
Solving Knapsack Problems in a Sticker Based
Model

Pérez–Jiménez, M.J. and Sancho–Caparrini, F.

Dpt. Computer Science and Artificial Intelligence. University of Seville. Spain

Abstract. Our main goal in this paper is to give molecular solutions
for two NP–complete problems, namely Subset-sum and Knapsack, in a
sticker based model for DNA computations. In order to achieve this, we
have used a finite set sorting subroutine together with the description of a
procedure to formally verify the designed programs through the labeling
of test tubes using inductive techniques.

1 Introduction

The sticker model was introduced by S. Roweis, E. Winfree et al ([3]) as an
abstract model of molecular computing based on DNA with a random access
memory and a new form of encoding the information.

The main goal of this work is the resolution, in this model, of two NP–
complete problems: the Subset-Sum problem and the Knapsack problem, in its
0/1 bounded and unbounded versions.

The information is represented in the sticker model in a different way from
that used in the Adleman-Lipton paradigm. A (n, k,m)-memory strand, with
n ≥ k · m, is n bases in length subdivided into k non-overlapping substrand
each m bases long. The substrands should be significantly different from each
other. A sticker associated to a (n, k,m)-memory strand is m bases long and
complementary to exactly one of the k substrands in the memory strand. If
a sticker is annealed to its matching substrand on a memory strand, then the
particular substrand is said to be on. If no sticker is annealed to a substrand, then
the region is said to be off. A (n, k,m)-memory complex is a (n, k,m)-memory
strand along with its annealed stickers (if any). In a direct way, (n, k,m)-memory
complexes represent bit strings of {0, 1}k. For this reason, it is usual to identify
them either as binary functions (σ : {1, ..., k} −→ {0, 1}, such that σ(i) = 1 if
and only if the i-th substrand is on), or as subsets of {1, ..., k} by means of the
characteristic function.

Within the sticker model, a tube is a finite multiset whose elements are
memory complexes (that is, a collection of memory complexes where each one
can be repeated). The following operations over tubes of the sticker model are
used in this paper:

– Merge (T1, T2): the memory complexes from the tubes T1, T2 are combined
to form the multiset union of all strings in the two input tubes. We write
Merge(T1, T2) = T1 ∪ T2 as well.

– Separate (T, i): Given a tube, T , and an integer, i (1 � i � number of
substrands that form each complex of T), create two new tubes, +(T, i) and
−(T, i), where +(T, i) (resp. −(T, i)) contain all strings of T having the i–th
substrand set to 1 (resp. set to 0). We write (T1, T2) ← separate(T, i) to
indicate that T1 = +(T, i) and T2 = −(T, i).

– Set (T, i): Given a tube, T , and an integer, i (1 � i � number of substrands
that form each complex of T), this operation produces a new tube where the
i–th substrand of each memory complex in T is set to 1. That is, the sticker
for that bit is annealed to i-th region on every memory complex in T .

– Read (T): Given a nonempty tube T , this operation reads its content. For
that, one memory complex must be isolated from T and its annealed stickers,
if any, determined.

A (k, l)-library, with 1 ≤ k ≤ l, consists of memory complexes with k sub-
strands, the first l substrands are either on or off, in all possible ways, whereas
the last k − l substrands are off.

In section 2, the problem of sorting the elements of a finite family of finite
sets, according to their cardinality, is studied, and for the first time, a program
that is able to solve this problem is described within the sicker model. If it is
taken into account that just two molecular operations have been used, namely
separate and merge, the program designed can also be considered as a program
within the unrestricted model of Adleman ([1]).

In section 3 we give a filling subroutine within the sticker model to encode
the weight of subsets regarding a given positive function that will be used in
following sections.

In section 4, we give a molecular solution within the sticker model for the
Subset–Sum problem, using the sorting by cardinality program and the filling
subroutine. Formal verification of the programs designed in sections 2, 3 and 4 is
established through the prior labeling of the distinct tubes which appear in the
execution. Then we prove the soundness and completeness of these programs
using inductive techniques and analyzing the history of every molecule in the
initial test–tube along the process.

In sections 5 and 6, we give molecular solutions, within the sticker model,
for Knapsack problem (0/1 bounded and unbounded versions), based in both
the sorting by cardinality program given in section 2, and the filling subroutine
given in section 3.

All designed programs use a linear number of tubes, and the number of
molecular operations is, basically, quadratic.

2 Sorting by Cardinality

Problem: Let A = {1, ..., p}, B = {b1, ..., bs} ⊆ A, F = {D1, ...,Dt} ⊆ P(A).
Sort the sets of F according to their relative cardinality to B (that is, according
to the number of elements of B ∩ Di).

Next, we will design a molecular program within the sticker model which
solves the above problem.

– The input tube, T0, will contain memory complexes, σ, based on DNA, en-
coding each set of the family F . For this, each complex of T0 will be repre-
sented through a boolean function, that is, T0 = {{σ : |σ| = p ∧ ∃ j (χDj

=
σ)}}, where χDj

is the characteristic function of Dj in A (χDj
(i) = 1 if

i ∈ Dj , and χDj
(i) = 0 if i ∈ A − Dj).

– The program consists of a main loop FOR with s steps. In the i–th step,
i + 1 tubes, T0, T1, . . . , Ti, are generated verifying the condition: ∀σ (σ ∈
Tj −→ |σ ∩ {b1, . . . , bi}| = j). In order to achieve this, we design the body
of the loop by induction. Once the tubes T0, T1, . . . , Ti corresponding to the
i–th step have been built, the tubes of the next step T0, T1, . . . , Ti, Ti+1 are
generated in this way:⎧⎨

⎩
T0 = −(T0, bi+1)
Tj = +(Tj−1, bi+1) ∪ −(Tj , bi+1) (1 � j � i)
Ti+1 = +(Ti, bi+1)

The execution of the molecular program can be described starting from a rooted
graph that we denominate labeled merge–binary tree that is defined by recursion
as follows:

– A node with a label is a labeled merge–binary tree of depth 0.
– Let A be a labeled merge–binary tree of depth h. From it, a labeled merge–

binary tree, A′, of depth h + 1 is built in this way:
• Initially, each leaf of A determines two children.
• The right child of each leaf and the left one of the next leaf give a node

of A′ whose label is the composition of the labels of this children by a
certain fixed binary operation.

In the description that has been carried out so far, the nodes of the merge–
binary tree of execution are labeled by means of tubes. The left and right chil-
dren of a tube, T , of depth h are labeled starting from the separate operation:
(Tleft, Tright) ←− separate(T, bh+1). Finally, the binary operation considered is
the molecular merge operation applied to the tubes indicated by the labels of
the nodes.

These ideas suggest the following molecular program:
Input: (T0, B)

for i = 1 to s do
(T0, T

′
1) ← separate (T0, bi)

for j = 0 to i − 1 do
(T ′′

j , T ′
j+1) ← separate (Tj , bi)

Tj ← T ′
j ∪ T ′′

j

end for
Ti ← T ′

i

end for
Output: T0, ..., Ts

The procedure described will return s + 1 tubes and we will note them as:
Cardinal sort(T0, B)[j], (0 ≤ j ≤ s). We have that |Cardinal sort(T0, B)[j]| = j.

This molecular program uses 2s tubes and the number of molecular opera-
tions is s·(s+3)

2 .
Let us note that the program we have given to solve the sorting problem

is valid in a model without random access memory, like the unrestricted model
of Adleman. The simplest way to see this is to adapt the input tube, replacing
memory complex for single strands of DNA.

To establish the formal verification of the algorithm program, we will proceed
to label the tubes obtained along the execution so that we can individualize them
in any moment of the running.

Input: T0

T0,0 ← T0; T0,−1 ← ∅; T0,1 ← ∅
for i = 1 to s do

Ti,−1 ← ∅; Ti,i+1 ← ∅
for j = 0 to i do

Ti,j ← +(Ti−1,j−1, bi) ∪ −(Ti−1,j , bi)
end for

end for
Output: Ts,0, ..., Ts,s

By means of convenience, we assume that T0,−1 = T0,1 = ∅, and we will note
Bj = {b1, ..., bj}, and, by definition, we will take B0 = ∅.
Proposition 1. ∀ i (1 ≤ i ≤ s → ∀ j ≤ i ∀σ (σ ∈ Ti,j → |σ ∩ Bi| = j)).

Proof. By induction on i. Let us see that ∀ j ≤ 1 ∀σ ∈ T1,j (|σ ∩ B1| = j).

– Let σ ∈ T1,0 = +(T0,−1, b1) ∪ −(T0,0, b1). Since T0,−1 = ∅ and T0,0 = T0, it
results that σ ∈ −(T0, b1), that is, b1 /∈ σ. Then, |σ ∩ B1| = 0.

– Let σ ∈ T1,1 = +(T0,0, b1) ∪ −(T0,1, b1). Since T0,1 = ∅, it results that
σ ∈ T0,0 = T0 and b1 ∈ σ, then |σ ∩ B1| = 1

Let i (1 ≤ i < s) be such that ∀ j ≤ i ∀σ ∈ Ti,j (|σ ∩ Bi| = j). Let us
see that the result verifies for i + 1. For it, we now proceed by induction on j:
∀ j ≤ i + 1 ∀σ ∈ Ti+1,j (|σ ∩ Bi+1| = j).

– Let σ ∈ Ti+1,0 = +(Ti,−1, bi+1)∪−(Ti,0, bi+1). Since Ti,−1 = ∅, it results that
σ ∈ Ti,0 and bi+1 /∈ σ, by induction hypothesis we deduce that |σ ∩ Bi| = 0.
So |σ ∩ Bi+1| = 0, since bi+1 /∈ σ.

– Let j > 0 and σ ∈ Ti+1,j = +(Ti,j−1, bi+1) ∪ −(Ti,j , bi+1). Then
• If σ ∈ Ti,j−1 and bi+1 ∈ σ, by induction hypothesis we have that |σ ∩

Bi| = j − 1. Since bi+1 ∈ σ, we conclude that |σ ∩Bi+1| = j − 1 + 1 = j.
• If σ ∈ Ti,j and bi+1 /∈ σ, by induction hypothesis we have that |σ∩Bi| =

j. As bi+1 /∈ σ, we have |σ ∩ Bi+1| = j. �

Proposition 2. ∀σ ∈ T0 ∀ i (0 ≤ i ≤ s → σ ∈ Ti,|σ∩Bi|).

Proof. By induction on i. For i = 0, the result is trivial.
Assume the result holds for i (0 ≤ i < s); we will prove it for i + 1.

– If bi+1 ∈ σ, we have |σ ∩ Bi+1| = 1 + |σ ∩ Bi|. By induction hypothesis,
σ ∈ Ti,|σ∩Bi|, then σ ∈ +(Ti,|σ∩Bi|, bi+1) ⊆ Ti+1,|σ∩Bi|+1.

– If bi+1 /∈ σ, then |σ∩Bi+1| = |σ∩Bi|. By induction hypothesis, σ ∈ Ti,|σ∩Bi|,
then σ ∈ −(Ti,|σ∩Bi|, bi+1) ⊆ Ti+1,|σ∩Bi| = Ti+1,|σ∩Bi+1|. �

¿From the preceding propositions it may be concluded, respectively, soundness
(every molecule of the output tube provides a correct solution associated to
that tube) and completeness (every molecule of the input tube appears in the
corresponding output tube, according to its cardinality) of the designed program.

Corollary 1. (Soundness) ∀ j ∀σ (0 ≤ j ≤ s ∧ σ ∈ Ts,j → |σ ∩ B| = j).

Corollary 2. (Completeness) If σ ∈ T0 and |σ ∩ B| = j, then σ ∈ Ts,j.

As cases of particular interest, that we will use in other molecular programs,
we get the following:

– Cardinal sort(T0), when B = A.
– Cardinal sort(T0, l, k), when B = {l, l + 1, ..., k}.

3 A filling subroutine

In this section we show a molecular program that will be used as auxiliary
subroutine to solve the Subset–Sum problem and the Knapsack problem in the
following sections.

Let A = {1, ..., p}, r ∈ IN and f : A −→ IN a function. If B ⊆ A, we
note f(B) =

∑
i∈B f(i). For convenience we define f(0) = 0. Let qf = f(A),

Ai = {0, . . . , i} (0 ≤ i ≤ p) and T0 a multiset of (n, k,m)-memory complexes, σ,
with k ≥ p + r + qf .

As it was seen in the previous section, each σ ∈ T0 encodes a subset Bσ ⊆ A
characterized by the condition Bσ = {i : 1 ≤ i ≤ p ∧ σ(i) = 1}, and recipro-
cally, each subset, B ⊆ A, can be encoded by a molecule σB ∈ T0, characterized
by the condition: σB(i) = 1 if and only if i ∈ B.

If σ ∈ T0, we can suppose that it is formed by the following zones:
(Aσ) = σ(1) . . . σ(p), (Fσ) = σ(p + r + 1) . . . σ(p + r + qf)
(Lσ) = σ(p + 1) . . . σ(p + r), (Rσ) = σ(p + r + qf + 1) . . .

The subroutine works over T0, and it modifies their elements making that
the molecules of the output tube store in (Fσ) the weight, regarding f , of the
subset of A encoded in (Aσ) (zones (Rσ) and (Lσ) have no effect in the process,
but they will be useful for a general use). That is:

p∑
i=1

σ(i)f(i) =
p+r+qf∑

j=p+r+1

σ(j)

The designed program will be noted Parallel Fill(T0, f, p, r):

Input: (T0, f, p, r)
for i = 1 to p do

(T+, T−) ← separate(T0, i)
for j = 1 to f(i) do

T+ ← set(T+, p + r + f(Ai−1) + j)
end for
T0 ← merge (T+, T−)

end for
Output: T0

To establish the formal verification of the algorithm, we will proceed to label
the tubes obtained along the execution.

Input: (T0, f, p, r)
for i = 1 to p do

(T+
i,0, T

−
i) ← separate(Ti−1, i)

for j = 1 to f(i) do
T+

i,j ← set(T+
i,j−1, p + r + f(Ai−1) + j)

end for
Ti ← merge (T+

i,f(i), T
−
i)

end for
Output: Tp

For each i (1 ≤ i ≤ p) we consider the following regions:
Ri = {p + r + f(Ai−1) + 1, ..., p + r + f(Ai)}

Definition 1. For each σ ∈ T0 and each k (1 ≤ k ≤ p), we will note σk the
molecule obtained from σ after the execution of the k–th step in the main loop
of the program.

That is, the molecules σk provide the history of the molecule σ of the input
tube, while the program is running. Keeping in mind the syntactic structure of
the program, it is straightforward to prove the following results:

Lemma 1.

1. The initial zone of the molecule (encoding the subset of A) does not change
along the execution of the program; that is,

∀σ ∈ T0 ∀ k (1 ≤ k ≤ p → (Aσ) = (Aσk)) (1)

2. The molecules that are obtained in the k-th step of the main loop are stored
in the tube Tk; that is,

∀σ ∈ T0 ∀ k (1 ≤ k ≤ p → σk ∈ Tk) (2)

3. Every molecule of the k-th tube comes from some molecule in the initial tube;
that is,

∀ k (1 ≤ k ≤ p → ∀ τ ∈ Tk ∃σ ∈ T0 (σk = τ)) (3)

4. The execution of a step of the main loop does not modify the regions corres-
ponding to previous steps; that is,

∀σ ∈ T0 ∀ i ∀ k (1 ≤ i ≤ k ≤ p → σi
|Ri

= σk
|Ri

) (4)

5. After the execution of the i-th step of the main loop, the region Ri of σ has
been modified to agree with the value of σ(i); that is,

∀σ ∈ T0 ∀ i ∀ k (1 ≤ i ≤ k ≤ p → σk
|Ri

≡ σ(i)) (5)

6. The execution of a step of the main loop does not modify the zones (Lσ) and
(Rσ); that is,

∀σ ∈ T0 ∀ k (1 ≤ k ≤ p → (Lσ) = (Lσk) ∧ (Rσ) = (Rσk)) (6)

The following result assures us that the main loop modifies the regions Ri of
the molecules to encode the partial weight of the set represented by each one of
them.

Proposition 3. Let B ⊆ A such that σB ∈ T0, then for each k (1 ≤ k ≤ p) we
have that:

f(B ∩ {1, ..., k}) =
p+r+f(Ak)∑
j=p+r+1

σk
B(j)

Proof. ¿From (1) it follows that

f(B ∩ {1, ..., k}) =
k∑

i=1

f(i) · σB(i) =
k∑

i=1

f(i) · σk
B(i)

On the other hand, (1) and (5) assures that
f(i) · σk

B(i) =
∑

j∈Ri
σk

B(j)) (1 ≤ i ≤ k) �

Corollary 3. For each B ⊆ A such that σB ∈ T0 there exists τ ∈ Tp such that
f(B) =

∑p+r+qf

i=p+r+1 τ(i).

Proof. Given B ⊆ A, let us consider the associated molecule σB ∈ T0. It suffices
to consider τ = σp

B, since f(B) = f(B ∩ {1, ..., p}) =
∑p+r+qf

j=p+r+1 σp
B(j). �

4 Subset-Sum problem

Problem: Let A = {1, ..., p} and w : A −→ IN a weight function. Let k ∈ IN be
such that k ≤ w(A) = qw. Determine whether there exists a subset B ⊆ A such
that the sum of the weights of the elements in B is, exactly, k.

Next we will design a molecular program within the sticker model that solves
the Subset–Sum problem. The input tube, T0, will be a (p + qw, p)-library. In
a first stage (filling), each molecule, σ, of the input tube is filled in order to
obtain in their last q components the weight of the subset that it encodes; the
molecules of the resulting tube of the previous stage are ordered according to
their cardinality. Finally, the k-th tube is read: it contains the molecules from
the input tube encoding subsets of A of weight k, if any.

These ideas suggest the design of the following molecular program:

Subset Sum(p,w, k)
qw ← ∑p

i=1 w(i)
T0 ← (p + qw, p)-library
T1 ← Parallel Fill(T0, w, p, 0)
Tout ← Cardinal sort(T1, p + 1, p + qw)[k]
Read(Tout)

The number of used tubes (including the subroutines) is 4 + 2q and the
number of molecular operations is 2p + q + 1 + q·(q+3)

2 .
The following result shows the soundness of the molecular program; that is,

every molecule in the output tube encodes a correct solution for the Subset–Sum
problem.

Theorem 1. (Soundness) If Tout �= ∅, then there exists B ⊆ A such that
w(B) = k.

Proof. Taking τ ∈ Tout, and applying (3) and proposition 3, we obtain σ ∈ T0

verifying the result for Bσ. �

Next theorem proves the completeness of the given molecular program; that
is, every molecule in the input tube encoding a correct solution of the Subset–
Sum problem, is in the output tube.

Theorem 2. (Completeness) Let σ ∈ T0 be such that w(Bσ) = k. Then Tout �= ∅
Proof. Let σ ∈ T0 be such that w(Bσ) = k, from corollary 3, after the execution
of the filling subroutine, we have a molecule τ = σp ∈ T1 such that w(Bσ) =∑p+qw

i=p+1 τ(i). Then τ ∈ Tout. �

Note. The above program does not only solve the problem of decision, but
rather, it returns all the solutions to the problem. If we only wanted to solve
the decision problem, once the filling stage has been executed, we could use
some appropriate restriction enzymes which remove from each molecule, σ, in
the tube Tp, the initial region (Aσ), and then apply an appropriate procedure
Cardinal sort, so that we may work with molecules of smaller length in the
final stage.

5 0/1 Bounded Knapsack Problem

Problem: Let A = {1, ..., p} be a non empty finite set, w : A −→ IN a weight
function, and ρ : A −→ IN a function of values. Let k, k′ ∈ IN be such that
k ≤ w(A) = qw and k′ ≤ ρ(A) = qρ. Determine whether there exists a subset
B ⊆ A such that w(B) ≤ k and ρ(B) ≥ k′.

Next we will design a molecular program in the sticker model that solves
the problem 0/1 bounded Knapsack problem: we begin with a (p + qw + qρ, p)-
library. In a first stage (filling), we proceed as in the previous program: each
molecule of the initial tube is filled appropriately so that it encodes the weight
of the associate subset; next the molecules, σ, of the resulting tube are ordered

according to the cardinal of w(Aσ), being obtained some tubes, T0, ..., Tqw
, such

that ∀σ (σ ∈ Tj ⇒ |w(Aσ)| = j). With the tube T0 ∪ ... ∪ Tk a second stage of
filling is carried out, regarding the function of values. Then, the molecules, σ,
from the resulting tube are ordered according to the cardinal of ρ(Aσ), being
obtained, again, some tubes, T0, ..., Tqρ

, such that ∀σ (σ ∈ Tj ⇒ |ρ(Aσ)| = j).
Finally, the tube Tk′ ∪ ...∪Tqρ

, containing the encoded solutions to the problem,
is read.

These ideas suggest the following molecular program:
Knapsack(p,w, ρ, k, k′)

qw ← ∑p
i=1 w(i); qρ ← ∑p

i=1 ρ(i); T0 ← (p + qw + qρ, p)-library
T0 ← Parallel Fill(T0, w, p, 0)
Cardinal sort(T0, p + 1, p + qw)
T1 ← ∅
for i = 1 to k do

T1 ← merge (T1,Cardinal sort(T0, p + 1, p + qw)[i])
end for
T0 ← Parallel Fill(T1, ρ, p, qw)
Cardinal sort(T0, p + qw + 1, p + qw + qρ)
T1 ← ∅
for i = k′ to qρ do

T1 ← merge (T1,Cardinal sort(T0, p + qw + 1, p + qw + qρ)[i])
end for
Read(T1)

The number of tubes used by the program (again, including the subroutines)
is 5+2 ·max{qw, qρ}, and the number of molecular operations carried out in the
execution is 4p + k − k′ + qw·(qw+5)+qρ·(qρ+7)

2 + 1.
The formal verification of this program is similar to the one for the Subset–

Sum problem, we omit its proof since it does not show any new ideas for the
verification methods for the sticker model.

6 0/1 Unbounded Knapsack Problem

Problem: Under the same conditions as the Knapsack problem, determine a
subset B ⊆ A such that ρ(B) = max{ρ(C) : C ⊆ A ∧ w(C) ≤ k}.

A molecular solution is obtained from the solution of the bounded problem,
changing the final output stage: after the sorting of the tubes regarding the
function of values, we will choose the non empty tube with bigger index.
Unbounded Knapsack(p,w, ρ, k)

qw ← ∑p
i=1 w(i); qρ ← ∑p

i=1 ρ(i); T0 ← (p + qw + qρ, p)-library
T0 ← Parallel Fill(T0, w, p, 0)
Cardinal sort(T0, p + 1, p + qw)
T1 ← ∅
for i = 0 to k do

T1 ← merge(T1,Cardinal sort(T0, p + 1, p + qw)[i])
end for

T0 ← Parallel Fill(T1, ρ, p, qw)
i ← qρ; t ← 0
Cardinal sort(T0, p + qw + 1, p + qw + qρ)
while i ≥ 1 ∧ t = 0 do

T ′ ← Cardinal sort(T0, p + qw + 1, p + qw + qρ)[i]
if T ′ �= ∅ then: Read(T ′); t ← 1
else: i ← i − 1

end while

The number of tubes used by the program is 5 + 2 · max{qw, qρ}, and the
number of molecular operations carried out in the execution of the program,
4p + k − k′ + qw·(qw+5)+qρ·(qρ+9)

2 , is easily obtained from the bounded case.

7 Conclusions

In this work, a molecular program that allows us to sort a finite family of finite
sets, according to their cardinality, has been presented within the sticker model.
In order to achieve this, we have used a new technique which is different from
the one used by S. Roweis et al ([3]) to solve the Minimal Set Cover problem.

Also, we have designed original molecular programs in the aforementioned
model that solve the Subset–Sum problem and the Knapsack problem (0/1
bounded and unbounded versions), which are NP–complete problems. As a sub-
routine, we present a molecular program (Parallel Fill) within the sticker
model that performs the computation of the weight of subsets regarding a given
function. The molecular solutions presented of Subset Sum and Knapsack prob-
lems use a linear number of tubes, and the number of molecular operations is,
basically, quadratic; nevertheless, the volume of required DNA (space complexi-
ty) to perform the computations may vary by exponential factors.

We present formal verification of the designed programs, proving soundness
and completeness of these programs through the labeling of tubes and using
techniques of induction.

The study of the formal aspects of molecular programs opens up a new re-
search field for their automatic processing by means of theorem provers (ACL2,
PVS, ...). The production of prototypes which are able to be executed regarding
molecular computational models within the framework of theorem provers, will
allow to automate both the soundness and completeness of molecular programs,
which have been designed within these models.

References

1. Adleman, L. On constructing a molecular computer, in DNA based computers,
R.J. Lipton and E.B. Baum, eds., American Mathematical Society, 1996, 1–22.

2. Garey M.R.; Johnson D.S. Computers and intractability, W.H. Freeman and
Company, New York, 1979.

3. Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N.; Goodman, M;
Rothemund, P. and Adleman, L. A Sticker–Based Model for DNA Compu-
tation, J. Comp. Biol. 5, 615–629, 1998

