
CHAPTER 3

The Continuous Genetic Algorithm

51

Now that you are convinced (perhaps) that the binary GA solves many opti-
mization problems that stump traditional techniques, let’s look a bit closer at
the quantization limitation. What if you are attempting to solve a problem
where the values of the variables are continuous and you want to know them
to the full machine precision? In such a problem each variable requires many
bits to represent it. If the number of variables is large, the size of the chro-
mosome is also large. Of course, 1s and 0s are not the only way to represent
a variable. One could, in principle, use any representation conceivable for
encoding the variables. When the variables are naturally quantized, the binary
GA fits nicely. However, when the variables are continuous, it is more logical
to represent them by floating-point numbers. In addition, since the binary GA
has its precision limited by the binary representation of variables, using float-
ing point numbers instead easily allows representation to the machine preci-
sion. This continuous GA also has the advantage of requiring less storage than
the binary GA because a single floating-point number represents the variable
instead of Nbits integers.The continuous GA is inherently faster than the binary
GA, because the chromosomes do not have to be decoded prior to the eval-
uation of the cost function.

The purpose of this chapter is to introduce the continuous GA. Most
sources call this version of the GA a real-valued GA. We use the term con-
tinuous rather than real-valued to avoid confusion between real and complex
numbers. The development here closely parallels the last chapter. We primar-
ily dwell upon the differences in the two algorithms. The continuous example
introduced in Chapter 1 is our primary example problem. This allows the
reader to compare the continuous GA performance with the more traditional
optimization algorithms introduced in Chapter 1.
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3.1 COMPONENTS OF A CONTINUOUS GENETIC ALGORITHM

The flowchart in Figure 3.1 provides a “big picture” overview of a continuous
GA. Each block is discussed in detail in this chapter. This GA is very similar
to the binary GA presented in the last chapter. The primary difference is the
fact that variables are no longer represented by bits of zeros and ones, but
instead by floating-point numbers over whatever range is deemed appropri-
ate. However, this simple fact adds some nuances to the application of the
technique that must be carefully considered. In particular, we will present dif-
ferent crossover and mutation operators.

3.1.1 The Example Variables and Cost Function

As we saw in the last chapter, the goal is to solve some optimization problem
where we search for an optimal (minimum) solution in terms of the variables
of the problem. Therefore we begin the process of fitting it to a GA by de-
fining a chromosome as an array of variable values to be optimized. If the
chromosome has Nvar variables (an N-dimensional optimization problem)
given by p1, p2, . . . , then the chromosome is written as an array with 
1 ¥ Nvar elements so that

pNvar

Figure 3.1 Flowchart of a continuous GA.
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(3.1)

In this case, the variable values are represented as floating-point numbers.
Each chromosome has a cost found by evaluating the cost function f at the
variables p1, p2, . . . , .

(3.2)

Equations (3.1) and (3.2) along with applicable constraints constitute the
problem to be solved.

Our primary example in this chapter is the continuous function introduced
in Chapter 1. Consider the cost function

(3.3)

Since f is a function of x and y only, the clear choice for the variables is

(3.4)

with Nvar = 2. A contour map of the cost function appears as Figure 1.4. This
cost function is considerably more complex than the cost function in Chapter
2.We see that peaks and valleys dot the landscape of the cost function contour
plot. The plethora of local minima overwhelms traditional minimum-seeking
methods. Our goal is to find the global minimum value of f(x, y).

3.1.2 Variable Encoding, Precision, and Bounds

Here is where we begin to see the differences from the prior chapter. We no
longer need to consider how many bits are necessary to accurately represent
a value. Instead, x and y have continuous values that fall between the bounds
listed in equation (3.3).Although the values are continuous, a digital computer
represents numbers by a finite number of bits. When we refer to the continu-
ous GA, we mean the computer uses its internal precision and roundoff to
define the precision of the value. Now the algorithm is limited in precision to
the roundoff error of the computer.

Since the GA is a search technique, it must be limited to exploring a 
reasonable region of variable space. Sometimes this is done by imposing a 
constraint on the problem such as equation (3.3). If one does not know the
initial search region, there must be enough diversity in the initial population
to explore a reasonably sized variable space before focusing on the most
promising regions.

chromosome x y= [ ],

cost f x y x x y y

x y

= ( ) = ( ) + ( )
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10 10Subject to the constraints: 0 and 0
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3.1.3 Initial Population

To begin the GA, we define an initial population of Npop chromosomes. A
matrix represents the population with each row in the matrix being a 1 ¥ Nvar

array (chromosome) of continuous values. Given an initial population of Npop

chromosomes, the full matrix of Npop ¥ Nvar random values is generated by

pop = rand(Npop, Nvar)

All variables are normalized to have values between 0 and 1, the range of a
uniform random number generator. The values of a variable are “unnormal-
ized” in the cost function. If the range of values is between plo and phi, then
the unnormalized values are given by

(3.5)

where

plo = highest number in the variable range

phi = lowest number in the variable range
pnorm = normalized value of variable

In our example, the unnormalized values are just 10pnorm.
This society of chromosomes is not a democracy: the individual chromo-

somes are not all created equal. Each one’s worth is assessed by the cost func-
tion. So at this point, the chromosomes are passed to the cost function for
evaluation.

We begin solving (3.3) by filling a Npop ¥ Nvar matrix with uniform random
numbers between 0 and 10. Figure 3.2 shows the initial random population for
the Npop = 8 chromosomes. Population values are listed in Table 3.1. We see
widely scattered population members that well sample the values of the cost
function. None of the initial guesses are particularly close to the global
minimum.

3.1.4 Natural Selection

Now is the time to decide which chromosomes in the initial population are fit
enough to survive and possibly reproduce offspring in the next generation. As
done for the binary version of the algorithm, the Npop costs and associated
chromosomes are ranked from lowest cost to highest cost.The rest die off.This
process of natural selection must occur at each iteration of the algorithm to
allow the population of chromosomes to evolve over the generations to the
most fit members as defined by the cost function. Not all of the survivors are
deemed fit enough to mate. Of the Npop chromosomes in a given generation,
only the top Nkeep are kept for mating and the rest are discarded to make room
for the new offspring.

p p p p phi lo norm lo= -( ) +
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In our example the mean of the cost function for the population of 8 was
-0.3423 and the best cost was -9.8884. After discarding the bottom half the
mean of the population is -5.8138. The natural selection results represented
to five significant digits are shown in Table 3.2.

Figure 3.2 Contour plot of the cost function with the initial population (Npop = 8) indi-
cated by large dots.

TABLE 3.1 Example Initial Population of 8 Random
Chromosomes and Their Corresponding Cost

x y Cost

6.9745 0.8342 3.4766
0.30359 9.6828 5.5408
2.402 9.3359 -2.2528
0.18758 8.9371 -8.0108
2.6974 6.2647 -2.8957
5.613 0.1289 -2.4601
7.7246 5.5655 -9.8884
6.8537 9.8784 13.752

TABLE 3.2 Surviving Chromosomes after a 50%
Selection Rate

Number x y Cost

1 7.7246 5.5655 -9.8884
2 0.1876 8.9371 -8.0108
3 2.6974 6.2647 -2.8957
4 5.6130 0.12885 -2.4601
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3.1.5 Pairing

The Nkeep = 4 most-fit chromosomes form the mating pool. Two mothers and
fathers pair in some random fashion. Each pair produces two offspring that
contain traits from each parent. In addition the parents survive to be part of
the next generation. The more similar the two parents, the more likely are 
the offspring to carry the traits of the parents. We presented some basic
approaches to finding two mates in Chapter 2 and refer the reader back to
that presentation rather than repeating it.

The example presented here uses rank weighting with the probabilities
shown in Table 2.5. A random number generator produced the following two
pairs of random numbers: (0.6710, 0.8124) and (0.7930, 0.3039). Using these
random pairs and Table 2.5, the following chromosomes were randomly
selected to mate:

ma = [2 3]
pa = [3 1]

Thus chromosome2 mates with chromosome3, and so forth. The ma and pa
vectors contain the numbers corresponding to the chromosomes selected for
mating. Table 3.3 summarizes the results.

3.1.6 Mating

As for the binary algorithm, two parents are chosen, and the offspring are
some combination of these parents. Many different approaches have been
tried for crossing over in continuous GAs. Adewuya (1996) reviews some of
the methods. Several interesting methods are demonstrated by Michalewicz
(1994).

TABLE 3.3 Pairing and Mating Process of Single-
Point Crossover Chromosome Family Binary String Cost

2 ma(1) 0.18758 8.9371

3 pa(1) 2.6974 6.2647

5 offspring1 0.2558 6.2647

6 offspring2 2.6292 8.9371

3 ma(2) 2.6974 6.2647

1 pa(2) 7.7246 5.5655

7 offspring3 6.6676 5.5655

8 offspring4 3.7544 6.2647



The simplest methods choose one or more points in the chromosome to
mark as the crossover points. Then the variables between these points are
merely swapped between the two parents. For example purposes, consider the
two parents to be

(3.6)

Crossover points are randomly selected, and then the variables in between are
exchanged:

(3.7)

The extreme case is selecting Nvar points and randomly choosing which of the
two parents will contribute its variable at each position. Thus one goes down
the line of the chromosomes and, at each variable, randomly chooses whether
or not to swap information between the two parents. This method is called
uniform crossover:

(3.8)

The problem with these point crossover methods is that no new information
is introduced: each continuous value that was randomly initiated in the initial
population is propagated to the next generation, only in different combina-
tions. Although this strategy worked fine for binary representations, there is
now a continuum of values, and in this continuum we are merely interchang-
ing two data points. These approaches totally rely on mutation to introduce
new genetic material.

The blending methods remedy this problem by finding ways to combine
variable values from the two parents into new variable values in the offspring.
A single offspring variable value, pnew, comes from a combination of the two
corresponding offspring variable values (Radcliff, 1991)

(3.9)

where

b = random number on the interval [0, 1]
pmn = nth variable in the mother chromosome
pdn = nth variable in the father chromosome
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The same variable of the second offspring is merely the complement of the
first (i.e., replacing b by 1 - b). If b = 1, then pmn propagates in its entirety and
pdn dies. In contrast, if b = 0, then pdn propagates in its entirety and pmn dies.
When b = 0.5 (Davis, 1991), the result is an average of the variables of the two
parents.This method is demonstrated to work well on several interesting prob-
lems by Michalewicz (1994). Choosing which variables to blend is the next
issue. Sometimes, this linear combination process is done for all variables to
the right or to the left of some crossover point. Any number of points can be
chosen to blend, up to Nvar values where all variables are linear combinations
of those of the two parents. The variables can be blended by using the same
b for each variable or by choosing different b’s for each variable. These blend-
ing methods effectively combine the information from the two parents and
choose values of the variables between the values bracketed by the parents;
however, they do not allow introduction of values beyond the extremes
already represented in the population. To do this requires an extrapolating
method. The simplest of these methods is linear crossover (Wright, 1991). In
this case three offspring are generated from the two parents by

(3.10)

Any variable outside the bounds is discarded in favor of the other two. Then
the best two offspring are chosen to propagate. Of course, the factor 0.5 is 
not the only one that can be used in such a method. Heuristic crossover
(Michalewicz, 1991) is a variation where some random number, b, is chosen
on the interval [0, 1] and the variables of the offspring are defined by

(3.11)

Variations on this theme include choosing any number of variables to
modify and generating different b for each variable. This method also allows
generation of offspring outside of the values of the two parent variables. Some-
times values are generated outside of the allowed range. If this happens, the
offspring is discarded and the algorithm tries another b. The blend crossover
(BLX-a) method (Eshelman and Shaffer, 1993) begins by choosing some para-
meter a that determines the distance outside the bounds of the two parent
variables that the offspring variable may lie. This method allows new values
outside of the range of the parents without letting the algorithm stray too far.
Many codes combine the various methods to use the strengths of each. New
methods, such as quadratic crossover (Adewuya, 1996), do a numerical fit to
the fitness function. Three parents are necessary to perform a quadratic fit.

The algorithm used in this book is a combination of an extrapolation
method with a crossover method. We wanted to find a way to closely 
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mimic the advantages of the binary GA mating scheme. It begins by randomly
selecting a variable in the first pair of parents to be the crossover point

(3.12)

We’ll let

(3.13)

where the m and d subscripts discriminate between the mom and the dad
parent. Then the selected variables are combined to form new variables that
will appear in the children:

(3.14)

where b is also a random value between 0 and 1. The final step is to complete
the crossover with the rest of the chromosome as before:

(3.15)

If the first variable of the chromosomes is selected, then only the variables to
the right of the selected variable are swapped. If the last variable of the chro-
mosomes is selected, then only the variables to the left of the selected vari-
able are swapped. This method does not allow offspring variables outside the
bounds set by the parent unless b > 1.

For our example problem, the first set of parents are given by

A random number generator selects p1 as the location of the crossover. The
random number selected for b is b = 0.0272. The new offspring are given by
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Continuing this process once more with a b = 0.7898. The new offspring are
given by

3.1.7 Mutations

Here, as in the last chapter, we can sometimes find our method working too
well. If care is not taken, the GA can converge too quickly into one region of
the cost surface. If this area is in the region of the global minimum, that is
good. However, some functions, such as the one we are modeling, have many
local minima. If we do nothing to solve this tendency to converge quickly, we
could end up in a local rather than a global minimum. To avoid this problem
of overly fast convergence, we force the routine to explore other areas of the
cost surface by randomly introducing changes, or mutations, in some of the
variables. For the binary GA, this amounted to just changing a bit from a 0 to
a 1, and vice versa. The basic method of mutation is not much more compli-
cated for the continuous GA. For more complicated methods, see Michalewicz
(1994).

As with the binary GA, we chose a mutation rate of 20%. Multiplying the
mutation rate by the total number of variables that can be mutated in the pop-
ulation gives 0.20 ¥ 7 ¥ 2 � 3 mutations. Next random numbers are chosen to
select the row and columns of the variables to be mutated. A mutated vari-
able is replaced by a new random variable. The following pairs were randomly
selected:

The first random pair is (4, 1). Thus the value in row 4 and column 1 of the
population matrix is replaced with a uniform random number between one
and ten:

Mutations occur two more times. The first two columns in Table 3.4 show the
population after mating. The next two columns display the population after
mutation. Associated costs after the mutations appear in the last column. The
mutated values in Table 3.4 appear in italics. Note that the first chromosome

5.6130 fi 9 8190.
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is not mutated due to elitism. The mean for this population is -3.202. The third
offspring (row 7) has the best cost due to the crossover and mutation. If the
x-value were not mutated, then the chromosome would have a cost of 0.6 and
would have been eliminated in the natural selection process. Figure 3.3 shows
the distribution of chromosomes after the first generation.

Most users of the continuous GA add a normally distributed random
number to the variable selected for mutation

(3.6)

where

s = standard deviation of the normal distribution
Nn(0, 1) = standard normal distribution (mean = 0 and variance = 1)

p pn n n¢ = + ( )sN 0 1,

TABLE 3.4 Mutating the Population

Population after
Population after MutationsMating

x y x y cost

7.7246 5.5655 7.7246 5.5655 -9.8884
0.18758 8.9371 0.18758 8.9371 -8.0108
2.6974 6.2647 2.6974 6.2647 -2.8957
5.613 0.12885 9.819 7.1315 17.601
0.2558 6.2647 0.2558 6.2647 -0.03688
2.6292 8.9371 2.6292 8.9371 -10.472
6.6676 5.5655 9.1602 5.5655 -14.05
3.7544 6.2647 3.7544 6.2647 2.1359

Figure 3.3 Contour plot of the cost function with the population after the first 
generation.
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We do not use this technique because a good value for s must be chosen, the
addition of the random number can cause the variable to exceed its bounds,
and it takes more computer time.

3.1.8 The Next Generation

The process described is iterated until an acceptable solution is found. For our
example, the starting population for the next generation is shown in Table 3.5
after ranking. The bottom four chromosomes are discarded and replaced by
offspring from the top four parents. Another three random variables are
selected for mutation from the bottom 7 chromosomes. The population at the
end of generation 2 is shown in Table 3.6 and Figure 3.4.Table 3.7 is the ranked
population at the beginning of generation 3. After mating, mutation, and
ranking, the final population after three generations is shown in Table 3.8 and
Figure 3.5.

TABLE 3.5 New Ranked Population at the Start of
the Second Generation

x y Cost

9.1602 5.5655 -14.05
2.6292 8.9371 -10.472
7.7246 5.5655 -9.8884
0.18758 8.9371 -8.0108
2.6974 6.2647 -2.8957
0.2558 6.2647 -0.03688
3.7544 6.2647 2.1359
9.819 7.1315 17.601

TABLE 3.6 Population after Crossover and Mutation
in the Second Generation

x y Cost

9.1602 5.5655 -14.05
2.6292 8.9371 -10.472
7.7246 6.4764 -1.1376
0.18758 8.9371 -8.0108
2.6292 5.8134 -7.496
9.1602 8.6892 -17.494
7.7246 8.6806 -13.339
4.4042 7.969 -6.1528
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TABLE 3.7 New Ranked Population at the Start of
the Third Generation

x y Cost

9.1602 8.6892 -17.494
9.1602 5.5655 -14.05
7.7246 8.6806 -13.339
2.6292 8.9371 -10.472
0.18758 8.9371 -8.0108
2.6292 5.8134 -7.496
4.4042 7.969 -6.1528
7.7246 6.4764 -1.137

TABLE 3.8 Ranking of Generation 3 from Least to
Most Cost

x y Cost

9.0215 8.6806 -18.53
9.1602 8.6892 -17.494
9.1602 8.323 -15.366
9.1602 5.5655 -14.05
9.1602 8.1917 -13.618
2.6292 8.9371 -10.472
7.7246 1.8372 -4.849
7.8633 3.995 4.6471

Figure 3.4 Contour plot of the cost function with the population after the second 
generation.
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3.1.9 Convergence

This run of the algorithm found the minimum cost (-18.53) in three genera-
tions. Members of the population are shown as large dots on the cost surface
contour plot in Figures 3.2 to 3.5. By the end of the second generation, chro-
mosomes are in the basins of the four lowest minima on the cost surface. The
global minimum of -18.5 is found in generation 3. All but two of the popula-
tion members are in the valley of the global minimum in the final generation.
Figure 3.6 is a plot of the mean and minimum cost for each generation. The
GA was able to find the global minimum, unlike the Nelder-Mead and BFGS
algorithms presented in Chapter 1.

Figure 3.5 Contour plot of the cost function with the population after the third and
final generation.
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Figure 3.6 Plot of the minimum and mean costs as a function of generation. The algo-
rithm converged in three generations.



3.2 A PARTING LOOK

The binary GA could have been used in this example as well as a continuous
GA. Since the problem used continuous variables, it seemed more natural to
use the continuous GA. The next chapter presents some practical optimiza-
tion problems for both the binary and continuous GAs. Selecting the various
GA parameters, such as mutation rate and type of crossover, is still more of
an art than a science and will be discussed in Chapter 5.
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EXERCISES

1. Write a continuous GA that uses the following crossover:

a. (3.7)
b. (3.8)
c. (3.9)
d. (3.10)
e. (3.14)

2. Write a continuous GA that uses:

a. Pairing parents from top to bottom
b. Random pairing
c. Pairing based on cost
d. Roulette wheel rank weighting
e. Tournament selection
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3. Find the minimum of _____ (from Appendix I) using your continuous GA.

4. Experiment with different population sizes and mutation rates.Which com-
bination seems to work best for you? Explain.

5. Compare your GA with one of the following local optimizers:

a. Nelder-Mead downhill simplex
b. BFGS
c. DFP
d. Steepest descent
e. Random search

6. Since the GA has many random components, it is important to average the
results of several runs. Write a program that will average the results of
several GA runs. Now, do another one of the exercises and compare results.

7. Plot the convergence of the GA. Which GA parameters have the most
effect on convergence?

8. Compare the performance of the binary and continuous GAs. Which do
you prefer and why? Does the type of problem make a difference?
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