Initial Segment Maximal Σ_n -definable Sets in Fragments of Arithmetic

Graciani M.C.; Pérez M.J.; Romero A. and Sancho F. *

Ciencias de la Computación e Inteligencia Artificial. Universidad de Sevilla E-mail: {cgdiaz,marper,alvaro,fsancho}@cica.es

Abstract

In this paper we will give, for certain models M of some Fragments of Arithmetic, the least initial segment, nonstandard, maximal Σ_n -definable that contains $K_n(M; X)$ with $X \subseteq M$, n.s and not cofinal in M.

1 Preliminaries

 \mathbf{P}^- is the theory whose models are the nonnegative parts of the commutative discretely ordered rings. As usual \mathbf{I}_{φ} , \mathbf{B}_{φ} and \mathbf{L}_{φ} are, respectively, the induction, collection and least element axioms for a formula φ of the first order language of Arithmetic, \mathcal{L} .

Let $\Gamma \subset Form(\mathcal{L})$. Then

$$\mathbf{E}\Gamma = \mathbf{P}^- + \{\mathbf{E}_{\varphi} : \varphi \in \Gamma\} \quad for \quad \mathbf{E} = \mathbf{I} \text{ or } \mathbf{L}$$
$$\mathbf{B}\Gamma = \mathbf{I}\Delta_0 + \{\mathbf{B}_{\omega} : \varphi \in \Gamma\}$$

Peano's Arithmetic, **PA**, is the theory $\mathbf{P}^- + \{\mathbf{I}_{\varphi} : \varphi \in Form(\mathcal{L})\}.$

Definition 1.1. Let M_1 , M_2 be \mathcal{L} -structures such that $M_1 \subset M_2$.

- 1. We say that $X \subseteq M_2$ is an initial segment in M_2 iff it is closed under the successor function and for all $a \in X$, $b \in M_2$ if $b \le a$, then $b \in X$.
- 2. We say that $X \subseteq M_2$ is a cofinal set in M_2 iff for all $b \in M_2$ there exists $a \in X$ such that $b \leq a$.
- 3. We say that M_1 is an initial substructure of M_2 $(M_1 \subset^e M_2)$ iff M_1 is an initial segment in M_2 .

Definition 1.2. Let M_1 , M_2 be \mathcal{L} -structures such that $M_1 \subset M_2$. We say that M_1 is an n-elemental substructure of M_2 ($M_1 \prec_n M_2$) iff for any formula $\varphi(\vec{x}) \in \Sigma_n$ and $\vec{a} \in M_1$

$$M_1 \models \varphi(\vec{a}) \iff M_2 \models \varphi(\vec{a})$$

^{*}Supported by research project DGES PB96-1345

Note: If $M_1 \subset^e M_2$ and $M_1 \prec_n M_2$ we denote $M_1 \prec_n^e M_2$.

Proposition 1.3. [2] If $M_1 \subset^e M_2$, then $M_1 \prec_0^e M_2$.

Theorem 1.4 (Tarski-Vaugth Test). [2] Let $M_1 \prec_0 M_2 \models \mathbf{P}^-$. The following assertions are equivalent:

- 1. $M_1 \prec_{n+1} M_2$.
- 2. For all $\varphi(x,y) \in \Pi_n$ and $a \in M_1$, if $M_2 \models \exists x \varphi(x,a)$, then there exists $b \in M_1$ such that $M_2 \models \varphi(b,a)$.

Theorem 1.5 (Clôte). [3] If $M_1 \models I\Sigma_n$ and $M_2 \prec_{n+1}^e M_1$ proper, then $M_2 \models B\Sigma_{n+2}$.

Definition 1.6. Let $M_1 \subset M_2$. The initial segment defined by M_1 in M_2 is the \mathcal{L} -structure with universe $S(M_1, M_2) = \{a \in M_2 : \text{there exists } b \in M_1 \text{ such that } a \leq b\}$.

2 Maximal Σ_n -definable Sets

Definition 2.1. Let M be an \mathcal{L} -structure and $X \subseteq M$.

- 1. Let $\varphi(x, \vec{y}) \in \Sigma_n$, $a \in M$ and $\vec{b} \in X$ such that $M \models \varphi(a, \vec{b}) \land \forall x (\varphi(x, \vec{b}) \to x = a)$. Then we say that a is Σ_n -definable in M with parameters $\vec{b} \in X$ by the formula φ , and we denote $M \models \varphi(x, \vec{b}) \leadsto a$.
- 2. $\mathcal{K}_n(M;X) = \{a \in M : a \text{ is } \Sigma_n\text{-definable in } M \text{ with parameters in } X\}.$
- 3. $\mathcal{I}_n(M;X) = S(\mathcal{K}_n(M;X),M)$.

Proposition 2.2. [2] Let $M \models \mathbf{I}\Sigma_{n+1}$ nonstandard and $X \subseteq M$. If X is not cofinal in M, then $\mathcal{K}_{n+1}(M;X)$ is not cofinal in M.

Proposition 2.3. [1] Let $M \models \mathbf{I}\Sigma_n$ and $X \subseteq M$. Then

- 1. $\mathcal{K}_{n+1}(M;X) \prec_{n+1} M$ and $\mathcal{K}_{n+1}(M;X) \models \mathbf{I}\Sigma_n$.
- 2. $\mathcal{I}_{n+1}(M;X) \prec_n^e M$.

Definition 2.4. Let M be an \mathcal{L} -structure and $X \subseteq M$. We say that X is a maximal Σ_n -definable set in M iff $X \neq M$ and $\mathcal{K}_n(M;X) = X$.

A first question arises in a natural way.

Question 1. Given a model, M, of a Fragment of Arithmetic, are there initial segments maximal Σ_n -definable in M?

In [5] we give an affirmative answer to these question for models of **PA**. As an example, by means of Tarski-Vaught Test, we give a necessary and sufficient condition for ω to be a maximal Σ_{n+1} -definable set in $M \models \mathbf{I}\Sigma_n$ nonstandard.

Proposition 2.5. Let $M \models I\Sigma_n$ be nonstandard. Then

$$\mathcal{K}_{n+1}(M;\omega) = \omega \iff \omega \prec_{n+1} M$$

Nevertheless, the classic models of Paris-Kirby $\mathcal{K}_n(M;X)$ and $\mathcal{I}_n(M;X)$, do not answer the question, since, in general, the first one is a maximal Σ_n -definable set but not an initial segment and the second one is an initial segment but not a maximal Σ_n -definable set.

As, if $M \models \mathbf{I}\Sigma_{n+1}$ and $X \subseteq M$, finite nonstandard, then $\mathcal{I}_{n+1}(M;X) \models \mathbf{B}\Sigma_{n+1} + \neg \mathbf{I}\Sigma_{n+1}$ [2] two more questions appear.

Question 2. Given a model, M, of a Fragment of Arithmetic, are there models of $\mathbf{B}\Sigma_{n+1}$ and not of $\mathbf{I}\Sigma_{n+1}$ that are initial segments maximal Σ_n -definable in M?

Question 3. Given $X \subseteq M$, which is the least initial segment maximal Σ_n -definable in M containing $\mathcal{K}_n(M;X)$?

In what follows, we will give an answer to these questions.

3 The Structures $T_{\Gamma}(M;X)$

Definition 3.1. Let M be an \mathcal{L} -structure, $\Gamma \subseteq Form(\mathcal{L})$ and $X \subseteq M$ not empty. For each $k \in \omega$ we define $T_{\Gamma,k}(M;X)$ as follows:

$$T_{\Gamma,0}(M;X) = \{c \in M : \text{ there exist } \varphi(x,y,\vec{z}) \in \Gamma, a, \vec{b} \in X \text{ such that } M \models \forall x \leq a \exists ! y \varphi(x,y,\vec{b}) \text{ and there exists } d = \max\{e \in M : M \models \exists x \leq a \varphi(x,e,\vec{b})\} \text{ and } c \leq d\}$$

$$T_{\Gamma,k+1}(M;X) = \{c \in M : \text{ there exist } \varphi(x,y,\vec{z}) \in \Gamma, a, \vec{b} \in T_{\Gamma,k}(M;X) \text{ such that } M \models \forall x \leq a \, \exists ! y \, \varphi(x,y,\vec{b}) \text{ and there exists } d = \max\{e \in M : M \models \exists x < a \, \varphi(x,e,\vec{b})\} \text{ and } c < d\}$$

Then we define

$$T_{\Gamma}(M;X) = \bigcup_{k \in \omega} T_{\Gamma,k}(M;X)$$

If $\Delta_0 \subseteq \Gamma$, it is obvious that $X \subseteq T_{\Gamma,k}(M;X) \subseteq T_{\Gamma,k+1}(M;X)$.

Let $M \models d = (\max y)_{x < a}(\varphi(x, y, \vec{b}))$ denote $d = \max\{e \in M : M \models \exists x \leq a \varphi(x, e, \vec{b})\}.$

Note: If M is a model of certain Fragment of Arithmetic, then M verifies some maximum schemes that guarantee that all Γ -definable function with a nonempty and upper bounded domain have a maximum element ([4] and [5]).

Now we give some properties of this structures.

Proposition 3.2. Let $M \models \mathbf{P}^-$, $\emptyset \neq X \subseteq M$ and $\Delta_0 \subseteq \Gamma$. Then $T_{\Gamma}(M;X) \subset M$.

Proof.

It is sufficient to prove that given any two elements $c_1, c_2 \in T_{\Gamma}(M; X)$ we have that $c_1 + 1, c_1 + c_2, c_1 \cdot c_2 \in T_{\Gamma}(M; X)$.

Let $k \in \omega$ such that $c_1, c_2 \in T_{\Gamma, k+1}(M; X)$, then there exist $\varphi_1(x, y, \vec{z}), \varphi_2(x, y, \vec{z}) \in \Gamma$ and $a, \vec{b} \in T_{\Gamma, k}(M; X)$ such that

- $M \models \forall x \leq a \ \exists ! y \ \varphi_1(x, y, \vec{b}) \land \exists d_1 = (\max y)_{x \leq a} (\varphi_1(x, y, \vec{b})) \land c_1 \leq d_1.$
- $M \models \forall x \leq a \exists ! y \varphi_2(x, y, \vec{b}) \land \exists d_2 = (\max y)_{x \leq a} (\varphi_2(x, y, \vec{b})) \land c_2 \leq d_2.$

Suppose that $d_1 \geq d_2$ and consider $\theta(x, y, d_1) \equiv y = 2 \cdot d_1 \in \Delta_0$.

Let $e \in T_{\Gamma,k+1}(M;X)$. Then

- $M \models \forall x \leq e \exists ! y \theta(x, y, d_1).$
- $M \models 2 \cdot d_1 = (\max y)_{x < e}(\theta(x, y, d_1)) \land c_1 + c_2 \le 2 \cdot d_1.$

So $c_1 + c_2 \in T_{\Gamma,k+2}(M;X) \subseteq T_{\Gamma}(M;X)$.

For $c_1 + 1$, $c_1 \cdot c_2 \in T_{\Gamma}(M; X)$ the proof is similar.

Proposition 3.3. Let $M \models \mathbf{P}^-$, $\emptyset \neq X \subseteq M$ and $\Gamma = \Sigma_n$ or Π_n . Then

1. For each $k \in \omega$ and for every $Y \subseteq T_{\Gamma,k}(M;X)$, $\mathcal{K}_n(M;Y) \subseteq T_{\Gamma,k+1}(M;X)$.

2. $\mathcal{K}_n(M;X) \subseteq T_{\Gamma}(M;X) = \mathcal{K}_n(M;T_{\Gamma}(M;X))$.

Proof.

1. Let $a \in \mathcal{K}_n(M;Y)$.

Then there exist $\varphi(x, \vec{y}) \in \Sigma_n$ and $\vec{b} \in Y$ such that $M \models \varphi(x, \vec{b}) \rightsquigarrow a$.

We consider

$$\theta(x, y, \vec{z}) \equiv \varphi(y, \vec{z}) \in \Sigma_n \text{ if } \Gamma = \Sigma_n \text{ or }$$

$$\theta(x, y, \vec{z}) \equiv \forall u (\varphi(u, \vec{z}) \to u = y) \in \Pi_n \text{ if } \Gamma = \Pi_n (n > 0).$$

Let $c \in X$. Then

- $M \models \forall x \leq c \exists ! y \theta(x, y, \vec{b}).$
- $M \models a = (\max y)_{x \le c}(\theta(x, y, \vec{b})).$

Hence $a \in T_{\Gamma, k+1}(M; X)$.

2. Taking into account that $X \subseteq T_{\Gamma,0}(M;X)$ we have by (1) that

$$\mathcal{K}_n(M;X) \subseteq T_{\Gamma,1}(M;X) \subseteq T_{\Gamma}(M;X)$$

Let $a \in \mathcal{K}_n(M; T_{\Gamma}(M; X))$.

Then there exists $k \in \omega$ such that $a \in \mathcal{K}_n(M; T_{\Gamma,k}(M; X))$.

Therefore, by (1), $a \in T_{\Gamma,k+1}(M;X) \subseteq T_{\Gamma}(M;X)$.

Proposition 3.4. Let $M \models I\Sigma_n$, $\emptyset \neq X \subseteq M$ and $\Gamma = \Sigma_{n+1}$ or Π_{n+1} . Then

- 1. $T_{\Gamma}(M;X) \prec_{n+1}^{e} M$.
- 2. If $T_{\Gamma}(M;X) \neq M$, then $T_{\Gamma}(M;X) \models \mathbf{B}\Sigma_{n+2}$.

Proof.

1. By construction and (3.2) $T_{\Gamma}(M;X)$ is an initial substructure of M. Then we must see that $T_{\Gamma}(M;X) \prec_{n+1} M$.

Let $\varphi(x,y) \in \Pi_n$ and $b \in T_{\Gamma}(M;X)$ such that $M \models \exists x \, \varphi(x,b)$. Since $\mathbf{I}\Sigma_n \iff \mathbf{L}\Pi_n$, there exists $c \in M$ such that $c = \min\{x \in M : M \models \varphi(x,b)\}$.

We consider $\theta(x, y, z) \equiv \varphi(y, z) \land \forall u < y \neg \varphi(u, z) \in \Gamma(M)$.

Since $b \in T_{\Gamma}(M; X)$, there exists $k \in \omega$ such that $b \in T_{\Gamma,k}(M; X)$.

Let $a \in T_{\Gamma,k}(M;X)$. Then

- $M \models \forall x \leq a \exists ! y \theta(x, y, b).$
- $-M \models c = (\max y)_{x < a}(\theta(x, y, b)).$

Hence, $c \in T_{\Gamma,k+1}(M;X) \subseteq T_{\Gamma}(M;X)$ and $M \models \varphi(c,b)$.

By Tarski-Vaught Test we obtain $T_{\Gamma}(M;X) \prec_{n+1} M$.

2. It follows from (1) and (1.5).

Proposition 3.5. Let $M_1 \prec_{n+1}^e M_2 \models \mathbf{B}\Pi_n$, and $\emptyset \neq X \subseteq M_1$. Then

- 1. $T_{\Sigma_{n+1}}(M_1;X) = T_{\Sigma_{n+1}}(M_2;X)$.
- 2. $T_{\Pi_n}(M_1;X) = T_{\Pi_n}(M_2;X)$.

Proof.

1. Let see by induction that for each $k \in \omega$

$$T_{\Sigma_{n+1},k}(M_1;X) = T_{\Sigma_{n+1},k}(M_2;X)$$

k = 0

- \subseteq Let $c \in T_{\Sigma_{n+1},0}(M_1;X)$. Then there exist $\varphi(x,y,\vec{z}) \in \Sigma_{n+1}$, $a, \vec{b} \in X$ and $d \in M_1$ such that
 - (i.) $M_1 \models \forall x \leq a \exists ! y \varphi(x, y, \vec{b}).$
 - (ii.) $M_1 \models d = (\max y)_{x \leq a}(\varphi(x, y, \vec{b})).$
 - (iii.) $M_1 \models c \leq d$.

Since $M_1 \prec_{n+1} M_2$ and M_1 , $M_2 \models \mathbf{B}\Pi_n$, those formulas are true in M_2 . Hence, $c \in T_{\Sigma_{n+1},0}(M_2;X)$.

- - (i.) $M_2 \models \forall x \leq a \exists ! y \varphi(x, y, \vec{b}).$
 - (ii.) $M_2 \models d = (\max y)_{x \leq a} (\varphi(x, y, \vec{b})).$
 - (iii.) $M_2 \models c \leq d$.

Let $e \in M_2$ such that $M_2 \models e \leq a \land \varphi(e, d, \vec{b})$. Since $M_1 \prec_{n+1}^e M_2$, we have that $e \in M_1$ and $M_1 \models \exists y \varphi(e, y, \vec{b})$.

Let $d' \in M_1$ such that $M_1 \models \varphi(e, d', \vec{b})$; then $M_2 \models \varphi(e, d', \vec{b})$, so $d = d' \in M_1$.

Since $M_1 \prec_{n+1} M_2$, formulas from (i) to (iii) are true in M_1 .

Hence, $c \in T_{\Sigma_{n+1},0}(M_1; X)$.

$$k \to k+1$$

The proof is similar taking into account that by induction hypothesis

$$T_{\Sigma_{n+1},k}(M_2;X) = T_{\Sigma_{n+1},k}(M_1;X) \subseteq M_1$$

2. As in (1).

And then we get the main result of this paper, which gives us a satisfactorial answer to our questions.

4 Main Results

Theorem 4.1. Let $M \models \mathbf{I}\Sigma_{n+2}$ and $X \subseteq M$ nonstandard and not cofinal in M. Then

1. $T_{\Sigma_{n+1}}(M;X)$ is an initial substructure, nonstandard and maximal Σ_{n+1} -definable in M that contains $\mathcal{K}_{n+1}(M;X)$.

Furthermore, this structure is the least verifying the properties above and

$$T_{\Sigma_{n+1}}(M;X) \models \mathbf{B}\Sigma_{n+2} + \neg \mathbf{I}\Sigma_{n+2}$$

2. $T_{\Pi_n}(M;X)$ is an initial substructure, nonstandard and maximal Σ_n -definable in M containing $\mathcal{K}_n(M;X)$.

Proof.

- 1. We have seen that
 - (a) $T_{\Sigma_{n+1}}(M;X) \subset^{e} M$ (3.2).
 - (b) $\mathcal{K}_{n+1}(M;X) \subseteq T_{\Sigma_{n+1}}(M;X) = \mathcal{K}_{n+1}(M;T_{\Sigma_{n+1}}(M;X))$ (3.3).

Since $X \subseteq T_{\Sigma_{n+1}}(M;X)$, we have that $T_{\Sigma_{n+1}}(M;X)$ is nonstandard.

So it remains to prove that $T_{\Sigma_{n+1}}(M;X) \neq M$.

By (2.2) we have that $\mathcal{K}_{n+2}(M;X)$ is not cofinal in M, so there exists $a \in M$ such that $a > \mathcal{I}_{n+2}(M;X)$; thus, $\mathcal{I}_{n+2}(M;X) \prec_{n+1}^{e} M$ (2.3) and $\mathcal{I}_{n+2}(M;X) \neq M$. Then

$$T_{\Sigma_{n+1}}(M;X) \stackrel{\text{(3.5)}}{=} T_{\Sigma_{n+1}}(\mathcal{I}_{n+2}(M;X);X) \subseteq \mathcal{I}_{n+2}(M;X) \subsetneq M$$

• Let us see that $T_{\Sigma_{n+1}}(M;X)$ is the least structure verifying those properties. Consider $M' \subset^e M$ maximal Σ_{n+1} -definable in M such that $\mathcal{K}_{n+1}(M;X) \subseteq M'$. Let us see by induction that for each $k \in \omega$, $T_{\Sigma_{n+1},k}(M;X) \subseteq M'$.

$$k = 0$$

Let $a \in T_{\Sigma_{n+1},0}(M;X)$. Then there exist $\varphi(x,y,\vec{z}) \in \Sigma_{n+1}$ and $b, \vec{c} \in X \subseteq M'$ such that

- $M \models \forall x \leq b \exists ! y \varphi(x, y, \vec{c}).$
- $M \models a \leq m = (\max y)_{x < b} (\varphi(x, y, \vec{c})).$

Let $\theta(z, w, \vec{v}) \equiv \exists x \leq w \, \varphi(x, z, \vec{v}) \land \forall x \leq w \, \exists y \, (\varphi(x, y, \vec{v}) \land y \leq z) \in \Sigma_{n+1}(M)$.

We have that $M \models \theta(z, b, \vec{c}) \leadsto m$ what implies that $m \in M'$, so $a \in M'$.

$$k \to k+1$$

The proof is similar taking into account that by induction hypothesis

$$T_{\Sigma_{n+1},k}(M;X) \subseteq M'$$

- $T_{\Sigma_{n+1}}(M;X) \models \mathbf{B}\Sigma_{n+2} + \neg \mathbf{I}\Sigma_{n+2}$. By (3.4), as $T_{\Sigma_{n+1}}(M;X) \neq M$, $T_{\Sigma_{n+1}}(M;X) \models \mathbf{B}\Sigma_{n+2}$. Suppose that $T_{\Sigma_{n+1}}(M;X) \models \mathbf{I}\Sigma_{n+2}$.
 - By (3.4) $T_{\Sigma_{n+1}}(M;X) \prec_{n+1}^{e} M$.
 - By (3.5) $T_{\Sigma_{n+1}}(T_{\Sigma_{n+1}}(M;X);X) = T_{\Sigma_{n+1}}(M;X).$

But, from (1), it follows that $T_{\Sigma_{n+1}}(T_{\Sigma_{n+1}}(M;X);X)$ is a maximal Σ_{n+1} -definable set in $T_{\Sigma_{n+1}}(M;X)$. So $T_{\Sigma_{n+1}}(T_{\Sigma_{n+1}}(M;X);X) \neq T_{\Sigma_{n+1}}(M;X)$ what is a contradiction.

2. As in (1).

Note: This theorem cannot be improved because in the proof we have built a model M' $(M' = T_{\Sigma_{n+1}}(M; X))$, of $\mathbf{B}\Sigma_{n+2} + \neg \mathbf{I}\Sigma_{n+2}$ for which $T_{\Sigma_{n+1}}(M'; X) = M'$.

References

- [1] Paris, J.; Kirby, L. Σ_n -collection schemas in Arithmetic. Logic Colloquium 'y77, pp. 199-209 (1978).
- [2] HÁJEK, P; PUDLÁK, P. Metamathematics of First-Order Arithmetic. Springer-Verlag, Berlin (1993).
- [3] CLÔTE, P. Partition Relations in Arithmetic. Proceedings 6th Latin American Symposium on Mathematical Logic, Lecture Notes in Mathmatics, Vol. 1130, pp. 65-88 Springer-Verlag, Berlin (1985).

- [4] FERNÁNDEZ-MARGARIT, A.; PÉREZ-JIMÉNEZ, M.J. Maximum Schemes in Arithmetic. Mathematical Logic Quaterly, Vol. 40, pp. 425-430 (1994).
- [5] PÉREZ-JIMÉNEZ, M.J. Esquemas del Máximo en la Aritmética. Tesis doctoral. Editorial de la Universidad de Sevilla (1992).