Tema 2: Tableros Semánticos

Dpto. Ciencias de la Computación e Inteligencia Artificial ${\rm UNIVERSIDAD\ DE\ SEVILLA}$

Tableros Semánticos

Introducción

ableros emánticos en l

Semanticos en LP

Tableros completos

Consecuencia lóg

Tableros Semánticos er LPO

formulas δ y γ

Búsqueda de modelos

Consecuencia lógica

Contenido

Tableros Semánticos

Introducción

Tableros Semánticos en LP

Fórmulas α y β Tableros completos Búsqueda de modelos Consecuencia lógica

Tableros Semánticos en LPO

Fórmulas δ y γ Tableros completos Búsqueda de modelos Consecuencia lógica Razonamiento con igualdad

Introducción

ableros emánticos en LP

Tableros completos

Búsqueda de modelos

Consecuencia lógica

ableros emánticos en PO

Fórmulas & y \gamma
Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualda

Tableros Semánticos

Introducción

- Algoritmo para estudiar la satisfactibilidad de un conjunto de fórmulas proposicionales y de primer orden.
- Trabaja directamente sobre el conjunto de fórmulas, sin preprocesamiento.
- Basado en la sintaxis de las fórmulas.
- Reduce la satisfactibilidad de las formulas consideradas a la de ciertos conjuntos de literales, que proporcionan modelos.
- ► Se representará gráficamente mediante un árbol binario.
- Es muy flexible y puede adaptarse a otras lógicas (descriptivas, modales, etc.).

Introducción

Semánticos en L Fórmulas α y β Tableros completos Búsqueda de modelos

ableros emánticos en

Fórmulas δ y γ Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualdad

Tableros Semánticos en LP

El método de tableros semánticos en LP:

- 1. Clasifica las fórmulas en dos clases:
 - Las fórmulas α , que se comportan como conjunciones.
 - Las fórmulas β , que se comportan como disyunciones.
- Asocia a cada fórmula, F, otras dos fórmulas más sencillas (sus componentes) de modo que la satisfactibilidad de F se reduce a la de sus componentes.

Tableros Semánticos

Introducción

Tableros Semánticos en LP

Fórmulas α y β Tableros completos
Búsqueda de modelos
Consecuencia lógica

ableros emánticos en PO

Tableros completos
Búsqueda de modelos
Consecuencia lógica

Fórmulas de tipo α

Las fórmulas de tipo α son las siguientes:

α	α_1	α_2
$\neg \neg F$	F	
$F_1 \wedge F_2$	F_1	F_2
$\neg (F_1 \lor F_2)$	$\neg F_1$	$\neg F_2$
$\neg (F_1 o F_2)$	F_1	$\neg F_2$
$F_1 \leftrightarrow F_2$	$F_1 \rightarrow F_2$	$F_2 \rightarrow F_1$

- Las fórmulas α_1 y α_2 son las componentes de α .
- ▶ Si F es de tipo α , entonces $F \equiv \alpha_1 \wedge \alpha_2$.
- Para satisfacer una fórmula de tipo α es necesario y suficiente satisfacer **simultáneamente** sus dos componentes α_1 y α_2 .

Tableros Semánticos

Introducción

Tableros Semánticos en LF

Fórmulas α y β

Tableros completos

Búsqueda de modelos

Consecuencia lógica

ableros emánticos en PO

Fórmulas δ y γ
Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualdad

Fórmulas de tipo β

Las fórmulas de tipo β son las siguientes:

β	eta_1	β_2
$F_1 \vee F_2$	F_1	F_2
$\neg (F_1 \wedge F_2)$	$\neg F_1$	$\neg F_2$
$(F_1 ightarrow F_2)$	$\neg F_1$	F_2
$\neg (F_1 \leftrightarrow F_2)$	$\neg (F_1 o F_2)$	$\neg (F_2 o F_1)$

- ▶ Las fórmulas β_1 y β_2 son las componentes de β .
- ▶ Si F es de tipo β , entonces $F \equiv \beta_1 \vee \beta_2$
- Para satisfacer una fórmula de tipo β es necesario y suficiente satisfacer sólo una de sus componentes β_1 y β_2 .

Tableros Semánticos

Introducció

Tableros

Semánticos en L Fórmulas α y β

Tableros completos Búsqueda de modelos Consecuencia lógica

ableros emánticos en .PO

Fórmulas δ y γ Tableros completos Búsqueda de modelos Consecuencia lógica

Reducen la consistencia de un conjunto de fórmulas a la de otro conjunto formado por fórmulas más sencillas.

▶ **Regla** α : Si $F \in U$ es de tipo α , entonces

$$U$$
 satisfactible \iff $(U-\{F\})\cup\{\alpha_1,\alpha_2\}$ satisfactible

▶ **Regla** β : Si $F \in U$ es de tipo β , entonces

Introduccion

Tableros Semánticos en LP

Fórmulas α y β

Tableros completos

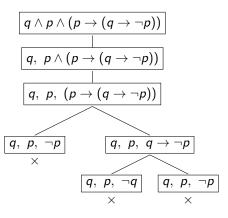
Búsqueda de modelos

ableros emánticos en PO

Tableros completos
Búsqueda de modelos
Consecuencia lógica

Ejemplo

Tablero semántico para la fórmula $q \land p \land (p \rightarrow (q \rightarrow \neg p))$:



Tableros Semánticos

Introducción

ableros

Semánticos en LF Fórmulas α y β

Tableros completos

Búsqueda de modelos

Consecuencia lógica

ableros emánticos en PO

Tableros completos
Búsqueda de modelos
Consecuencia lógica

Un **tablero** para $\{A_1, \ldots, A_n\}$ es un árbol T, con nodos etiquetados por conjuntos de fórmulas, que se ha construido siguiendo los siguientes pasos:

- ▶ La raíz r de T se etiqueta con $U_r = \{A_1, \ldots, A_n\}$.
- Mientras T tenga hojas no marcadas, seleccionar una hoja n de T, con etiqueta U_n , no marcada, y hacer:
 - 1. Si U_n es un conjunto de literales, entonces:
 - 1.1 Si existe un par de literales complementarios en U_n , marcar con \times (y se denomina **hoja cerrada**).
 - 1.2 Si no existe tal par, marcar con (hoja abierta).
 - 2. Si U_n no es un conjunto de literales, elegir A de U_n no literal.
 - 2.1 Si A es una α -fórmula, entonces añadir un hijo m a n con $U_m = (U_n \setminus \{A\}) \cup \{\alpha_1, \alpha_2\}$.
 - 2.2 Si A es una β -fórmula, entonces añadir dos hijos n_1, n_2 con etiquetas $U_{n_1} = (U_n \setminus \{A\}) \cup \{\beta_1\}$ y $U_{n_2} = (U_n \setminus \{A\}) \cup \{\beta_2\}.$

Introducción

Semánticos en LP Fórmulas α y β

Tableros completos

Búsqueda de modelos Consecuencia lógica

Tableros Semánticos en LPO

Fórmulas δ y γ Tableros completos
Búsqueda de modelos
Consecuencia lógica

- La construcción siempre termina (se puede probar por inducción).
- ► El tablero final se denomina **tablero completo**.
- Un tablero se dice cerrado si todas sus hojas son cerradas, y abierto en caso contrario (basta que una de sus hojas sea abierta).

Teorema. (Corrección y Completitud) Sea S un conjunto de fórmulas y T un tablero completo para S.

- 1. **Corrección**: Si *T* es cerrado, entonces *S* es insatisfactible.
- 2. **Completitud**: Si S es insatisfactible, entonces T es cerrado.

Introducción

ableros emánticos en LP fórmulas α y β

Tableros completos

Búsqueda de modelo Consecuencia lógica

Tableros Semánticos en LPO

Fórmulas & y \gamma
Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualdad

- Un conjunto de fórmulas $S = \{A_1, \ldots, A_n\}$ admite un tablero completo abierto si y sólo si es un conjunto satisfactible.
- Además, cada rama abierta del tablero completo define un modelo (no necesariamente distinto) de S de la siguiente forma:

Si U es la etiqueta de una hoja abierta, podemos obtener un modelo v del conjunto $\{A_1,\ldots,A_n\}$, como sigue

- ▶ Si $p \in U$, entonces v(p) = 1,
- ▶ $Si \neg p \in U$, entonces v(p) = 0,
- ► Si $p \notin U$ $y \neg p \notin U$, entonces v(p) puede tomar cualquier valor, 0 o 1.

Introducción

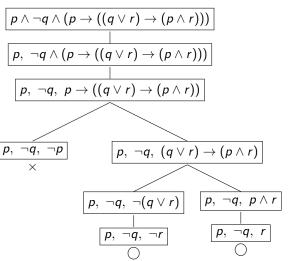
Semánticos en LP Fórmulas α y β

Búsqueda de modelos Consecuencia lógica

Fableros Semánticos en PO

Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualdad

Ejemplo



Obtenemos los modelos $v_1(p) = 1$, $v_1(r) = v_1(q) = 0$ y $v_2(p) = v_2(r) = 1, v_2(q) = 0.$

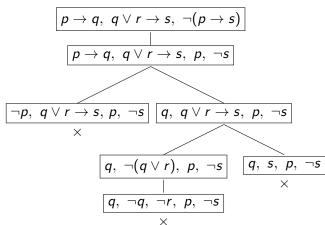
Tableros Semánticos

Búsqueda de modelos

Corolario.

 $\{A_1, \dots, A_n\} \models A$ si y solo si $\{A_1, \dots, A_n, \neg A\}$ admite un tablero cerrado.

Por ejemplo: $\{p \rightarrow q, q \lor r \rightarrow s\} \models p \rightarrow s$.



Introducción

Semánticos en LP

Tableros completos Búsqueda de modelos

Consecuencia lógica

Fableros Semánticos en .PO

Fórmulas δ y γ Tableros completos
Búsqueda de modelos
Consecuencia lógica

- ► Recordemos que:
 - Las fórmulas α se comportan como conjunciones
 - lackbox Las fórmulas eta se comportan como disyunciones

y asociamos a cada fórmula, F, de estos tipos otras dos fórmulas más sencillas (sus **componentes**) de modo que la satisfactibilidad de F se reduce a la de sus componentes.

- Para extenderlo a LPO debemos proporcionar formas de trabajar con los cuantificadores: ∃ y ∀.
- Por ello, introduciremos dos nuevos tipos de fórmulas:
 - Las fórmulas de tipo γ , que se comportan como fórmulas cuantificadas universalmente, y
 - Las fórmulas de tipo δ , que se comportan como fórmulas cuantificadas existencialmente.

Introducción

Semánticos en L Fórmulas α y β Tableros completos Búsqueda de modelos

Tableros Semánticos en LPO

Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualdad

Fórmulas de tipo γ

Las fórmulas de tipo γ son las siguientes:

γ	γ_t	
$\forall x F$	F[x/t]	(t es un término cerrado)
$\neg \exists x F$	$\neg F[x/t]$	(t es un término cerrado)

- Las fórmulas γ_t son las componentes de γ .
- Para satisfacer una fórmula de tipo γ es necesario satisfacer **simultáneamente** todas sus componentes γ_t , para todo término cerrado t.
- En este caso, dependiendo del lenguaje, puede haber una cantidad infinita de componentes (por ejemplo, basta que el lenguaje tenga un símbolo de constante y un símbolo de función).

Tableros Semánticos

Introducción

Semánticos en LF Fórmulas α y β Tableros completos

ableros emánticos en

Fórmulas δ y γ

Tableros completos

Búsqueda de modelos

Fórmulas de tipo δ

Las fórmulas de tipo δ son las siguientes:

δ	δ_{a}	
∃ <i>x F</i>	F[x/a]	(a es una nueva constante)
$\neg \forall x F$	$\neg F[x/a]$	(a es una nueva constante)

- Las fórmulas δ_a son las componentes de δ .
- Para satisfacer una fórmula de tipo δ es necesario y suficiente satisfacer alguna de sus componentes δ_a , para alguna nueva constante a.

Tableros Semánticos

Introducción

Semánticos en LP Fórmulas α y β Tableros completos

ableros emánticos en PO

Fórmulas δ y γ Tableros completos Búsqueda de modelos Consecuencia lógica ▶ **Regla** γ : Si $F \in U$ es de tipo γ , entonces

U consistente $\Leftrightarrow U \cup \{\gamma_t : t \text{ término cerrado}\}\$ consistente

▶ **Regla** δ : Si $F \in U$ es de tipo δ , entonces para cada constante nueva, a, se tiene:

U consistente \iff $(U - \{F\}) \cup \{\delta_a\}$ consistente

Introduccion

Tableros Semánticos en LP

Fórmulas α y β Tableros completos

Búsqueda de modelos

Consecuencia lógica

Fableros Semánticos en

Fórmulas δ y γ
Tableros completos
Búsqueda de modelos
Consecuencia lógica

Tablero Semántico para el conjunto de fórmulas

$$U = \{\exists x \ Q(x), \ \forall x \ (Q(x) \to R(x)), \ \forall x \neg R(x)\}$$

$$\exists x \ Q(x), \ \forall x \ (Q(x) \to R(x)), \ \forall x \neg R(x)$$

$$Q(a), \ \forall x \ (Q(x) \to R(x)), \ \forall x \neg R(x)$$

$$Q(a), \ Q(a), \ P(a), \ P(a),$$

En cada paso subrayamos la fórmula sobre la que se aplica una regla.

Introducció

Tableros Semánticos en LP

Tableros completos Búsqueda de modelos

Tableros Semánticos en

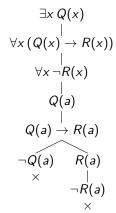
LPO Fórmulas δ y γ

Tableros completos

Búsqueda de modelos

Consecuencia lógica

Consecuencia lógica Razonamiento con igualdad En LPO representaremos los tableros etiquetando cada nodo con una fórmula. El tablero anterior se escribirá:



Notación: Si n es un nodo de T, E_n es la etiqueta de n (una sola fórmula), y U_n es el conjunto de etiquetas de todos los antecesores de n en T, incluyendo al propio nodo n.

Fórmulas δ v γ

Construcción de un tablero completo

Un **tablero** para F es un árbol T, con nodos etiquetados por fórmulas y cuya raíz está etiquetada por F que se construye mediante el siguiente procedimiento: Para cada hoja n de T, ni abierta ni cerrada, hacer:

- 1. Si existe un par de literales complementarios en U_n , marcar con \times (hoja cerrada).
- 2. Si no, pero hay una fórmula, A_i en U_n no usada:
 - 2.1 A de tipo α : añadir n_1 a n, $E_{n_1} = \alpha_1$, y n_2 a n_1 , $E_{n_2} = \alpha_2$, y marcar A como usada en n''.
 - 2.2 A de tipo β : añadir n_1 , n_2 a n, $E_{n_1} = \beta_1$, $E_{n_2} = \beta_2$, y marcar A como usada en n_1 y n_2 .
 - 2.3 A de tipo δ : añadir m a n, $E_m = \delta_a$ (a una nueva constante), y marcar A como usada en m.
 - 2.4 A de tipo γ y existe t, término cerrado del lenguaje del tablero, con $\gamma_t \notin U_n$: añadir m a n, $E_m = \gamma_t$ (no se marca A como usada).
- 3. Si no se verifica ninguno de los anteriores en U_n , marcar con (hoja abierta).

- Un tablero para un conjunto de fórmulas $\{A_1, \ldots, A_n\}$ es un tablero para la fórmula $A_1 \wedge \cdots \wedge A_n$.
- Un tablero completo es un tablero construido siguiendo las reglas anteriores y que no puede extenderse más.
- ► Puede ocurrir que un tablero completo sea infinito (una rama puede crecer indefinidamente).
- Un tablero es cerrado si todas sus hojas son cerradas, y abierto en caso contrario.
- ► Los tableros completos con ramas infinitas son abiertos, porque una rama infinita no puede tener hojas cerradas.

Teorema. (Corrección y Completitud)

Sea S un conjunto de fórmulas cerradas:

- 1. **Corrección**: Si *S* admite un tablero completo y cerrado, entonces *S* es inconsistente.
- 2. **Completitud**: Si *S* es inconsistente, entonces *S* admite un tablero completo y cerrado.

Introducción

Fórmulas α y β
Tableros completos
Búsqueda de modelos

ableros emánticos en PO

Tableros completos

Búsqueda de modelos Consecuencia lógica Razonamiento con igualdad Si un conjunto de fórmulas cerradas S es consistente, entonces pueden darse dos situaciones:

- 1. *S* admite un tablero completo abierto finito, y por tanto tiene una rama finita abierta.
- 2. El tablero para *S* tiene una rama infinita abierta, *R*, donde:
 - 2.1 Para toda fórmula de tipo α que etiqueta un nodo de R existen descendientes de dicho nodo en R etiquetados con las componentes de dicha fórmula.
 - 2.2 Para cada fórmula de tipo β o δ que etiqueta un nodo de R existe un descendiente de dicho nodo en R etiquetado con una de las componentes de la fórmula.
 - 2.3 Para toda fórmula de tipo γ que etiqueta un nodo de R y cada término cerrado t del lenguaje de R, existe un nodo en R etiquetado con γ_t .

En cualquier caso, podemos definir un modelo utilizando la rama abierta correspondiente.

Introducción

Semánticos en LF Fórmulas α y β Tableros completos Búsqueda de modelos

ableros emánticos en PO

Tableros completos

Búsqueda de modelos

Consecuencia lógica Razonamiento con igualdad

$$S = \{ \forall x \, \forall y \, (P(x, y) \to P(y, x)), \, \forall x \, \neg P(x, x), \, \exists x \, \exists y \, P(x, y) \}$$

proporciona el siguiente modelo:

- ▶ Universo $M = \{0, 1\}$
- $P^{\mathcal{M}} = \{(0,1), (1,0)\}$
- ► El conjunto

$$\{\exists x \ Q(x), \ \forall x \ P(x, f(x)), \ \forall x \ \neg P(x, x)\}$$

es consistente pero no admite ningún tablero completo **finito**. Sin embargo, es posible construir un tablero infinito en el que una rama infinita proporciona el siguiente modelo:

- ▶ Universo: $M = \{0, 1, 2, ...\}$
- $Q^{M} = \{0\}$
- Para cada $j \in M$, $f^{\mathcal{M}}(j) = j + 1$
- $P^{\mathcal{M}} = \{(j, j+1) : j \in M\}.$

Introduc

emánticos en L $^{\circ}$ Fórmulas lpha y etaTableros completos

ableros emánticos en

Tableros completos

Búsqueda de modelos

Consecuencia lógica

Para determinar si se tiene

$$\{\forall x (P(x) \to Q(x)), \forall y (Q(y) \lor R(y) \to S(a))\} \models \forall x (P(x) \to S(a))$$

► Como $\forall x (P(x) \rightarrow S(a))$ es **cerrada** podemos trabajar con el conjunto

$$\Sigma = \{ \forall x (P(x) \to Q(x)), \forall y (Q(y) \lor R(y) \to S(a)), \\ \neg \forall x (P(x) \to S(a)) \}$$

- ▶ Si Σ es inconsistente la fórmula $\forall x (P(x) \rightarrow S(a))$ será consecuencia lógica del resto de fórmulas.
- Podemos verificarlo con un tablero:

Introduccioi

Tableros Semánticos en LP

Tableros completos

Búsqueda de modelos

Consecuencia lógica

ableros emánticos en PO

Fórmulas 0 y γ
Tableros completos

Búsqueda de modelos

Consecuencia lógica

Razonamiento con igualdad

Consecuencia lógica

Tableros Semánticos

Consecuencia lógica

- Si L es un LPO con igualdad, el razonamiento con fórmulas de L debe debe tener en cuenta que el predicado de igualdad necesita un tratamiento específico.
- Un posibilidad es incluir axiomas que describen las propiedades fundamentales del predicado de igualdad:
 - ▶ (Identidad) $\forall x (x = x)$.
 - Sustitución) Si t_1, \ldots, t_n son términos de L y $F(x_1, \ldots, x_n)$ es una fórmula **atómica** entonces

$$\forall x_1 \ldots \forall x_n \, (x_1 = t_1 \land \cdots \land x_n = t_n \rightarrow (F(x_1, \ldots, x_n) \rightarrow F(t_1, \ldots, t_n)^{\text{Psyconamiento con igualdad}})$$

- Otras propiedades de la igualdad pueden obtenerse a partir de las anteriores, por ejemplo:
 - $(Simetría) \ \forall x \ \forall y \ (x = y \rightarrow y = x).$
 - ► (Transitividad) $\forall x \forall y (x = y \land y = z \rightarrow x = z)$.

Introducción

Tableros
Semánticos en LP
Fórmulas α y β Tableros completos

Tableros Semánticos en

Tableros completos

Búsqueda de modelos

Consecuencia lógica

En el método de tableros para tener en cuenta estas propiedades basta incorporar dos nuevas reglas, conocidas como **reglas de igualdad**:

Regla I₁. Para cada término cerrado t, se puede extender cualquier rama del tablero T añadiendo a su hoja un nuevo descendiente marcado con la fórmula

$$t = t$$

▶ **Regla** I_2 . Si t y s son términos **cerrados** y en una rama de T aparecen un **literal** $P(t_1, \ldots, t, \ldots, t_n)$ y la fórmula t = s (o la fórmula s = t), entonces podemos extender dicha rama añadiendo a su hoja un nuevo descendiente marcado con la fórmula

$$P(t_1,\ldots,s,\ldots,t_n)$$

Introducción

Semánticos en L Fórmulas α y β Tableros completos Búsqueda de modelos

Tableros Semánticos en PO

Tableros completos
Búsqueda de modelos
Consecuencia lógica
Razonamiento con igualdad

Ejemplos (I)

$$\forall x \, \forall y \, (x = y \to f(x) = f(y))$$
 es lógicamente válida:

Tableros Semánticos

Introducción

Tableros Semánticos en LP

Tableros completos

Búsqueda de modelos

Consecuencia lógica

Γableros Semánticos en ₋PO

Tableros completos
Búsqueda de modelos

Consecuencia lógica Razonamiento con igualdad

Ejemplos (II)

 $\forall x \, \forall y \, \forall z \, (x = y \land y = z \rightarrow x = z)$ es lógicamente válida:

Tableros Semánticos

Introducción

Tableros Semánticos en L

> Fórmulas α y β Tableros completos

Búsqueda de modelos Consecuencia lógica

Tableros Semánticos en LPO

Tableros completos

Búsqueda de modelo

Consecuencia lógica

Razonamiento con igualdad

Ejemplos (III)

$$\{\exists x (f(x,x) = a), \forall x (f(x,a) = b)\} \models \exists x (f(x,f(x,x)) = b)$$

$$\exists x (f(x,x) = a)$$

$$\forall x (f(x,a) = b)$$

$$\neg \exists x (f(x,f(x,x)) = b)$$

$$f(c,c) = a$$

$$\neg f(c,f(c,c)) = b$$

$$\neg f(c,a) = b$$

$$f(c,a) = b$$

Tableros Semánticos

Introducción

Tableros Semánticos en L

Tableros completos Búsqueda de modelos

Tableros Semánticos en LPO

Tableros completos
Búsqueda de modelos

Razonamiento con igualdad