b}*, w is a permutation of x}:

I' = (V, K9;N7 COyaaﬁqu)?

where
V= {a7 b7 al7blaXa7Xb7X}7 XKg - {yo:yby27ya7ybaga7gbaga7gb}7

and

| Node || M | PI | FI | PO FO | Cy |a| B]
w | (e XeoD) | D [{@.0,0b XX} [{DF] 0 |4t [r ()
Y1 {e = Xg,6 = Xp} 0 {Xq, Xp,a',b'} 0 0 0 || (1)
Yu {X =} {Xu} {d',V'}] 0 0 | * | (1)
Tu {Xy — u} {u'} 0] 0 0 | * | (1)
Tu {u — u} {u'} {Xa, Xp}] 0 0 | =] (1)
Y2 {D — c} 0 | {X,d b\ Xe, Xp} | O |{ab} | O | x| (1)

Table 2.

In Table 2, u is a generic symbol in {a,b}. The working mode of this network
is rather simple. In the node gy, there are generated strings of the form X" for any
n > 1. They can leave this node as soon as they receive a D at their right end, the
only node able to receive them being y;. In y;, either X, or X, is added to their
right end. Thus, for a given n, the strings X" DX, and X" DX, are produced in ;.
Let us follow what happens with the strings X" DX,, a similar analysis applies to
the strings X" DX, as well. So, X"DX, goes to y, where any occurrence of X is
replaced by o' in different identical copies of X" DX,. In other words, y, produces
each string X*a’X"*~1DX,, 0 < k < n — 1. All these strings are sent out but
no node, except 9,, can receive them. Here, X, is replaced by a and the obtained
strings are sent to ¢, where a is substituted to a’. As long as the strings contains
occurrences of X, they follow the same itinerary, namely y1, yu, Gu, Ju, v € {a,b},
depending on what symbol X, or X, is added in ;.

After a finite number of such cycles, when no occurrence of X is present in the
strings, they are received by ys where D is replaced by c¢ in all of them, and they
remain in this node for ever. By these explanations, the node y, collects all strings
of L and any string which arrives in this node belongs to L. O

A more precise characterization of the family of languages generated by HNEPs
remains to be done.

4 Solving problems with HNEPs

HNEPs may be used for solving problems in the following way. For any instance of
the problem the computation in the associated HNEP must be finite. In particular,
this means that there is no node processor specialized in insertions. If the problem
is a decision problem, then at the end of the computation, the output node provides
all solutions of the problem encoded by strings, if any, otherwise this node will never
contain any word. If the problem requires a finite set of words, this set will be in the
output node at the end of the computation. In other cases, the result is collected
by specific methods which will be indicated for each problem.

In [2] one provides a complete homogeneous NEP of size 7m + 2 which solves in
O(m + n) time an instance of the “3-colorability problem” with n vertices and m
edges.

In the sequel, following the descriptive format for three NP-complete problems
presented in [9] we present a solution to the Common Algorithmic Problem. The
three problems are:

1. The maximum independent set: Given an undirected graph G = (X, E'), where
X is the finite set of vertices and FE is the set of edges given as a family of
sets of two vertices, find the cardinality of a maximal subset (with respect to
inclusion) of X which does not contain both vertices connected by any edge
in F.

2. The vertex cover problem: Given an undirected graph find the cardinality of
a minimal set of vertices such that each edge has at least one of its extremes
in this set.

3. Satisfiability problem: For a given set P of Boolean variables and a finite
set U of clauses over P, does a truth assignment for the variables of P exist
satisfying all the clauses of U?

For detailed formulations and discussions about their solutions, the reader is
refered to [8].

These problems can be viewed as special cases of the following algorithmic prob-
lem, called the Common Algorithmic Problem (CAP) in [9]: let S be a finite set
and F' be a family of subsets of S. Find the cardinality of a maximal subset of S
which does not include any set belonging to F'. The sets in F' are called forbidden
sets.

Let us show how the three problems mentioned above can be obtained as special
cases of CAP. For the first problem, we just take S = X and F' = F.

10

The second problem is obtained by letting S = X and F' contains all sets o(z) =
{z}U{y € X | {z,y} € E}. The cardinality one looks for is the difference between
the cardinality of S and the solution of the CAP.

The third problem is obtained by letting S = P U P’, where P' = {p' | p € P},
and F' = {F(C) | C € U}, where each set F(C) associated with the clause C' is
defined by

F(C)={p' | p appears in C} U {p | —p appears in C'}.

From this it follows that the given instance of the satisfiability problem has a solution
if and only if the solution of the constructed instance of the CAP is exactly the
cardinality of P.

First, we present a solution of the CAP based on homogeneous HNEPs.

Theorem 4 Any instance of the CAP can be solved by a complete homogeneous
HNEP of size m + 2n + 2 in O(m+n) time.

Proof. Let S ={ay,a9,...,a,} and F = {Fy, F5,..., F,}, m > 1, be an instance
of the CAP. We construct the complete homogeneous HNEP
I'= (U7 Km+2n+27 N7 CO: Q, /8)

Since the result will be collected in a way which will be specified later, the output
node is missing.
The alphabet of the network is

U = SuSuSu{y,Y,Ys,....Y i yu{byu{Z, 2,,...,Z,} U
{Y,Y,,....Y, L JU{X), Xy,..., X0},
where S and S’ are copies of S obtained by taking the barred and primed copies of
all letters from S, respectively. The nodes of the underlying graph are:
Oy TRy, Thyy e oo s TF, s Tays Lagy -+« s Lays Yos Yls « -+ s Yn-
The mapping N is defined by:
N(zg) = ({(Xi—a,Xi—a]1<i<ntu{y -V ulY/ =Y, |
1<i<mb {Y/|1<i<m},0,0.{X;[1<i<n}u{Y}),
N(zgp) = ({a—d |ae€ F},{Yi},0,0,0),
forall 1 < <m,
N(zq;) = ({aj = a;} U{Y; = Y] |1 <i<m} {a;}, 0,0, {aj} U{Y; |
1<i<m}), forall1 <j<n,
Nya) = ({ai—0b|1<i<n}U{Vin = Zo}, {Ymnr},0,{%, 0}, 5),
N(Yn-i) = ({b— Zi},{Zi1},0,{b, Zi}, 1),
foralll <i<n.

11

The initial configuration Cj is defined by

XX XY it =
Colz) = { (0, otherwise

Finally, a(z) = % and §(x) = (1), for any node z.

A few words on how the HNEP above works: in the first 2n steps, in the first
node one obtains 2" different words w = x1x4...x,Y, where each z; is either a; or
a;. Each such string w can be viewed as encoding a subset of S, namely the set
containing all symbols of S which appear in w. After replacing Y by Y7 in all these
strings they are sent out and xp, is the only node which can receive them. After one
rewriting step, only those strings encoding subsets of S which do not include F; will
remain in the network, the others being lost. The strings which remain are easily
recognized since they have been obtained by replacing a barred copy of symbol with
a primed copy of the same symbol. This means that this symbol is not in the subset
encoded by the string but in Fj. In the nodes z,, the modified barred symbols are
restored and the symbol Y] is substituted for Y;. Now, the strings go to the node
xo where Y5 is substituted for Y{ and the whole process above resumes for F,. This
process lasts for 8mn steps.

The last phase of the computation makes use of the nodes y;, 0 < j < n. The
number we are looking for is given by the largest number of symbols from S in the
strings from v,. It is easy to note that the strings which cannot leave y,_; have
exactly n — ¢ such symbols, 0 < ¢ < n. Indeed, only the strings which contains
at least one occurrence of b can leave y, and reach ¥, ;. Those strings which do
not contain any occurrence of b have exactly n symbols from S. In y, |, Z; is
substituted for an occurrence of b and those strings which still contain b leave this
node for 1,5 and so forth. The strings which remain here contain n — 1 symbols
from S. Therefore, when the computation is over, the solution of the given instance
of the CAP is the largest j such that y; is nonempty. The last phase is over after at
most 4n + 1 steps. By the aforementioned considerations, the total number of steps
is at most 8m + 4n + 3, hence the time complexity of solving each instance of the
CAP of size (n,m) is O(m + n).

As far as the time and memory resources the HNEP above uses, the total number
of symbols is 2m + 5n + 4 and the total number of rules is

mn+m+5n+2+> card(F).
i=1

O

The same problem can be solved in a more economic way, regarding especially
the number of rules, with HNEPs, namely

12

Theorem 5 Any instance of the CAP can be solved by a complete HNEP of size
m+n+1in O(m+n) time.

Proof. For the same instance of the CAP as in the previous proof, we construct
the complete HNEP
I'= (U7 Km-l—n-l—h N7 CO) «, ﬁ)

The alphabet of the network is
U:SUS,U{Yi,YrQ,,Yerl}U{b}U{Zo,Zl,,Zn}

The other parameters of the network are given in Table 3.

| Node | M | PI |[FI|PO] FO | Co || 8]
zo | Aa; = aiti | {ary | 0| 0 1 {aedi | {ay.apYa) | | (1)
{ai = T}
v, | {Yi=Yind| (Y} | F | 0 | U 0 * | (3)
Un {T—Zo} | {Ympad | 0 | {T}]| 0 0 * | (1)
yn—i || {T =2} | {Zia} | 0 [{T}] 0 0 « [(1)
Table 3.

In the table above, 7 ranges from 1 to n and j ranges from 1 to m.

The reasoning is rather similar to that from the previous proof. The only notable
difference concerns the phase of selecting all strings which do not contain any symbol
from any set Fj. This selection is simply accomplished by the way of defining the
filters of the nodes xp,. The time complexity is now 2m +4n+1 € O(m+n), while
the needed resources are: m + 3n + 3 symbols and m + 3n + 1 rules. O

References

[1] J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Solving NP-complete
problems with networks of evolutionary processors, IWANN 2001 (J. Mira, A.
Prieto, eds.), LNCS 2084, Springer-Verlag, 2001, 621-628.

[2] J. Castellanos, C. Martin-Vide, V. Mitrana, J. Sempere, Networks of evolution-
ary processors, submitted 2002.

[3] E. Csuhaj - Varju, J. Dassow, J. Kelemen, Gh. Paun - Grammar Systems,
Gordon and Breach, 1993.

[4] E. Csuhaj-Varji, A. Salomaa, Networks of parallel language processors. In
New Trends in Formal Languages (Gh. Paun, A. Salomaa, eds.), LNCS 1218,
Springer Verlag, 1997, 299-318

13

[5] E. Csuhaj-Varji, V. Mitrana, Evolutionary systems: a language generating
device inspired by evolving communities of cells, Acta Informatica 36(2000),
913-926.

[6] L. Errico, C. Jesshope, Towards a new architecture for symbolic processing. In
Artificial Intelligence and Information-Control Systems of Robots '94 (1. Plan-
der, ed.), World Sci. Publ., Singapore, 1994, 31-40.

[7] S. E. Fahlman, G. E. Hinton, T. J. Seijnowski, Massively parallel architectures
for AI: NETL, THISTLE and Boltzmann machines. In Proc. AAAI National
Conf. on AI, William Kaufman, Los Altos, 1983, 109-113.

[8] M. Garey, D. Johnson, Computers and Intractability. A Guide to the Theory of
NP-completeness, Freeman, San Francisco, CA, 1979.

[9] T. Head, M. Yamamura, S. Gal, Aqueous computing: writing on molecules, in
Proc. of the Congress on Evolutionary Computation 1999, IEEE Service Center,
Piscataway, NJ, 1999, 1006-1010.

[10] Kari, L.: On Insertion and Deletion in Formal Languages, Ph.D. Thesis, Uni-
versity of Turku, 1991.

[11] Kari, L., Paun, Gh., Thierrin, G., Yu, S.: At the crossroads of DNA comput-
ing and formal languages: Characterizing RE using insertion-deletion systems.
Proc. 3rd DIMACS Workshop on DNA Based Computing, Philadelphia, 1997,
318-333.

[12] Kari, L., Thierrin, G.: Contextual insertion/deletion and computability. Infor-
mation and Computation 131, 1(1996), 47-61.

[13] W. D. Hillis, The Connection Machine, MIT Press, Cambridge, 1985.

[14] Martin-Vide, C., Paun, Gh., Salomaa, A.: Characetrizations of recursively

enumerable languages by means of insertion grammars. Theoretical Computer
Science 205, 1-2(1998), 195-205.

[15] D. Sankoff et al. Gene order comparisons for phylogenetic inference: Evolution
of the mitochondrial genome. Proc. Natl. Acad. Sci. USA, 89(1992) 6575-6579.

14

