Tema 1: Sintaxis y Semántica de las Lógicas Proposicional y de Primer Orden

Lógica Informática — Tecnologías Informáticas Dpto. Ciencias de la Computación e Inteligencia Artificial UNIVERSIDAD DE SEVILLA

9 de septiembre de 2022

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Inducción sobre fórmulas

Funciones de verdad

Semántica: Valoracione

Consecuencia lógica y

Problemas de decisión

Limitaciones y ejemplo

Lógica de Primer Orden

Sinta

érminos y fórmula

Semántica

Estructuras

Interpretación de términos v fórmulas

Consecuencia lógica y

Contenido

Introducción

Lógica Proposicional

Sintaxis

Sintaxis: Fórmulas

Inducción sobre fórmulas

Semántica

Funciones de verdad

Semántica: Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de decisión

Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxis

Términos y fórmulas Sustituciones

Semántica

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Lógica Proposicional y de Primer Orden

Dados un conjunto de **afirmaciones** (hechos, hipótesis,...), \mathcal{BC} , y una afirmación A, **decidir** si A ha de ser **necesariamente** cierta cuando todas las afirmaciones de \mathcal{BC} lo son.

La **Lógica** proporciona **formulaciones precisas** de este problema y **diferentes soluciones**. Para abordar este problema formalmente hemos de:

- 1. Diseñar un **lenguaje** para expresar las afirmaciones (*representación*).
- 2. Concretar qué entendemos por afirmación cierta.
- Proporcionar mecanismos efectivos para razonar que garanticen la corrección de las deducciones.

A lo largo de este curso estudiaremos estas cuestiones en los dos casos más comunes: la Lógica Proposicional, y la Lógica de Primer Orden.

Introducción

Lógica Proposicional

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad Semántica: Valoraciones Consecuencia lógica y

satisfactibilidad Problemas de decisión

_ógica de Primer

Orden Sintaxis

Sintax

Términos y fórn Sustituciones

Semantica Estructuras

Estructuras

Interpretación de término y fórmulas

y fórmulas Consecuencia lógica y

Lógica Proposicional

Lógica Proposicional y de Primer Orden

Introducció

Lógica Proposicional

Sintaxis

Sintaxis: I

Inducción sobre fórmula

Semántica

Funciones de verdad

Semántica: Valoracio

Consecuencia lógica y

Problemas de decisión

1:------

Limitaciones y ejemplo

Lógica de Primer Orden

Sint

Términos y fórmula

Sustituciones

Sustitucione

Estructura

Estructura

Interpretación de términos y fórmulas

consecuencia lógica y

Lógica Proposicional

Características generales de la Lógica Proposicional (LP):

- Sus expresiones (fórmulas) representan afirmaciones (hechos, oraciones) que pueden considerarse verdaderas o falsas.
- Se construyen a partir de expresiones básicas otras más complejas usando operadores (conectivas).
- Las conectivas se corresponden con formas sencillas de construir afirmaciones complejas en el lenguaje natural partiendo de otras más sencillas:
 - ► Conjunción: "...tal ...y...cual..."
 - Disyunción: "...tal ...o...cual ..."
 - ▶ Implicación "Si . . . tal . . . entonces. . . cual . . . "
 - ► Negación: "No es cierto que tal . . . "
- Sólo permite analizar las formas de razonamiento ligadas a este tipo de construcciones.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre fórmulas Semántica

Semántica: Valoracion Consecuencia lógica y satisfactibilidad

Problemas de decisi Limitaciones y ejem

Lógica de Primer Orden

Sintax

Términos y fórm Sustituciones

Semántica

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez **Ejemplo 2**: Si hay corriente y la lámpara no está fundida, entonces está encendida. La lámpara no está encendida. Hay corriente. **Por tanto**, la lámpara está fundida.

▶ Simbolización:

Simb.	Ejemplo 1	Ejemplo 2
р	el tren llega a las 7	hay corriente
q	hay taxis en la estación	la lámpara está fundida
r	Juan llega tarde a la reunión	la lámpara está encendida

- Razonamiento (informal): Si p y no q, entonces r. No r. p. Por tanto, q.
- ► Razonamiento formal (¿cómo?): $\{p \land \neg q \rightarrow r, \ \neg r, \ p\} \models q.$

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre fórmulas Semántica

Funciones de verdad
Semántica: Valoraciones

Problemas de decisió

Lógica de Primer

Orden Sintaxis

érminos y fórm

Semántica

Estructuras

Interpretación de términ y fórmulas

nsecuencia lógica y idez

Lógica Proposicional y de Primer Orden

El lenguaje de la Lógica Proposicional consta de:

- 1. Un conjunto numerable de **variables proposicionales**: $VP = \{p, p_0, p_1, \dots, q, q_0, q_1, \dots, r, r_0, \dots\}$
- Operadores básicos de contrucción, Conectivas lógicas:
 - ▶ De aridad 1: ¬ (negación).
 - De aridad 2: ∨ (disyunción), ∧ (conjunción), → (condicional) y ↔ (bicondicional).
- 3. **Símbolos auxiliares**: "(" y ")" (para leer fácilmente las expresiones).

Introducción

Proposicional Sintaxis

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad Semántica: Valoraciones

Problemas de decisión

Lógica de Primer

Logica de Primei Orden

Sintaxis

érminos y fórmul: Istituciones

emántica

Estructuras Interpretación de térm

y fórmulas

El conjunto de las *fórmulas proposicionales*, PROP, es el menor conjunto de expresiones que verifica:

- VP ⊆ PROP,
- Es cerrado bajo las conectivas, es decir:
 - ▶ Si $F \in PROP$, entonces $\neg F \in PROP$.
 - ▶ Si $F, G \in PROP$, entonces $(F \lor G)$, $(F \land G)$, $(F \to G)$, $(F \leftrightarrow G) \in PROP$.
- La sintaxis del lenguaje pretende evitar la ambigüedad en la interpretación de las fórmulas (esa es la función de los símbolos auxiliares).

Cuestión: ¿Existe ambigüedad de lectura (como ocurre a veces en el lenguaje humano)?

Introducción

Proposicional
Sintaxis

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad

Semántica: Valoraciones

Problemas de decisión

Lógica de Primer

Orden

Términos y fórmula Sustituciones

Semántica Estructuras

Interpretación de térn

y fórmulas

Árboles de formación

- Asociamos a cada fórmula un árbol de formación (esencialmente único) que describe el modo en que se construye la fórmula a partir de otras más sencillas.
- ▶ Ejemplo:

$$\neg(\neg(p \lor q) \to (\neg r \land s))$$

$$| (\neg(p \lor q) \to (\neg r \land s))$$

$$\neg(p \lor q) \quad (\neg r \land s)$$

$$| (p \lor q) \quad \neg r \quad s$$

$$| p \quad q \quad r$$

► Las fórmulas que aparecen en el árbol de formación de una fórmula *F* se denominan **subfórmulas** de *F*.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad Semántica: Valoracione

satisfactibilidad

Problemas de decisión

Lógica de Primer

Sinta

Γérminos y fórmulas Sustituciones

Estructuras

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez Para facilitar la lectura de las fórmulas adoptaremos los siguientes convenios de notación:

- ▶ Omitiremos los paréntesis externos.
- Daremos a las conectivas una precedencia de asociación. De mayor a menor preferencia están ordenadas por:

$$\neg, \land, \lor, \rightarrow$$

Ejemplo: $F \wedge G \rightarrow \neg F \vee G$ es $((F \wedge G) \rightarrow (\neg F \vee G))$.

- ► Siempre se dejarán los paréntesis para ↔.
- Cuando una conectiva se usa repetidamente, se asocia por la derecha:

$$F \vee G \vee H$$
 es $(F \vee (G \vee H))$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad Semántica: Valoraciones

consecuencia logica y satisfactibilidad Problemas de decisión

Limitaciones y ejempl

Lógica de Primer Orden

Sinta

Términos y fórmula Sustituciones

Estructuras

Estructuras Interpretación de ti

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Principio de Inducción sobre fórmulas

Gracias a la definición de PROP si deseamos probar que toda fórmula proposicional satisface cierta propiedad Ψ , podemos probarlo por **inducción sobre fórmulas**.

Para ello probamos:

- Caso base: Todos los elementos de VP tienen la propiedad Ψ.
- 2. Paso de inducción:
 - 2.1 Si $F \in \mathsf{PROP}$ tiene la propiedad Ψ , entonces $\neg F$ tiene la propiedad Ψ .
 - 2.2 Si $F, G \in PROP$ tienen la propiedad Ψ , entonces las fórmulas $(F \vee G), (F \wedge G), (F \rightarrow G)$ y $(F \leftrightarrow G)$ también tienen la propiedad Ψ .

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis: Fórmulas

Inducción sobre fórmulas Semántica

Funciones de verdad

Semántica: Valoraciones

satisfactibilidad Problemas de decisión

ágica de Primer

Lógica de Primer Orden

Sintax

Términos y fórmu Sustituciones

Semantica Estructuras

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

- ► Los elementos del conjunto {0,1} se llaman valores de verdad. Se dice que 0 es el valor falso y el 1 es el valor verdadero.
- ► El *significado* de una conectiva se determina mediante su **función de verdad** (una *función booleana*):

$$H_{\vee}(i,j) = \begin{cases} 0, & \text{si } i = j = 0; \\ 1, & \text{en otro caso.} \end{cases}$$

$$H_{\wedge}(i,j) = \begin{cases} 1, & \text{si } i = j = 1; \\ 0, & \text{en otro caso.} \end{cases}$$

$$H_{\rightarrow}(i,j) = \begin{cases} 0, & \text{si } i = 1, j = 0; \\ 1, & \text{en otro caso.} \end{cases}$$

$$H_{\leftrightarrow}(i,j) = \begin{cases} 1, & \text{si } i = j; \\ 0, & \text{en otro caso.} \end{cases}$$

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad

satisfactibilidad

Problemas de decisión

Lógica de Primer Orden

Sintax

érminos y fórmula ustituciones

Semantica

Interpretación de término

Consecuencia lógica y

Las variables proposicionales se interpretan mediante una valoración de verdad (o interpretación), una aplicación

$$v: VP \rightarrow \{0,1\}$$

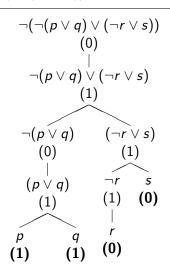
- Se prueba por inducción que podemos extender cada valoración, v, de forma única, al conjunto de todas las fórmulas verificando que para toda fórmula F se verifique:
 - \triangleright $v(\neg F) = H_{\neg}(v(F)).$
 - \triangleright $v((F \lor G)) = H_{\lor}(v(F), v(G)).$
 - \triangleright $v((F \land G)) = H_{\land}(v(F), v(G)).$
 - \triangleright $v((F \rightarrow G)) = H_{\rightarrow}(v(F), v(G)).$
 - \triangleright $v((F \leftrightarrow G)) = H_{\leftrightarrow}(v(F), v(G)).$
- \triangleright Se dice que v(F) es el valor de verdad de F respecto de v.

Semántica: Valoraciones

Orden

Valor de verdad (con árboles de formación)

Supongamos v(p) = v(q) = 1 y v(r) = v(s) = 0. Usando el árbol de formación para calcular (de abajo a arriba) el valor $v(\neg(\neg(p \lor q) \lor (\neg r \lor s))$:



Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Sintaxis: Fórmulas

emántica

Semántica: Valoraciones

Consecuencia lógica y satisfactibilidad

Problemas de decisión

Limitaciones y ejemplos

Lógica de Primer Orden

Sinta

Sustituciones

Estructuras

Interpretación de términ

y fórmulas

Consecuencia lógica y validez

Como se ve con el árbol, el valor de verdad de una fórmula F respecto de una v está determinado por los valores de verdad de las subfórmulas de F.

Ejemplo: si v(p) = v(q) = 0 y v(r) = 1, entonces

$$\begin{array}{ll} v(\neg((p \rightarrow q) \lor r)) &= H_{\neg}(H_{\lor}(v(p \rightarrow q), v(r))) = \\ &= H_{\neg}(H_{\lor}(H_{\rightarrow}(v(p), v(q)), 1)) = 0 \end{array}$$

Fijada v podemos presentar el cálculo de F mediante una tabla que recorre los valores de sus subfórmulas:

Una tabla de verdad para F es una tabla similar que contiene una fila por cada posible valoración que asigne valores a las variables proposicionales que aparecen en F.

Lógica Proposicional y de Primer Orden

Proposicional

Semántica: Valoraciones

Lógica de Primer Orden

Ejemplo

p	q	r	$(p \lor q)$	$\neg (p \lor q)$	$(p \to r)$	$\ \neg (p \lor q) \to (p \to r)$
V	V	V	V	F	V	V
V	V	F	V	F	F	V
V	F	V	V	F	V	V
V	F	F	V	F	F	V
F	V	V	V	F	V	V
F	V	F	V	F	V	V
F	F	V	F	V	V	V
F	F	F	F	V	V	V

Lógica Proposicional y de Primer Orden

Semántica: Valoraciones

- ▶ Decimos que una fórmula F es **válida en** v, o que v es un **modelo** de F, si v(F) = 1.
 - Notación: $v \models F$.
 - Una valoración v es *modelo* de un conjunto de fórmulas U, $v \models U$, si v es modelo de todas las fórmulas de U.
- Una fórmula F es una **tautología** (o **válida**) si es válida para toda valoración (notación $\models F$).
- ▶ Una fórmula F es satisfactible (o consistente) si existe una valoración que es modelo de F. En caso contrario diremos que es insatisfactible (o inconsistente).
 - Análogamente, un conjunto de fórmulas U es satisfactible (o consistente) si existe una valoración que es modelo de U. En caso contrario diremos que es insatisfactible (o inconsistente).
- Una fórmula F es contingente si es consistente pero no tautología

Introducción

Lógica Proposiciona Sintaxis

Sintaxis: Fórmulas Inducción sobre fórmulas Semántica

Semántica: Valoraciones Consecuencia lógica y satisfactibilidad

Problemas de decisión

Lógica de Primer Orden

Sintax

Términos y fórmulas Sustituciones

Semantica

Interpretación de te

y fórmulas Consecuencia lógica y

Clasificaciones de fórmulas

Todas las fórmulas				
Tautologías	Contigentes	Contradicciones		
Verdadera en todas las interpretaciones	Verdadera en algunas interpretaciones y falsa en otras	Falsa en todas las interpretaciones		
(ej. $p \lor \neg p$)	(ej. $p o q$)	(ej. $p \land \neg p$)		
Safisfacibles Insatisfacibles				
Todas las fórmulas				

Lógica Proposicional y de Primer Orden

Introducción

Lógica	
Proposiciona	ıl

Sintaxis: Fórmulas Inducción sobre fórmulas

emántica

Funciones de verdad

Semántica: Valoracion

Consecuencia lógica y satisfactibilidad

Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxi

Términos y fórmulas Sustituciones

emántica = . . .

Estructuras

Interpretación de términos

ionsecuencia lógica y

Validez y satisfactibilidad (II)

Relación entre conceptos:

Lema. Para cada $F \in PROP$ se verifica:

- ► Si *F* es un tautología entonces *F* es satisfactible.
- ▶ F es una tautología si y sólo si $\neg F$ insatisfactible.

Ejemplos:

- ▶ Son tautologías: $(p \lor \neg p)$ y $((p \to q) \to p) \to p$.
- ▶ $p \land \neg p$ es insatisfactible y, por tanto, $\neg(p \land \neg p)$ es una tautología.
- $(p \rightarrow q) \rightarrow p$ es satisfactible pero no es una tautología.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Sintaxis: Fórmulas
Inducción sobre fórmulas

Funciones de verdad

Semántica: Valoraciones

Consecuencia lógica y

satisfactibilidad Problemas de decisión

Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxi

érminos y fórmulas ustituciones

Semantica Estructuras

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

$$v \models U \implies v \models F$$

- Notación: $U \models F$.
- La relación de consecuencia lógica permite formular el problema básico en el marco de la lógica proposicional.

Relación entre consecuencia lógica, consistencia y validez:

Proposición. Sea $\{F_1, \dots F_n\} \subseteq PROP$. Son equivalentes:

- $\blacktriangleright \{F_1,\ldots,F_n\} \models F$
- ▶ $F_1 \land \cdots \land F_n \rightarrow F$ es un tautología.
- ▶ $\{F_1, ..., F_n, \neg F\}$ es insatisfactible.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas Inducción sobre fórmula:

Funciones de verdad

Consecuencia lógica y satisfactibilidad

Limitaciones y ejemple

Lógica de Primer Orden

Sintax

Términos y fórmul: Sustituciones

Fetructurae

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y

Ejemplos

$$\{p \to q, q \to r\} \models p \to r$$

	р	q	r	$p \rightarrow q$	$q \rightarrow r$	$p \rightarrow r$
I_1	0	0	0	1	1	1
I_2	0	0	1	1	1	1
<i>I</i> ₂ <i>I</i> ₃	0	1	0	1	0	1
I_4	0 1 1	1	1	1	1	1
I_5	1	0	0	0	1	0
I_6	1	0	1	0	1	1
I ₇ I ₈	1	1	0	1	0	0
I_8	1	1	1	1	1	1

{ <i>p</i> }	$\not\models$	$p \wedge$	q
--------------	---------------	------------	---

p	q	$p \wedge q$
1	1	1
1	0	0
0	1	0
0	0	0

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre fórmulas Semántica

Funciones de verdad Semántica: Valoraciones

Consecuencia lógica y satisfactibilidad Problemas de decisión

Lógica de Primer

Lógica de Primer Orden

Sintax

ustituciones

Fetructurae

Estructuras

Interpretación de términos

onsecuencia lógica y alidez

Algoritmos de decisión (I)

Dado un conjunto de fórmulas proposicionales, U, un algoritmo de decisión para U es un algoritmo que dada $A \in PROP$, devuelve SI cuando $A \in U$, y NO si $A \notin U$.

Casos especialmente interesantes:

- ▶ $SAT = \{A \in PROP : A \text{ es satisfactible}\}$
- ▶ TAUT = $\{A \in PROP : A \text{ es una tautología}\}$
- ▶ Fijado $U \subseteq PROP$, la **Teoría de** U es

$$\mathcal{T}(U) = \{ A \in PROP : U \models A \}$$

Un algoritmo de decisión para $\mathcal{T}(U)$ propociona una respuesta al Problema Básico expuesto al principio del tema.

Lógica
Proposicional y de
Primer Orden

Introducción

Lógica Proposicional _{Sintaxis}

Inducción sobre fórmulas

Funciones de verdad Semántica: Valoracione

satisfactibilidad

Problemas de decisión

Limitaciones y ejemplos

Lógica de Primer Orden

Sinta

Términos y fórm Sustituciones

Estructuras

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Algoritmos de decisión (II)

Problema Básico:

Diseñar un algoritmo que, dado un conjunto finito de fórmulas proposicionales, U, y una fórmula F, decida si $U \models F$.

El problema se reduce a decidir la satisfactibilidad de una cierta fórmula (o si se prefiere, la validez de otra) por la proposición anterior. Por tanto,

- La construcción de tablas de verdad induce un algoritmo (ineficiente) para decidir la consecuencia lógica.
- El Problema Básico es resoluble algorítmicamente. aunque no se conoce ninguna solución eficiente y se duda de la existencia de algoritmos de decisión eficientes para este problema, ya que ...
- determinar la satisfactibilidad de una fórmula. proposicional es un problema NP-completo.

Lógica Proposicional y de Primer Orden

Problemas de decisión

Lógica de Primer

Algoritmos de decisión (III)

Problema Básico (bis):

Obtener un algoritmo <u>eficiente</u> que, dado un conjunto finito de fórmulas proposicionales, U, y una fórmula F, decida si $U \models F$.

Observaciones:

- Este problema es equivalente al de obtener un algoritmo eficiente para determinar la satisfactibilidad de una fórmula proposicional.
- Se trata de un problema abierto, que posiblemente tendrá una respuesta negativa (se cree que no existen algoritmos eficientes para resolver SAT).
- Para propósitos prácticos puede bastar con algoritmos eficientes para alguna clase especial de fórmulas.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis Sintaxis: Fórmulas

> Inducción sobre fórmulas Semántica

Semántica: Valoracione Consecuencia lógica y

Problemas de decisión Limitaciones y ejemplo

Lógica de Primer Orden

Sintax

Términos y fórmul: Sustituciones

Estructuras

Estructuras

Interpretación de términos y fórmulas

, Consecuencia lógica y validez

Limitaciones de la lógica proposicional

- La lógica proposicional posee un semántica sencilla y existen algoritmos de decisión para sus problemas básicos, como SAT o la consecuencia lógica.
- Sin embargo, la expresividad de la lógica proposicional es bastante limitada.
- Existen problemas cuya descripción mediante lógica proposicional es complicada, pues requieren un gran número de fórmulas o fórmulas de gran tamaño.
- Más aún, existen formas de razonamiento válidas que no pueden ser expresadas mediante la lógica proposicional, por ejemplo:
 - ► Todos los hombres son mortales
 - Sócrates es un hombre.
 - Por tanto, Sócrates es mortal.
- La Lógica de Primer Orden extiende a la Lógica Proposicional proporcionando mayor expresividad.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional Sintaxis

Inducción sobre fórmulas Semántica

Semántica: Valoracione Consecuencia lógica y satisfactibilidad

Limitaciones y ejemplos

Lógica de Primer Orden

Sintax

Términos y fórmula Sustituciones

Estructuras

Interpretación de término y fórmulas

Consecuencia lógica

- 1. Los animales con pelo o que dan leche son mamíferos.
- 2. Los mamíferos que tienen pezuñas o que rumian son ungulados.
- 3. Los ungulados de cuello largo son jirafas.
- 4. Los ungulados con rayas negras son cebras.

Se observa un animal que tiene pelos, pezuñas y rayas negras. Por consiguiente, se concluye que el animal es una cebra.

► Formalización:

```
{ tiene_pelos ∨ da_leche → es_mamífero,
  es_mamífero ∧ (tiene_pezuñas ∨ rumia) → es_ungulado,
  es_ungulado ∧ tiene_cuello_largo → es_jirafa,
  es_ungulado ∧ tiene_rayas_negras → es_cebra,
  tiene_pelos ∧ tiene_pezuñas ∧ tiene_rayas_negras}
= es_cebra
```

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional _{Sintaxis}

Sintaxis: Fórmulas
Inducción sobre fórmula

Funciones de verdad

Semántica: Valoraciones

Consecuencia lógica y

satisfactibilidad

Problemas de decisión

Limitaciones y ejemplos

Lógica de Primer

Orden

Sintaxis

Sustituciones

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

- ► Enunciado: En una isla hay dos tribus, la de los veraces (que siempre dicen la verdad) y la de los mentirosos (que siempre mienten). Un viajero se encuentra con tres isleños A, B y C y cada uno le dice una frase
 - 1. A dice "B y C son veraces syss C es veraz"
 - B dice "Si A y C son veraces, entonces B y C son veraces y A es mentiroso"
 - 3. C dice "B es mentiroso syss A o B es veraz"

Determinar a qué tribu pertenecen A, B y C.

- ► Simbolización: *a*: "A es veraz", *b*: "B es veraz", *c*: "C es veraz".
- ► Formalización:

$$F_1 = a \leftrightarrow (b \land c \leftrightarrow c), F_2 = b \leftrightarrow (a \land c \rightarrow b \land c \land \neg a)$$
y $F_3 = c \leftrightarrow (\neg b \leftrightarrow a \lor b).$

- ► Modelos de $\{F_1, F_2, F_3\}$: Si I es modelo de $\{F_1, F_2, F_3\}$, entonces I(a) = 1, I(b) = 1, I(c) = 0.
- Conclusión: A y B son veraces y C es mentiroso.

Introducción

Proposicional Sintaxis

Inducción sobre fórmulas Semántica

Semántica: Valoracione Consecuencia lógica y satisfactibilidad

Problemas de decisión Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxi

Términos y fórmulas Sustituciones

Estructuras

Interpretación de término y fórmulas

Consecuencia lógica y validez

Limitación expresiva de la lógica proposicional

- **Eiemplo 1**: Si Sevilla es vecina de Cádiz, entonces Cádiz es vecina de Sevilla. Sevilla es vecina de Cádiz. Por tanto. Cádiz es vecina de Sevilla
 - Representación en lógica proposicional: $\{SvC \rightarrow CvS, SvC\} \models CvS$
- **Ejemplo 2**: Si una ciudad es vecina de otra, entonces la segunda es vecina de la primera. Sevilla es vecina de Cádiz. Por tanto. Cádiz es vecina de Sevilla
 - Representación en lógica proposicional: Imposible
 - Veremos la representación en lógica de primer orden:

```
\{\forall x \ \forall y \ [vecina(x,y) \rightarrow vecina(y,x)], vecina(Sevilla, Cadiz)\}
                                                      \models vecina(Cadiz, Sevilla)
```

Lógica Proposicional y de Primer Orden

Proposicional

Limitaciones y ejemplos

Lógica de Primer

Orden

Lógica de Primer Orden

Lógica Proposicional y de Primer Orden

Introducció

Lógica Proposiciona

Sintaxis

Sintaxis: Formulas Inducción sobre fórmula

Semántica

Funciones de verdad

Semántica: Valoracio

Consecuencia lógica

Problemas de decisión

Limitaciones y ejemplos

Limitaciones y ejem

Lógica de Primer Orden

Sin

Términos y fórmula

Sustituciones

C / J

Estructura

Estructuras

Interpretación de términos y fórmulas

> Consecuencia lógica y validez

Ejemplo (I)

Consideremos las siguientes afirmaciones:

- 1. Marco era pompeyano.
- 2. Todos los pompeyanos eran romanos.
- Cada romano, o era leal a César, o le odiaba.
- 4. Todo el mundo es leal a alguien.
- 5. La gente sólo intenta asesinar a aquellos a quienes no es leal.
- Marco intentó asesinar a César.
- 7. Todo pompeyano es leal a su padre.

¿Podemos deducir a partir de esta información que Marco era leal a César? ¿Podemos deducir que Marco odiaba a César? ¿Era César el padre de Marco?

Lógica Proposicional y de Primer Orden

Proposicional

Limitaciones y ejemplos

Orden

 Podemos formalizar las afirmaciones observando que todas ellas expresan propiedades de los elementos de un

Introduzcamos símbolos para expresar estas relaciones y para referirnos a los individuos de los que estamos hablando:

cierto conjunto de individuos (romanos) y las relaciones

- \triangleright P(x) expresa "x es pompeyano".
- ightharpoonup R(x) expresa "x es romano".
- \blacktriangleright L(x,y): "x es leal a y".
- \triangleright O(x,y): "x odia a y".

que se dan entre ellos.

- \blacktriangleright IA(x,y): "x intentó asesinar a y".
- Por último, parece natural introducir una función f que para cada x, devuelve el padre de x, f(x).

Introducción

Lógica Proposicional Sintaxis

Sintaxis: Fórmulas Inducción sobre fórmulas Semántica

Semántica: Valoracione Consecuencia lógica y satisfactibilidad

Problemas de decisión

Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxis

Términos y fórmulas Sustituciones

Semántica Estructuras

Estructuras Interpretación de s

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Ejemplo (III)

Ahora podemos formalizar los enunciados anteriores:

- 1. P(Marco) expresa "Marco es pompeyano"
- 2. $\forall x (P(x) \rightarrow R(x))$
 - "Todos los pompeyanos son romanos"
- 3. $\forall x (R(x) \rightarrow (L(x, Cesar) \lor O(x, Cesar))$
 - "Todo romano es leal a César o le odia"
- 4. $\forall x \exists y L(x, y)$
 - "Todo el mundo es leal a alguien".
- 5. $\forall x \forall y (IA(x,y) \rightarrow \neg L(x,y))$
 - "La gente sólo intenta asesinar a aquellos a quienes no es leal".
- 6. *IA*(Marco, Cesar)
 - "Marco intentó asesinar a César".
- 7. $\forall x (P(x) \rightarrow L(x, f(x)))$
 - "Todo pompeyano es leal a su padre".

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas

Semántica

Consecuencia lógica y satisfactibilidad

Problemas de decision

Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxi

érminos y fórmulas ustituciones

Estructuras

Interpretación de t

Interpretación de término y fórmulas

Consecuencia lógica y validez

Ejemplo (IV)

- Para las preguntas podemos escribir:
 - a. L(Marco, Cesar): Marco es leal a César.
 - b. O(Marco, Cesar): Marco odia a César.
- Sin embargo, no podemos expresar que "Marco es el padre de César" sin considerar algún símbolo más.
- Una posibilidad es añadir a nuestro lenguaje el símbolo "=" para expresar al igualdad entre dos objetos. De este modo tendríamos:
 - ightharpoonup f(Marco) = Cesar: César es el padre de Marco.
- Como puede verse, hemos ampliado el conjunto de símbolos disponibles en la lógica proposicional.
- El conjunto de símbolos introducidos constituye lo que denominamos un Lenguaje de Primer Orden.

Lógica Proposicional y de Primer Orden

Limitaciones y ejemplos

Orden

Lenguajes de Primer Orden

- Un lenguaje de primer orden (LPO) L consta de:
 - Símbolos lógicos (comunes a todos los lenguajes):
 - 1. Un conjunto de **variables**: $V = \{x_0, x_1, \dots\}$.
 - 2. Conectivas lógicas: \neg , \lor , \land , \rightarrow , \leftrightarrow .
 - 3. Cuantificadores: \exists (existencial), \forall (universal).
 - 4. Símbolos auxiliares: "(", ")z ","
 - Símbolos no lógicos (propios de cada lenguaje):
 - 1. Un conjunto L_C de constantes.
 - 2. Un conjunto de **símbolos de función** $L_F = \{f_0, f_1, \dots\}$, cada uno con su aridad.
 - 3. Un conjunto de **símbolos de predicados** $L_P = \{p_0, p_1, \dots\}$, cada uno con su aridad.

Los conjuntos V, L_F, L_C y L_P son disjuntos

- Los símbolos de predicado de aridad 0 actúan como símbolos proposicionales.
- ► El símbolo = no es un predicado común a todos los LPO. Cuando está incluido diremos que se trata de un Lenguaje de Primer Orden con igualdad.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional _{Sintaxis}

Sintaxis: Fórmulas Inducción sobre fórmulas Semántica

Semántica: Valoracione Consecuencia lógica y satisfactibilidad

Limitaciones y ejemplos

Orden

Sinta

érminos y fórmula ustituciones mántica

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

$$LR = \{ \underbrace{\mathsf{Marco}, \mathsf{Cesar}}_{\mathsf{constantes}}, \underbrace{P, L, O, R, IA}_{\mathsf{símb.}}, \underbrace{f}_{\mathsf{símb.}} \}$$

- P, R y f tienen aridad 1. L, O y IA tienen aridad 2.
- ► El lenguaje de la Aritmética (números naturales):

$$LA = \{ \underbrace{0, 1}_{\text{constantes}}, \underbrace{s\text{imb. predicado}}_{\text{simb. de función}}, \underbrace{+, +}_{\text{simb. de función}} \}$$

<, + y \cdot tienen aridad 2.

▶ Un lenguaje para el parentesco:

$$LP = \{ \underbrace{padre_de, madre_de, hijo, hermano, casados} \}$$
 símb. predicado

Todos de aridad 2.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional Sintaxis

Inducción sobre fórmulas Semántica

Funciones de verdad

Semántica: Valoraciones

Consecuencia lógica y

satisfactibilidad Problemas de decisión

Limitaciones y ejemplos

Orden

Sintaxis

érminos y fórmula justituciones

Estructuras

Interpretación de término y fórmulas

Tormulas Consecuencia lógica y

- 1. Las variables y las constantes son términos.
- 2. Si t_1, \ldots, t_n son términos y f es un símbolo de función de L de aridad n, entonces $f(t_1, \ldots, t_n)$ es un término.
- Los términos son expresiones que me permiten hablar de los objetos del mundo.
- ▶ Ejemplos:
 - ► Son términos del lenguaje *LR*:

Marco, Cesar,
$$f(x)$$
, $f(Cesar)$, $f(f(Cesar))$, . . .

Son términos del lenguaje de la Aritmética:

$$0, +(x, y), \cdot (x, +(y, 1)), \dots$$

Utilizando la notación infija tradicional se escriben

$$x + y$$
, $x \cdot (y + 1)$

Introducción

Proposicional

Sintaxis: Fórmulas Inducción sobre fórmula:

Funciones de verdad

Semántica: Valoracione

Consecuencia lógica y

Problemas de decisión

Lógica de Primer Orden

Sintax

Términos y fórmulas Sustituciones

Semántica

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y

Fórmulas

- Las fórmulas son expresiones que permiten hablar de veracidad y falsedad.
- Las **fórmulas atómicas** de L son las expresiones $p(t_1, \ldots, t_n)$, donde p es un símbolo de predicado de aridad n y t_1, \ldots, t_n son términos.
- ► Las **fórmulas** de *L* se definen como sigue:
 - Las fórmulas atómicas de L son fórmulas de L.
 - Si F y G son fórmulas de L, entonces $\neg F$, $(F \lor G)$ $(F \land G)$, $(F \to G)$ y $(F \leftrightarrow G)$ también lo son.
 - Si x es una variable y F es una fórmula de L, entonces $\exists x \ F \ y \ \forall x \ F$ también son fórmulas.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis: Fórmulas

Semántica Funciones de verdad

Consecuencia lógica y satisfactibilidad

Problemas de decisión Limitaciones y ejemplos

Lógica de Primer Orden

Sintaxi

Términos y fórmulas Sustituciones

Semántica

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

- ightharpoonup En LA, $\neg \exists x (x \cdot 0 = y)$
- ▶ En LP, $\exists x (padre_de(x, y) \land padre_de(x, z))$. Pero $\exists x \ padre_de(padre_de(x,y),z)$, NO es una fórmula.
- ► En *LR*.

$$\forall x \,\exists y \, L(x,y)$$

$$\forall x \, (R(x) \to (L(x,\mathsf{Cesar}) \lor O(x,\mathsf{Cesar})))$$

- Notación: Para facilitar la lectura de las fórmulas y reducir el número de paréntesis adoptamos los mismos convenios que para la lógica proposicional:
 - Omitiremos los paréntesis externos.
 - Daremos a las conectivas una precedencia de asociación. De mayor a menor, están ordenadas por: \neg , \wedge , \vee , \rightarrow .
 - ▶ Se dejan los paréntesis para la conectiva ↔.

Lógica Proposicional y de Primer Orden

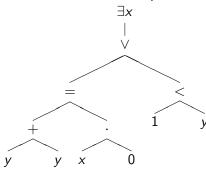
Proposicional

Orden

Términos v fórmulas

Árboles de formación

Análisis sintáctico de la expresión $\exists x (y + y = x \cdot 0 \lor 1 < y)$



O también:

$$\exists x (y + y = x \cdot 0 \lor 1 < y)$$

$$(y + y = x \cdot 0 \lor 1 < y)$$

$$y + y = x \cdot 0 \qquad 1 < y$$

Las fórmulas de los nodos se denominan subfórmulas.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis Sintaxis: Fórmulas

Inducción sobre fórmulas Semántica

Funciones de verdad Semántica: Valoracione

Consecuencia lógica y satisfactibilidad

Problemas de decisión

Lógica de Primer

Sintaxis

Términos y fórmulas

Sustituciones

Estructuras

Interpretación

Interpretación de términos y fórmulas

onsecuencia lógica y alidez

- ▶ Significado intuitivo de $\exists x(y \cdot x = 1)$:
- ▶ Dado y, existe un elemento, que denotamos por x (no sabemos exactamente su valor), que satisface la propiedad $x \cdot y = 1$, pero no es cualquiera.
- ► El símbolo que usemos para ese elemento no es importante: la fórmula $\exists z(y \cdot z = 1)$ expresa la misma propiedad para y.
- ▶ La fórmula dice algo sobre y (en este caso, si sustituyo y por un elemento del universo, afirma que tal elemento tiene inverso a la derecha), no sobre el elemento x
- ▶ **PERO** Si cambio x por y, la fórmula resultante $\exists y(y \cdot y = 1)$ **no expresa** lo mismo que la original.

Introducción

Lógica Proposicional Sintaxis

Sintaxis: Fórmulas
Inducción sobre fórmulas
Semántica

Semántica: Valora

Consecuencia lógica y satisfactibilidad Problemas de decisión

Limitaciones y ejemplos

Orden

Sintax

Términos y fórmulas Sustituciones

Semántica Estructuras

Interpretación de términos y fórmulas

y fórmulas Consecuencia lógica y

Estancias libres y ligadas

- Una estancia ligada de una variable x en una fórmula F es una aparición de x en una subfórmula del tipo ∃x F o ∀x F. En otro caso, diremos que es una estancia libre.
 - ▶ Variable libre en F: Al menos una estancia libre.
 - ▶ Variable ligada en F: Al menos una estancia ligada.
- Según las estancias de sus variables, podemos distinguir los siguientes tipos de expresiones:
 - ► Término cerrado: no contiene variables.
 - Fórmula cerrada: no contiene variables libres.
 - Fórmula abierta: no contiene cuantificadores.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis: Fórm

Inducción sobre fórmulas Semántica

Funciones

Consecuencia lógica y satisfactibilidad

Problemas de decisión Limitaciones y eiemplos

Lógica de Primer Orden

Sintaxi

Términos y fórmulas

Semántica

Estructuras

Interpretación de términ

y fórmulas

- $\exists x \, \forall y \, (x \cdot y = z \cdot 1)$ no es cerrada (z es libre).
- $\exists x (\forall y (x \cdot y = 1) \lor x \cdot y = x) \text{ no es cerrada.}$
 - La variable y aparece libre y ligada.
 - Aunque sintácticamente es correcto, no escribiremos fórmulas en las que una misma variable aparezca libre y ligada. Usaremos en su lugar la fórmula

$$\exists x (\forall y (x \cdot y = 1) \lor (x \cdot z = x))$$

- $\forall x \exists y \ \forall z \ (z < x \leftrightarrow z < y)$ es una fórmula cerrada.
- ▶ $padre_de(y,x) \lor hermano(z,x)$ es abierta.
- La fórmula

$$L(x,y) \wedge \exists z \ IA(y,z) \rightarrow \neg IA(x,z)$$

no es cerrada ni abierta.

Lógica Proposicional y de Primer Orden

Proposicional

Orden

Términos v fórmulas

- ▶ Una **sustitución**, θ , es una asignación de términos a un conjunto finito de variables.
- La forma de describirla, si $\theta(x_1) = t_1, \dots, \theta(x_n) = t_n$ y las restantes variables quedan invariantes, es $\theta = \{x_1/t_1, \dots, x_n/t_n\}$ ó $\theta = \{(x_1, t_1), \dots, (x_n, t_n)\}$
- Aplicación de θ a un término t: $\theta(t) := \left\{ \begin{array}{ll} \theta(t), & \text{si } t \text{ es una variable;} \\ f(\theta(t_1), \dots, \theta(t_n)), & \text{si } t \equiv f(t_1, \dots, t_n) \\ \text{(también se denota por } t\{x_1/t_1, \dots, x_n/t_n\}). \end{array} \right.$
- Ejemplos:
 - Si $\theta = \{x/(x+y), z/0, u/1\}$, y t = (x+y) + z, entonces

$$\theta(t) \equiv ((x+y)+y)+0$$

 $(x \cdot 1)\{x/y, y/1\} \equiv y \cdot 1$

Introducción

Lógica Proposicio

Sintaxis

Inducción sobre fórmulas

Funciones de verdad Semántica: Valoraciones

satisfactibilidad Problemas de decisión

Lágica do Primar

Orden

Tárminas v fárm

Sustituciones

Semántica –

Estructuras

Interpretación de términos y fórmulas

y fórmulas

Consecuencia lógica y validez ▶ Aplicación de $\theta = \{x/t\}$ a una fórmula F:

$$F\{x/t\} := \begin{cases} p(t_1\{x/t\}, \dots, t_n\{x/t\}), & \text{si } F \equiv p(t_1, \dots, t_n) \\ \neg G\{x/t\}, & \text{si } F \equiv \neg G; \\ G\{x/t\} \lor H\{x/t\}, & \text{si } F \equiv G \lor H: \\ G\{x/t\} \land H\{x/t\}, & \text{si } F \equiv G \land H: \\ G\{x/t\} \rightarrow H\{x/t\}, & \text{si } F \equiv G \rightarrow H: \\ G\{x/t\} \leftrightarrow H\{x/t\}, & \text{si } F \equiv G \leftrightarrow H: \\ \exists yG\{x/t\}, & \text{si } F \equiv \exists yG \ y \ x \neq y; \\ \exists yG\{x/t\}, & \text{si } F \equiv \exists xG; \\ \forall xG, & \text{si } F \equiv \exists xG; \end{cases}$$

Análogamente se define $F\{x_1/t_1,\ldots,x_n/t_n\}$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicion

Sintaxis

Inducción sobre fórmulas

Funciones de verda

Consecuencia lógica y

Problemas de decisión

Lógica de Primer

Sintaxis

Términos y fórmula Sustituciones

Semántica —

Estructuras

Interpretación de términos

y fórmulas Consecuencia lógica y falsol

- Solución: No admitir la creación de nuevas estancias ligadas.
- ▶ Una variable x de F es sustituible por el término t si se cumple una de las siguientes condiciones:
 - 1. F es atómica:
 - 2. $F \equiv \neg G \lor x$ es sustituible por t en G;
 - 3. $F \equiv G \lor H$, $F \equiv G \land H$, $F \equiv G \rightarrow H$ o bien $F \equiv G \leftrightarrow H \lor x$ es sustituible por t en $G \lor$ en H:
 - 4. $F \equiv \exists xG$; o bien, $F \equiv \exists yG$, $x \neq y$, y no ocurre en t, y x es sustituible por t en G.
 - 5. $F \equiv \forall xG$; o bien, $F \equiv \forall yG$, $x \neq y$, y no ocurre en t, yx es sustituible por t en G.
- x es sustituible por t en F si al hacer la sustitución no se crean estancias ligadas nuevas.

Orden

Sustituciones

Notación

- ► En lo sucesivo, al escribir $F\{x/t\}$, supondremos que x es sustituible por t en F.
- Escribiremos $F(x_1,...,x_n)$ si $x_1,...,x_n$ son sus variables libres.
- Cuando el orden de las variables esté claro, abreviaremos $F\{x_1/t_1, \dots x_n/t_n\}$ por $F(t_1, \dots, t_n)$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad

Semántica: Valoraciones Consecuencia lógica y

Problemas de decisión

Lógica de Primer Orden

Sintaxi

Términos y fórmulas Sustituciones

Semántica

Estructuras

Interpretación de términos

Consecuencia lógica y validez

- Términos cerrados: elementos del universo.
- Significado de las fórmulas: propiedades sobre los elementos del universo
- ▶ Una *L*-estructura (o interpretación) \mathcal{M} , consta de:
 - ▶ Un conjunto no vacío $M \neq \emptyset$ (el universo de la estructura).
 - ► Una interpretación en M para cada símbolo de L:
 - 1. Para cada constante $c, c^{\mathcal{M}} \in M$.
 - 2. Para cada función, f, de aridad n > 0, $f^{\mathcal{M}}: M^n \to M$.
 - 3. Para cada predicado, p, de aridad n > 0, $p^{\mathcal{M}}: M^n \to \{0,1\}$ (equiv., $p^{\mathcal{M}} \subseteq M^n$).
 - 4. Si L es un LPO con igualdad la interpretación de = es

$$\{(a,a):\ a\in M\}$$

▶ Si no hay confusión, escribiremos M en vez de \mathcal{M} , p^M en lugar de $p^{\mathcal{M}}$. etc.

Orden

Fetructuras

Ejemplos (I)

- Para LP, sea \mathcal{M}_1 la estructura dada por:
 - ▶ Universo: $M_1 = \{Pedro, Pablo, Ana, Laura\}$.
 - ightharpoonup padre_de^{M1} = {(Pablo, Ana), (Pedro, Pablo)}.
 - $ightharpoonup madre_de^{M_1} = \{(Ana, Laura)\}.$
 - ▶ hermano $^{M_1} = \emptyset$.
 - ightharpoonup casados $^{M_1} = \emptyset$.
- ▶ Para LP, consideremos \mathcal{M}_2 dada por:
 - ► Universo: $M_2 = \{0, 1, 2, 3, 4, 5, 6\}$.
 - ▶ $padre_{-}de^{M_2} \equiv ser múltiplo de.$
 - $ightharpoonup madre_de^{M_2} \equiv \text{ser menor.}$
 - ightharpoonup hermano^{M_2} \equiv primos entre sí.
 - ightharpoonup casados $^{M_2} = \emptyset$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre fórmul

Funciones de verdad

Consecuencia lógica y satisfactibilidad

Problemas de decisión Limitaciones y ejemplo

Lógica de Primer

Orden

Sintax

Férminos y fórmul: Sustituciones

Estructuras

Interpretación de términos

Consecuencia lógica y

- Para LA, sea \mathcal{M}_3 dada por:
 - ▶ Universo: $M_3 = \mathbb{N}$
 - $ightharpoonup 0^{M_3} = 0.$
 - $1^{M_3}=1.$
 - La función $+^{M_3}$ es la suma de números naturales.
 - La función \cdot^{M_3} es el producto de números naturales.
 - $ightharpoonup = M_3$ es la igualdad entre números naturales.
 - $ightharpoonup <^{M_3}$ es el orden entre números naturales.
- ▶ Para LA, sea \mathcal{M}_4 dada por:
 - ▶ Universo: $M_4 = \mathbb{Q}$
 - $ightharpoonup 0^{M_4} = \frac{1}{2}$.
 - $1^{M_4} = 2.$
 - La función $+^{M_4}$ es la diferencia de números racionales.
 - ▶ La función \cdot^{M_4} está dada por $p \cdot^{M_4} q = p$.
 - $ightharpoonup = M_4$ es la igualdad entre números naturales.
 - $ightharpoonup <^{M_4}$ es el orden entre números racionales.

Introducción

Lógica

Proposicional Sintaxis

Inducción sobre fórmulas

emántica

Semántica: Valoracio

satisfactibilidad Problemas de decisión

Limitaciones y ejem

Lógica de Primer Orden

Sintax

erminos y formulas Sustituciones

Estructuras

Interpretación de términos

y fórmulas

Interpretación de términos (I)

- ▶ Dada una L-estructura \mathcal{M} , a cada término t de L, sin variables, le corresponde un elemento de M, que denotamos por $t^{\mathcal{M}}$ (su interpretación en \mathcal{M}):
 - ▶ Si $t \equiv c$ una constante, entonces $t^{\mathcal{M}} = c^{\mathcal{M}} \in M$.
 - ightharpoonup Si $t\equiv f(t_1,\ldots,t_n)$, entonces $t^{\mathcal{M}}=f^{\mathcal{M}}(t_1^{\mathcal{M}},\ldots,t_n^{\mathcal{M}})$.
- ► Ejemplos:

$$((0 \cdot 1) + 1)^{M_3} = ((0 \cdot 1)^{M_3} + {}^{M_3} 1^{M_3})$$

$$= (0^{M_3} \cdot {}^{M_3} 1^{M_3}) + 1$$

$$= (0 \cdot 1) + 1 = 1$$

$$((0 \cdot 1) + 1)^{M_4} = ((0 \cdot 1)^{M_4} + {}^{M_4} 1^{M_4})$$

$$= (0^{M_4} \cdot {}^{M_4} 1^{M_4}) - 2$$

$$= (\frac{1}{2} \cdot {}^{M_4} 2) - 2$$

$$= \frac{1}{2} - 2 = -\frac{3}{2}$$

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad Semántica: Valoraciones

satisfactibilidad Problemas de decisión

Lógica de Primer Orden

Sinta

Términos y fórm Bustituciones

Estructuras

Interpretación de términos y fórmulas

consecuencia lógica y

Interpretación de términos (II)

- Asociamos a cada L-estructura, \mathcal{M} , un lenguaje $L(\mathcal{M})$, que tiene todos los símbolos de L y, además, una constante a por cada elemento $a \in M$.
- La interpretación de los símbolos de $L(\mathcal{M})$ en \mathcal{M} es la misma para los símbolos de L, y para cada $a \in M$,

$$\underline{a}^{\mathcal{M}}=a$$

 \triangleright Ahora podemos calcular $t^{\mathcal{M}}$ para todo término de $L(\mathcal{M})$ sin variables:

$$\begin{array}{rcl} ((\underline{2} \cdot \underline{5}) + 1)^{M_3} & = & ((\underline{2} \cdot \underline{5})^{M_3} + {}^{M_3} 1^{M_3}) \\ & = & (\underline{2}^{M_3} \cdot {}^{M_3} \underline{5}^{M_3}) + 1 \\ & = & (2 \cdot 5) + 1 = 11 \end{array}$$

$$\begin{array}{rcl} ((\underline{2}^{M_4} \cdot \underline{5}^{M_4}) + 1)^{M_4} & = & ((x \cdot y)^{M_4} + ^{M_4} 1^{M_4}) \\ & = & (\underline{2}^{M_4} \cdot ^{M_4} \underline{5}^{M_4}) - 2 \\ & = & 2 - 2 = 0 \end{array}$$

Lógica Proposicional y de Primer Orden

Proposicional

Orden

Interpretación de términos

Interpretación de fórmulas (I)

Dada una L-estructura \mathcal{M} , decimos que una fórmula F <u>cerrada</u> de $L(\mathcal{M})$ se <u>satisface</u> en \mathcal{M} , $\mathcal{M} \models F$, si:

- Si F es $p(t_1, ..., t_n)$ (atómica), entonces $\mathcal{M} \models F$ sii $(t_1^{\mathcal{M}}, ..., t_n^{\mathcal{M}}) \in p^{\mathcal{M}}$.
- ▶ Si F es $F_1 \vee F_2$, entonces $\mathcal{M} \models F$ sii se verifica que

$$\mathcal{M} \models F_1$$
 ó $\mathcal{M} \models F_2$

- ▶ Las conectivas \land , \rightarrow y \leftrightarrow se tratan de manera similar.
- ▶ Si F es $\neg F_1$, entonces $\mathcal{M} \models F$ sii no se tiene $\mathcal{M} \models F_1$.
- ▶ Si F es $\exists x F_1(x)$, entonces $\mathcal{M} \models F$ sii

existe
$$b \in M$$
 tal que $\mathcal{M} \models F_1(\underline{b})$

▶ Si F es $\forall xF_1(x)$, entonces $\mathcal{M} \models F$ sii

```
para todo b \in M, se tiene \mathcal{M} \models F_1(\underline{b})
```

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas Inducción sobre fórmula

Funciones de verdad Semántica: Valoraciones

Problemas de decisión

Lógica de Primer

Orden Sintaxis

> Férminos y fórmula: Sustituciones

Semántica Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Interpretación de fórmulas (II)

- ▶ En particular, la definición anterior nos permite precisar cuándo una fórmula cerrada de L, F, es válida en \mathcal{M} (o bien que \mathcal{M} es un modelo de F) y escribir $\mathcal{M} \models F$.
- ▶ Si *F* no es cerrada, por definición,

$$\mathcal{M} \models F(x_1, \dots x_n) \iff \mathcal{M} \models \forall x_1 \dots \forall x_n F(x_1, \dots x_n)$$

Si Σ es un conjunto de fórmulas de un lenguaje L y \mathcal{M} una estructura para L, decimos que \mathcal{M} es un modelo de Σ , si

para toda fórmula $F \in \Sigma$, $\mathcal{M} \models F$.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis: Fórmulas Inducción sobre fórmulas

Funciones de verdad

Semántica: Valoraciones

Consecuencia lógica y

Problemas de decisión

Lógica de Primer Orden

Sintax

Términos y fórmulas Sustituciones

Semántica Estructuras

Interpretación de términos

onsecuencia lógica y

Eiemplos

En \mathcal{M}_1 :

- ▶ Universo: $M_1 = \{Pedro, Pablo, Ana, Laura\}$.
- ▶ $padre_de^{M_1} = \{(Pablo, Ana), (Pedro, Pablo)\}.$
- $ightharpoonup madre_de^{M_1} = \{(Ana, Laura)\}.$
- ▶ hermano $^{M_1} = \emptyset$, casados $^{M_1} = \emptyset$.

Se tiene:

- $ightharpoonup \mathcal{M}_1 \models \exists x (padre_de(\underline{Pablo}, x) \land madre_de(x, \underline{Laura}))$
- $ightharpoonup \mathcal{M}_1 \models \neg \exists x \ padre_de(x, \underline{Laura})$
- ▶ $\mathcal{M}_1 \models \forall x \, \forall y \, \forall z \, (padre(x, z) \land madre(y, z) \rightarrow \neg casados(x, y)).$
- $\blacktriangleright \ \mathcal{M}_1 \models \mathit{hermano}(x,y) \leftrightarrow \mathit{hermano}(y,x)$
- $ightharpoonup \mathcal{M}_1 \not\models \exists x \ padre_de(x,y)$

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre fórmulas

Funciones de verda

Consecuencia lógica y satisfactibilidad

Limitaciones y ejemp

Lógica de Primer Orden

Sinta

Términos y fórmul: Sustituciones

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez

Ejemplos (II)

En \mathcal{M}_2 :

- Universo: $M_2 = \{0, 1, 2, 3, 4, 5, 6\}$.
- ▶ $padre_{-}de^{M_2} \equiv ser múltiplo de.$
- $ightharpoonup madre_de^{M_2} \equiv \text{ser menor.}$
- ► hermano^{M_2} \equiv primos entre sí, casados^{M_2} $= \emptyset$.

Se tiene:

- $ightharpoonup \mathcal{M}_2 \models \exists x \; padre_de(x,\underline{3})$
- $ightharpoonup \mathcal{M}_2 \models hermano(x,y) \leftrightarrow hermano(y,x)$
- ▶ ¿Se tiene $\mathcal{M}_2 \models hermano(x, y) \rightarrow \neg padre_de(x, y)$?

Lógica
Proposicional y de
Primer Orden

Introducción

Lógica Proposicional

Sintaxis: Fórmulas
Inducción sobre fórmulas
Semántica

Semántica: Valoraciones Consecuencia lógica y satisfactibilidad

Limitaciones y ejempl

Lógica de Primer Orden

Sintax

Términos y fórmulas Sustituciones

Semántica Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y

Validez y Consistencia

▶ Una fórmula $F(x_1,...,x_n)$ de L es satisfactible si existe una L-estructura M y elementos $a_1,...,a_n \in M$ tales que

$$\mathcal{M} \models F(\underline{a}_1, \dots, \underline{a}_n)$$

- ightharpoonup Ejemplo: $\exists x \ padre_de(x,y)$
- ▶ Un conjunto de fórmulas cerradas Σ de un lenguaje L es consistente si existe una L-estructura, \mathcal{M} , tal que

para toda formula
$$F \in \Sigma$$
, $\mathcal{M} \models F$

- ▶ Una fórmula F es **lógicamente válida** si para toda estructura \mathcal{M} se tiene que $\mathcal{M} \models F$ (Notación: $\models F$).
 - ► Ejemplo: $\forall x P(x) \lor \exists x \neg P(x)$

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional

Sintaxis

Inducción sobre fórmulas Semántica

Funciones de verdad

Semántica: Valoraciones

Consecuencia lógica y

Problemas de decisió

Lógica de Primer

Orden

Sinta

Términos y fórmula Sustituciones

Estructuras

Interpretación de términ

Consecuencia lógica y validez

▶ Diremos que una fórmula F es **consecuencia lógica** de un conjunto de fórmulas cerradas Σ , $(\Sigma \models F)$, si para toda L-estructura \mathcal{M} se tiene que

si
$$\mathcal{M} \models \Sigma$$
, entonces $\mathcal{M} \models F$

- **E**s decir, si todo modelo de Σ es modelo de F.
- Los problemas de la consistencia, consecuencia lógica y la validez para la lógica primer orden, no son decidibles.

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposiciona

Sintaxis

Inducción sobre fórmulas

Semantica Funciones de verdad

Consecuencia lógica y satisfactibilidad

Problemas de decisión Limitaciones y ejemplos

Lógica de Primer

Orden

Sintax

Férminos y fórmulas Sustituciones

Semantica Estructuras

Estructuras

Interpretación de términos y fórmulas

Consecuencia lógica y validez Cap. 0 (Introducción), 6 (Sintaxis de la lógica proposicional), 7 (Semántica de la lógica proposicional), 9 (Consecuencia lógica) y 11 (Lógica proposicional y lenguaje natural).

2. M. Ben-Ari, *Mathematical logic for computer science* (2nd ed.). (Springer, 2001)

Cap. 1 (Introduction) y 2 (Propositional calculus: formulas, models, tableaux).

- J.A. Díez Iniciación a la Lógica, (Ariel, 2002)
 Cap. 2 (El lenguaje de la lógica proposicional) y 3 (Semántica formal. Consecuencia lógica).
- M. Huth y M. Ryan Logic in computer science: modelling and reasoning about systems. (Cambridge University Press, 2000)

Cap. 1 (Propositional logic).

Lógica Proposicional y de Primer Orden

Introducción

Lógica Proposicional _{Sintaxis}

Inducción sobre fórmulas Semántica

Semántica: Val

satisfactibilidad Problemas de decisió

Lágica de Primer

Orden Sintaxis

ntaxis Férminos y fórmulas Sustituciones

Semantica Estructuras

Interpretación de térmir y fórmulas

Consecuencia lógica y validez

Bibliografía (para LPO)

- 1. C. Badesa, I. Jané y R. Jansana *Elementos de lógica* formal. (Ariel, 2000) pp. 195–259 y 323–326.
- 2. M. Huth y M. Ryan Logic in computer science: modelling and reasoning about systems. (Cambridge University Press, 2000) pp. 90–109 y 128–140.
- 3. L. Paulson Logic and proof (U. Cambridge, 2002) pp. 22-29

Lógica Proposicional y de Primer Orden

Proposicional

Orden

Consecuencia lógica y