Minimal Set Cover Problem: On a DNA Solution of
Selection Stage
Pérez-Jiménez, M.J.; Sancho-Caparrini, F.
Dpt. Computer Science and Artificial Intelligence. Universidad de Sevilla
E-mail: {marper,fsancho}@cica.es

Abstract. The introduction of Sticker Model by S. Roweis et al. ([4])
is illustrated with a solution in this model of a NP-complete problem:
Minimal Set Cover Problem ([1]). The molecular solution given in [4] has
three stages, the last one is a subroutine to select a minimal set cover of a
finite set from a collection of covers of it. In this work a formal verification
of this subroutine is given through a systematic method using a labeling
procedure and invariant formulas searching.

1 Introduction

Given a molecular program P designed to solve a problem X, the verification
of (X, P) consists in proving that the program P solves the problem X. We
consider molecular programs that start with an initial test—tube (a finite multiset
of elements over a prefixed alphabet) as input. They return a (possibly empty)
final tube of answers as output. In order to establish the formal verification of a
molecular program designed to answer a problem, it suffices to show two basic
results:

— Soundness (of the program): every strand of the final test—tube encodes a
correct solution of the problem.

— Completeness (of the program): every strand of the initial test—tube encoding
a correct solution of the problem is kept alive along the execution of the
program (and it is placed in the “corresponding” output tube).

Formal verification of molecular programs is a necessary step for their treatment
with an automated reasoning system.

In order to study formal verification of molecular programs we propose the struc-
tured and systematic method that follows:

1. Designing a procedure for tubes labeling in order to individualize (treat
separately and in detail) the data of the model. This allows us a precise
study of them through the program execution.

2. Searching invariant formulas in order to extract a set of properties that are
valid along the execution. This properties will let us to establish soundness
and completeness of the program.

We think that this procedure of formal verification can be adapted to membrane
computing, through an annotated specification mechanism in some remark points
to be considered along the P-system execution, inspired by Hoare’s specification
ideas ([2]).

In this work we will illustrate this method with the study of formal verifica-
tion of a molecular program in the sticker model that solves Selection Problem
associated to the Minimal Set Cover.



2 Minimal Set Cover Selection Problem

The selection problem associated to the Minimal Set Cover consists, basically, in
sorting according to their cardinality a family of covers of a given finite set. The
introduction of sticker model by S. Roweis et al ([4]) is illustrated by present-
ing in this model a solution to the minimal set cover problem ([1]). Molecular
solution given in [4] is founded in a subroutine that solves the above selection
problem. We study a rooted graph structure that arise through the execution
of the subroutine, and then we apply the above structured method to establish
formal verification of it.

The sticker model is an abstract model of molecular computing based on DNA
that has a random access memory and it uses a new form of encoding the infor-
mation. The following operations from sticker model are used in this paper:

— Combine (T}, T5): the memory complexes from the tubes T}, T5 are combined
to form the multiset union of all strings in the two input tubes.

— Separate (T,4): Given a tube, T, and an integer, i (1 < 4 < number of
substrands that form each complex of T'), create two new tubes, +(7T',7) and
—(T,1), where +(T',1) (resp. —(T', %)) contain all strings of T having the i—th
substrand set to 1 (resp. set to 0). We write (T7,7T) < Separate(T,i) to
indicate that T = +(T,4) and Ty = —(T,1).

Next we formulate the above mentioned problem which will be studied in this
paper.

Minimal Set Cover Selection Problem: Given a finite set A = {1,...,p}
and o finite family F = {By,...,B,} of subsets of A, sort the collection of all
subfamilies of F covering A, according to their cardinality.

A molecular program in the sticker model solving Minimal Set Cover Selection
Problem is the following one:

Input: Ty (encoding all sub-families of F covering A)
For 1 -0 to ¢g—1 do
Tiv1 0
For j <+ to 0 do
Tj+ —+(Tyi+1) 5 T « —(Tj,i+ 1)
Tjp1 combine(Tj'",TjJrl
Tj — Tji

The number of molecular operations in this program is quadratic in the size of
the family F.

For each i (1 < i < q) we will note r; = |B;| and B; = {x},...,2]'}. If 0 € Ty,
then we will write o(i) = 1 (resp. 0) if the i-th region of memory complex o is
on (resp. off).

Note that the input tube is not a library (as usual in the sticker model), since
this program is in fact a subroutine. Moreover, this program doesn’t enclose
operations which modify inner structure of the strands (set, turn on, or clear,



turn off). So, this subroutine can also be described in any molecular computation
model without memory and based in filtering procedure.
Furthermore, if ¢ € T, then (o(1),...,0(q)) encodes in a natural way a sub-
family F' C F as follows: Vi (1 < i < g — (B; € F' < o(i) = 1)). Also,
Vjilg+1<j<q+p— o)) =1). We define [o| = > o(i).

1<i<q
According to this, the input tube used in this subroutine can be unloaded in
the following way: we can use a restriction endonuclease enzyme so that when
encoding the memory strands of initial test tube (a (p + ¢, ¢)-library), an ap-
propriate recognition site associated to the restriction enzyme is placed between
g-th and (g + 1)-th regions. In this way, just before running this subroutine, we
activate the restriction endonuclease enzyme to make all memory strands split
in the specific recognition site; after that, we select all molecules containing the
first ¢ regions (using magnetic beads, for example). Therefore we make that the
input tube of this subroutine (noted here as Tp, too) contains all g regions length
molecules encoding subfamilies of F covering A.

3 Formal Verification of the subroutine

To establish the formal verification of the designed subroutine, we begin with a
labeling procedure of tubes that have been used along the execution.

Input: Ty
T 10 To; T-q11 + 0; To,1 < To; T(il «~0
For 1 <0 to ¢g—1 do
Tiiy2 < 0
For j <4 to 0 do
TzTJ — +(Ti,1)j,i + 1)
T j41 Combine(T”,Tl*JJrl)
T7  —(Tica 4,1+ 1)
Ti,O < T;:O

This program returns ¢ + 1 tubes (T} 41, ..., Ti0) after the execution of the i-th
step of the main loop.
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That is, the execution of this program can be described as a rooted directed
graph with depth ¢ that we will note as labeled merge-binary tree with depth g,
and can be defined as follows:

Definition 1. A grid with depth h, G, = (V, Ep), is the following directed
graph:

{Vh:{(i,j)r 0<i<hAO0<j<i}
En ={((5,0), i+ 1,5), ((5,4),(i+1,j+1)): 0<i<hA0<j<i}

Definition 2. A labeled merge-binary tree with depth h is a 5-tuple (G, L, {F; :
0<i<h-1},B,Ty,l), where:

— Gy, is a grid with depth h.

— L is a nonempty set (its elements will be called labels).

For each i (0 < i < h—1) a function F; : L — L x L (we will note

Fy = (F,F}")).

A binary function B : L x L — L.

— T e L.

— 1:Vy, — L, called the labeling function, is defined by recursion (using To, F;
and B), as follows:

1(0,0) =

i+1 0) F(1(:,0))

l(i+1,i+1)= F:r(l(z,z))

(i +1,5) = B(F; (1(i,5 — 1)), F; (133, 5)))

with 0<i<h A1<j<i.

In the execution of the designed molecular program a labeled merge-binary tree
with depth ¢ is obtained, where:

(a) Labels are tubes.
(b) For each i (0 <i < ¢q—1) we have F;(T) = separate(T,i + 1), so
F(T)=—(T,i+1) and F;"(T) = +(T,i + 1)
(c) The binary function, B, is the combine molecular operation (called merge
t00).

(d) Tp is the input test—tube of the subroutine.

This combinatorics structure let us design a subroutine that solves a more gen-
eral sorting problem where the semantic of the subroutine is very close to the
semantic of the problem ([3]).

To establish the formal verification of the subroutine, in connection with Minimal
Set Cover Selection Problem, we have to prove specifically that:

— Every molecule, o, in the output tube, T, . (1 < r < ¢), must verify o] =r
(Soundness).

— Every molecule, o, in the input tube, T, such that |o| = r (1 < r < ¢), must
be in the output tube Ty_1 , (Completeness).



The execution of the subroutine can be seen as an evolution of a population
of elements. Initially, the population is determined by the multiset of molecules
in the input tube, Tp. Every molecule is an element, and repeated ones can
exist at the same time (so cloned members can be alive simultaneously in this
population).

Every step of the main loop can be interpreted as a time unit. After a lapse, the
population is transformed into other one, but, in this case, there is no deaths or
mutations in elements, since this subroutine is, basically, a filtering procedure.
We consider the following formulas:

Y(,0)=Vo (c€Tio0€ToANVE (1 <k<i+1—k¢o))
'(/J(i,j+1) EVU(U ETi,jJrl <~ (0’ S Ti*l,j/\i"'_le 0') V
\% (U GTZ‘,L]‘Jrl /\Z+1¢ 0'))

Theorem 1. The formula (i) =Vj (0<j <i+1— ¥(i,5)) is an invariant
of the main loop. That isVi (0<i<q—1—0(i)).

Proof. By induction on i. Base case follows from the definition of initial tubes.
Let i < ¢ — 1 such that 6(7). It can be proved by induction on j that
Vi(0<j<it+2—p(i+1,5)
O

Next, we are going to describe the trace of every molecule of the input tube
along the execution of the subroutine. For this, if o € T is given, we will write
o = (i1,...,%r) to note that 1 <i; < --- < i, < q and

Vi(1<j<r—ali})=1) AVEVj (1<t<qAij#t—a(t)=0)
That is, the molecule ¢ = (i1,...,4,) € Ty encodes in a natural way the subfamily
F' = {Bil,...,Bir} of F.

Proposition 1. Let 0 = (i1,...,0,) € To, where 1 < i1 < is < -+ < iy < q.
Then

(1) \V/] (1 S] <r—=oé€ Tij—17j)'
(2) Vi (]. <t<qg—1i, >0E€ TiTthfl,r)-
(3) Uequl,r'

Proof.

1. By induction on j. Base case is clear for ¢; = 1. If 4; > 1 then we can prove

that Vs (1 < s < i3 = 0 € Ts_1,0). From this we have 0 € +(T},-2,0,1).
Since (i1 — 1,1) is true, we conclude that o € T;, 1 1.
Let j (1 < j < r) such that 0 € Tj;,_1;. If ij41 = i; + 1 then, from
w(lj+1—1,]+1) = ¢(Z],]+1) we obtain o € Tij+1—1,j+1- If ij+1 > ij+1, then,
by induction, we can prove that V¢ (1 <t <iji1 —i;—1 =0 € Tj;44-15).
From v (ij11,j + 1) we conclude that o € T}, | 1 j41.

2. By induction on t. Base case follows from ¢ (i,,r). f 0 € T; 41, (1 <t <
q — i) then, from ¢(i, + ¢,7), we can conclude that o € T;, 44,

3. It is clear from 2. a



Next we will prove that the generated tubes after i-th step of the main loop,
{Tio0,Tin,---,Tsit1}, form a “partition” of the initial test tube, Tp. This con-
firms that the subroutine runs a filtering procedure where no strand dies along
the execution.

Proposition 2. Vi (0<i<¢—-1—-Tp = U T;j)-
0<j<i+1

Proof. Let us first prove by induction on 4 that
Vi(0<i<q-1-ToC |J Tiy)
0<j<i+1
Base case follows from 6(0). Let i < ¢ — 1 such that Ty C U T;; and
0<j<i+1
o € Tp. By induction hypothesis, 3j (0 < j <i+1 A o € T; ;). We can prove
that o € U Tit1,s, distinguishing between the cases i +2 € o and i+2 ¢ o.
0<s<i+2
In the same manner we can see that
Vi(0<i<qg-1- |J Ti; CTh)
0<j<i+1
O

Proposition 3. Vi (0<i<qg-1-VrVs(0<r<s<i+l1->T;,NT;; =0)).

Proof. By induction on i. Base case is easy to check. Let i < ¢ — 1 such that
VrVs(0<r<s<i+l1->T,,NT;s=10). Let r,s such that 0 < r < s <i+2.
Using formula €, the main loop invariant, and distinguishing between the cases
s=1+2,r=0A1<s<i+landr>0A1<s<1v+1,it can be showed
that Tit1 ., N Tig1s = 0.

O

Corollary 1. T,_10=0.

Proof. The proof is straightforward from proposition 1.(3) and proposition 3.
O

Finally, we establish soundness and completeness of the designed subroutine that
solves minimal set cover selection problem.

Theorem 2. (Soundness) Every strand, o, of the final test—tube, T;—1, (1 <
r < q), must verify that |o| = r. That is, Vr (1 <r < q—=Vo € Ty_1,(lo| =1r)).

Proof. Let 0 € T;y—; . From proposition 2 is obtained that o € Tp. From propo-
sition 1.(3), we have o € T;_; |- From proposition 3 we conclude that |o| = r.
0

Theorem 3. (Completeness) Every strand, o, of the initial test—tube, Ty, such
that |o| = r, is in the output tube, T;,_1,. That is, Vo € Ty (l[o| =1 — o €
Ty-1.r). Furthermore,Vo € Ty Ar (1 <r<qAo €Ty_1,).



Proof. Let o € Ty such that |o| = r. From proposition 1.(3) we can deduce that
0 € Ty—1 . In the other hand, from proposition 3 (with i = ¢ — 1) there exists
jsuch that 0 < j <i+4+1A o € T;—1,. From corollary 1 we obtain j > 0, and
from proposition 3 we conclude that j is unique.

0

4 Conclusions

In this work a methodology to study formal verification of molecular programs
is given. This method is applied to a subroutine of a molecular program in the
sticker model designed by S. Roweis et al ([4]). The semantic of this subrou-
tine is far from the semantic of the problem it solves. For this, soundness and
completeness of subroutine are not straightforward obtained from the invariant
formulas.

The formalization of verification procedures of molecular programs would allow
to automate the study of properties related to this programs. We think that
this is a first step to develop executable prototypes, using automated reasoning
systems of molecular computation models and, in general, of unconventional
models.
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