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Abstract

In this paper we will give, for certain models M of some Fragments of Arithmetic,
the least initial segment, nonstandard, maximal ¥, -definable that contains K, (M; X)
with X C M, n.s and not cofinal in M.

1 Preliminaries

P~ is the theory whose models are the nonnegative parts of the conmutative discretely
ordered rings. As usual I,, B, and L, are, respectively, the induction, collection and least
element axioms for a formula ¢ of the first order language of Arithmetic, L.

Let I' C Form(L). Then

ET=P +{E,:9€l'} for E=IorL
BT =14 + {B, : p € T}

Peano’s Arithmetic, PA, is the theory P~ + {I, : ¢ € Form(L)}.
Definition 1.1. Let My, My be L-structures such that My C M.

1. We say that X C My is an initial segment in M iff it is closed under the succesor
function and for alla € X, b€ My if b < a, then b € X.

2. We say that X C My is a cofinal set in My iff for all b € M, there exists a € X such
that b < a.

3. We say that M, is an initial substructure of My (My C¢ My) iff My is an initial
segment in Ms.

Definition 1.2. Let My, My be L-structures such that My C M. We say that M is an
n-elemental substructure of My (My <, Ms) iff for any formula (%) € ¥, and @ € M;

Ml @@ <<= M= (@)
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Note: If M; C® M, and M; <, M, we denote M; <¢ M.
Proposition 1.3. [2] If My C® My, then M; <§ M.

Theorem 1.4 (Tarski-Vaugth Test). [2] Let M1 <o M> |= P~. The following asser-
tions are equivalent:

1. M, <n+1 M.

2. For dall p(z,y) € I, and a € My, if My = 3z p(z,a), then there exists b € My such
that M> = ¢(b, a).

Theorem 1.5 (Cléte). [3] If My = I%,, and M, <, | M, proper, then My = BX, .

Definition 1.6. Let My C Ms. The initial segment defined by My in My is the L-structure
with universe S(My, Ms) = {a € M> : there exists b € My such that a < b}.

2 Maximal X,,-definable Sets

Definition 2.1. Let M be an L-structure and X C M.

1. Let o(2,7) € S, a € M and b € X such that M = ¢(a,b) AVz (¢(z,b) = = = a).

-

Then we say that a is X,-definable in M with parameters b € X by the formula ¢,
and we denote M = ¢(z,b) ~ a.

2. Kn(M;X)={a € M :a is I,-definable in M with parameters in X }.
3. In(M; X) = S(Kn(M; X), M).

Proposition 2.2. [2] Let M |= IX, 1 nonstandard and X C M. If X is not cofinal in
M, then K41 (M; X) is not cofinal in M.

Proposition 2.3. [1] Let M =1%,, and X C M. Then
1. ICn+1(M,X) <n+1 M and }Cn+1(M,X) ': IEn
2. Ty (M;X) <6 M.

Definition 2.4. Let M be an L-structure and X C M. We say that X is a mazimal
Y, -definable set in M iff X # M and K,,(M;X) = X.

A first question arises in a natural way.
Question 1. Given a model, M, of a Fragment of Arithmetic, are there initial segments
maximal ¥,,-definable in M?

In [5] we give an affirmative answer to these question for models of PA. As an example,
by means of Tarski-Vaught Test, we give a necessary and sufficient condition for w to be a
maximal ¥,,;;-definable set in M = I¥,, nonstandard.

Proposition 2.5. Let M |=I%,, be nonstandard. Then

]Cn_H(M;CU) =W = W <p41 M



Nevertheless, the classic models of Paris-Kirby K,,(M; X) and Z,(M; X), do not answer
the question, since, in general, the first one is a maximal ¥,,-definable set but not an initial
segment and the second one is an initial segment but not a maximal ¥,,-definable set.

As, if M = I¥,41 and X C M, finite nonstandard, then Z,, 11 (M; X) E BY 11+ 1¥, 41
[2] two more questions appear.
Question 2. Given a model, M, of a Fragment of Arithmetic, are there models of BY,, 11
and not of I¥,,;; that are initial segments maximal ¥,,-definable in M?
Question 3. Given X C M, which is the least initial segment maximal ¥,-definable in M
containning K, (M; X)?

In what follows, we will give an answer to these questions.

3 The Structures 110(M; X)

Definition 3.1. Let M be an L-structure, T C Form(L) and X C M not empty. For each
k € w we define Tr ,(M; X) as follows:

Tro(M;X) = {c€M: there exist p(z,y,%) € T,a,b€ X such that

M =Vz <a3lye(z,y,b) and there exists
d=max{ec M : M3z <ap(z,eb)} andc<d}

Tr k41 (M; X) {ce M : there exist o(z,y,%) € T,a,b € Tr x(M; X) such that
M E=Vz <adly go(w,y,g) and there exists

d=max{e€ M : M3z <ap(z,eb)} andc < d}

Then we define
Tr(M; X) = | Tre(M; X)
kEw

If Ag CT, it is obvious that X C Tt ,(M;X) C Tt 41 (M; X).

Let M = d = (max y).<a(p(z,y, b)) denote d = max{e € M : M |= 3z < ap(z,e,b)}.
Note: If M is a model of certain Fragment of Arithmetic, then M verifies some maximum
schemes that guarantee that all I'-definable function with a nonempty and upper bounded
domain have a maximum element ([4] and [5]).

Now we give some properties of this structures.

Proposition 3.2. Let M =P, 0 # X C M and Ag CT. Then Tr(M;X) C M.

Proof.

It is sufficient to prove that given any two elements ¢;,co € Tr(M;X) we have that
c1+1,¢c1+co,c1-c0 € TF(M;X).

Let k € w such that c1, ca € T k+1(M; X), then there exist ¢;1(z,y, 2), p2(x,y,2) € T
and a, b € Tt (M; X) such that

- -

- M Ve <adlyei(z,y,b) Addy = (max y)z<a(p1(2,9,0) Aer < di.

- -

- M EVz <adlyps(z,y,b) Addy = (max y)e<alp2(2,y,b)) Acz < ds.

Suppose that d; > d and consider 8(z,y,d1) =y =2-d; € A,.
Let e € Tr,k+1(M;X). Then



- M EVz<edlyb(z,y,d).
- M E2-di = (max y)o<e(0(z,y,d1)) At +c2 < 2-dy.

Soci+es € Tr’k+2(M;X) C TF(M;X).
For ¢1 + 1, ¢1 - c2 € Tr(M; X)) the proof is similar.

Proposition 3.3. Lee M EP~, 0 # X C M andT =X, or II,,. Then
1. For each k € w and for every Y C Tt 1 (M; X), Kn(M;Y) C Tt py1(M; X).
2. Kn(M;X) CTr(M; X) = Kn(M; Tr (M; X)).

Proof.

1. Let a € K (M;Y).
Then there exist ¢(z,7) € £, and b € Y such that M E o(z, b) ~ a.

We consider
0(z,y,2) =p(y,2) €8, ifT'=%, or
0(z,y,2) =Vu(p(u,?) 2 u=y) €ll, if ' =11, (n > 0).
Let ¢ € X. Then
- MEVz< cﬂ!yﬁ(m,y,g).
- M = a = (max y)s<c(0(z,,b)-
Hence a € Tt p+1(M; X).

2. Taking into account that X C Tt o(M;X) we have by (1) that

Kn(M; X) CTp 1 (M; X) C Ty (M; X)

Let a € K,,(M;Tr(M; X)).
Then there exists k € w such that a € K,,(M;Tr ,(M; X)).
Therefore, by (1), a € Tt g+1(M; X) C Tt (M; X).

Proposition 3.4. Let M EIX,,, 0 #X CM and T =%, 41 or II,,1. Then
1. Te(M; X) <&,y M.
2. If To(M; X) # M, then Tr(M; X) |= BSo .

Proof.



1. By construction and (3.2) Tr(M; X) is an initial substructure of M. Then we must
see that T (M; X) <41 M.

Let p(z,y) € II, and b € Tr(M; X) such that M = 3z ¢(x,b). Since I¥, <= LII,,
there exists ¢ € M such that ¢ = min{z € M : M |= p(z,b)}.

We consider 0(z,y, z) = ¢(y, 2) AVu < y —p(u, z) € T'(M).
Since b € Tr(M; X), there exists k € w such that b € Tt (M; X).
Let a € Tt ;(M; X). Then

- M EVz <a3dlyb(z,y,b).

- M = ¢ = (max y)e<a(6(z,y,b)).
Hence, ¢ € Tt p+1(M; X) C Ty (M; X) and M |= ¢(c, b).
By Tarski-Vaught Test we obtain Tt (M; X) <p41 M.

2. It follows from (1) and (1.5).

Proposition 3.5. Let My <%, M |= BIl,, and § # X C M;. Then

1. Ty . (My;X) =T, ., (My; X).

n+1( n+1(

2. Tn, (My; X) =Tn, (Ms; X).
Proof.

1. Let see by induction that for each k£ € w

Ty, 1 (M3 X) =T,y k(Ma; X)

k=0
Let c € Ty, ,, 0(M1; X). Then there exist ¢(z,y,?) € Xny1, a, be Xandde M,
such that
(i) My Vo < ay(a,y,b).
(ii') M, ': d= (max y)zga(‘;o(xaya g))
(iii.) My =c<d.
Since My <nt1 My and M;, M, |= BII,, those formulas are true in M. Hence,
cc T2n+1’0(M2; X)
Let ¢ € Ty, ,, 0(M>2; X). Then there exist ¢(z,y,?) € Xny1, a, be X andde M,
such that
(i) M, Vo < ayp(a,y,b).
(ii') M ': d= (max y)zga(‘;o(xaya g))
(iii.) My =c<d.



Let e € M, such that M, = e <aAypled, 1}') Since My <%, M,, we have that
e € My and M; = Jy (e, y,b).

Let d’ € My such that M = g(e,d’,b); then M, = o(e,d',b), so d =d' € M.
Since My <n+1 Ms, formulas from (i) to (iii) are true in Mj.

Hence, ¢ € Ty, ,,,0(M1; X).

The proof is similar taking into account that by induction hypothesis

Ts, k(M2 X) =Ts, , x(M1; X) C M,

2. Asin (1).
O

And then we get the main result of this paper, which gives us a satisfactorial answer to our
questions.

4 Main Results

Theorem 4.1. Let M =1X,,42 and X C M nonstandard and not cofinal in M. Then

1. Tx, ., (M; X) is an initial substructure, nonstandard and mazimal ¥, ,-definable in
M that contains K1 (M; X).

Furthermore, this structure is the least verifying the properties above and

7& (Al;)()k:132n+2 + ﬁIEn+2

n41

2. Tn, (M;X) is an initial substructure, nonstandard and mazimal %,,-definable in M
containning K, (M; X).
Proof.

1. We have seen that

(a) Ts,,,(M;X) C* M (3.2).
(b) Knt1(M;X) C T, (M; X) = Kpy1 (M; T, ,, (M; X)) (3.3).

n+1(

Since X C Ty, ,(M; X), we have that Tx, ,, (M; X) is nonstandard.
So it remains to prove that Ty, (M;X) # M.

n+1(

By (2.2) we have that K,12(M;X) is not cofinal in M, so there exists a € M such
that a > T,y 2(M; X); thus, Zoyo(M; X) <&, M (2.3) and Z,5(M; X) # M. Then

Ts, .. (M; X)E'Ts, . (Tni2(M; X); X) C Tnia(M; X) ¢ M

n+1 n+1



e Let us see that Ty, ,, (M; X) is the least structure verifying those properties.
Consider M' C® M maximal ¥,,;-definable in M such that K41 (M; X) C M".
Let us see by induction that for each k € w, Ty, ., x(M;X) C M.

Let a € Tk, ,,,0(M;X). Then there exist ¢(z,y,7) € ¥pq1 and b, € X C M’
such that

- M EVe <bIlyy(z,y,0).

- M | a<m = (max y)z<s((,y,0).
Let 0(z,w,?) = 3z < wp(z,2,7) AVx < w3y (p(z,y,0) ANy < 2) € 1 (M).
We have that M |= 0(z,b,é) ~ m what implies that m € M', so a € M'.

The proof is similar taking into account that by induction hypothesis
Ty, k(M; X) C M

o Iy, ., (M;X) EBX s + I, .
By (34),as Ty, ., (M;X) # M, Tx,,,(M;X) EBX, 2
Suppose that Tx,,, (M; X) = IX, 4.
- By 34) Ts,,,(M;X) <%, M.
- By 3.5) Ty, ., (Tx,,,(M; X); X) =T, ,,(M; X).
But, from (1), it follows that Tx,,, ., (T, ., (M; X); X) is a maximal ¥, -definable

set in Ty, ., (M;X). So Ty, ,,(Ts,,(M; X); X) # Ts, ., (M; X) what is a con-
tradiction.

2. Asin (1).
O

Note: This theorem cannot be improved because in the proof we have built a model M’
(M'=Ts, ,(M;X)), of BE, 42 + -IX, o for which Ty, ., (M'; X) = M".

n+1(
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