Lógica informática (2005–06) Tema 5: Resolución proposicional

José A. Alonso Jiménez

Grupo de Lógica Computacional

Dpto. Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

Lógica clausal: sintaxis

- Un átomo es una variable proposicional.
 Variables sobre átomos: p,q,r,...,p₁,p₂,....
- Un literal es un átomo (p) o la negación de un átomo $(\neg p)$. Variables sobre literales: L, L_1, L_2, \ldots
- Una cláusula es un conjunto finito de literales.
 Variables sobre cláusulas: C, C₁, C₂,....
- La cláusula vacía es el conjunto vacío de literales.
 La cláusula vacía se representa por □.
- Conjuntos finitos de cláusulas.
 Variables sobre conjuntos finitos de cláusulas: S, S₁, S₂,....

Lógica clausal: semántica

- Def.: Una valoración de verdad es una aplicación $v : VP \rightarrow \mathbb{B}$.
- Def.: El valor de un literal positivo p en una valoración v es v(p).
- Def.: El valor de un literal negativo $\neg p$ en una valoración v es

$$v(\neg p) = \begin{cases} 1, & \operatorname{si} v(p) = 0; \\ 0, & \operatorname{si} v(p) = 1. \end{cases}$$

• Def.: El valor de una cláusula C en una valoración v es

$$v(C) = \begin{cases} 1, & \text{si existe un } L \in C \text{ tal que } v(L) = 1; \\ 0, & \text{en caso contrario.} \end{cases}$$

• Def.: El valor de un conjunto de cláusulas S en una valoración v es

$$u(S) = \left\{ \begin{array}{l} 1, & \text{si para toda } C \in S, \nu(C) = 1 \\ 0, & \text{en caso contrario.} \end{array} \right.$$

• Prop.: En cualquier valoración v, $v(\square) = 0$.

3

Cláusulas y fórmulas

- Equivalencias entre cláusulas y fórmulas
 - ▶ Def.: Una cláusula C y una fórmula F son equivalentes si v(C) = v(F) para cualquier valoración v.
 - ▶ Def.: Un conjunto de cláusulas S y una fórmula F son equivalentes si v(S) = v(F) para cualquier valoración v.
 - ▶ Def.: Un conjunto de cláusulas S y un conjunto de fórmulas $\{F_1, \ldots, F_n\}$ son equivalentes si, para cualquier valoración v, v(S) = 1 syss v es un modelo de $\{F_1, \ldots, F_n\}$.
- De cláusulas a fórmulas
 - Prop.: La cláusula $\{L_1, L_2, \dots, L_n\}$ es equivalente a la fórmula $L_1 \vee L_2 \vee \dots \vee L_n$.
 - ▶ Prop.: El conjunto de cláusulas $\{\{L_{1,1},\ldots,L_{1,n_1}\},\ldots,\{L_{m,1},\ldots,L_{m,n_m}\}\}$ es equivalente a la fórmula $(L_{1,1}\vee\ldots\vee L_{1,n_1})\wedge\ldots\wedge(L_{m,1}\vee\ldots\vee L_{m,n_m})$.

2

De fórmulas a cláusulas (forma clausal)

- Def.: Una forma clausal de una fórmula F es un conjunto de cláusulas equivalente a F.
- Prop.: Si $(L_{1,1} \lor ... \lor L_{1,n_1}) \land ... \land (L_{m,1} \lor ... \lor L_{m,n_m})$ es una forma normal conjuntiva de la fórmula F. Entonces, una forma clausal de F es $\{\{L_{1,1},...,L_{1,n_1}\},...,\{L_{m,1},...,L_{m,n_m}\}\}$.
- Ejemplos:
 - ▶ Una forma clausal de $\neg(p \land (q \rightarrow r))$ es $\{\{\neg p, q\}, \{\neg p, \neg r\}\}$.
 - ▶ Una forma clausal de $p \rightarrow q$ es $\{\{\neg p, q\}\}$.
 - La cláusula $\{\{\neg p,q\},\{r\}\}$ es una forma clausal de las fórmulas $(p\to q)\wedge r$ y $\neg\neg r\wedge(\neg q\to \neg p)$.
- Def.: Una forma clausal de un conjunto de fórmulas *S* es un conjunto de cláusulas equivalente a *S*.
- Prop.: Si S_1, \ldots, S_n son formas clausales de F_1, \ldots, F_n , entonces $S_1 \cup \ldots \cup S_n$ es una forma clausal de $\{F_1, \ldots, F_n\}$.

Reducción de consecuencia a inconsistencia de cláusulas

- Prop: Sean S_1, \ldots, S_n formas clausales de las fórmulas F_1, \ldots, F_n .
 - ▶ $\{F_1, ..., F_n\}$ es consistente syss $S_1 \cup ... \cup S_n$ es consistente.
 - ▶ Si S es una forma clausal de $\neg G$, entonces son equivalentes
 - 1. $\{F_1, \ldots, F_n\} \models G$.
 - 2. $\{F_1, \dots, F_n \neg G\}$ es inconsistente.
 - 3. $S_1 \cup \ldots \cup S_n \cup S$ es inconsistente.
- Ejemplo: $\{p \to q, q \to r\} \models p \to r \text{ syss}$ $\{\{\neg p, q\}, \{\neg q, r\}, \{p\}, \{\neg r\}\}\}$ es inconsistente.

5

Modelos, consistencia y consecuencia

- Def.: Una valoración v es modelo de un conjunto de cláusulas S si v(S) = 1.
- Ej.: La valoración v tal que v(p) = v(q) = 1 es un modelo de $\{\{\neg p, q\}, \{p, \neg q\}\}\}$.
- Def.: Un conjunto de cláusulas es consistente si tiene modelos e inconsistente, en caso contrario.
- Ejemplos:
 - $\{\{\neg p, q\}, \{p, \neg q\}\}\$ es consistente.
 - $\{\{\neg p, q\}, \{p, \neg q\}, \{p, q\}, \{\neg p, \neg q\}\}\$ es inconsistente.
- Prop.: Si $\square \in S$, entonces S es inconsistente.
- Def.: $S \models C$ si para todo modelo v de S, v(C) = 1.

Regla de resolución

Reglas habituales:

Modus Ponens:
$$\frac{p \rightarrow q, \quad p}{q} \qquad \frac{\{\neg p, q\}, \quad \{p\}}{\{q\}}$$
 Modus Tollens:
$$\frac{p \rightarrow q, \quad \neg q}{\neg p} \qquad \frac{\{\neg p, q\}, \quad \{\neg q\}}{\{\neg p, q\}, \quad \{\neg q\}}$$

Encadenamiento:
$$\frac{p \to q, \quad q \to r}{p \to r}$$
 $\frac{\{\neg p, q\}, \quad \{\neg q, r\}}{\{\neg p, r\}}$

• Regla de resolución proposicional:

$$\frac{\{p_1,\ldots,r,\ldots,p_m\}, \{q_1,\ldots,\neg r,\ldots,q_n\}}{\{p_1,\ldots,p_m,q_1,\ldots,q_n\}}$$

Regla de resolución

• Def.: Sean C_1 una cláusula, L un literal de C_1 y C_2 una cláusula que contiene el complementario de L. La resolvente de C_1 y C_2 respecto de L es

$$\mathsf{Res}_L(C_1,C_2) = (C_1 \setminus \{L\}) \cup (C_2 \setminus \{L^c\})$$

$$\begin{array}{lll} \bullet & \mathsf{Ejemplos:} & \mathsf{Res}_q(\{p,q\},\{\neg q,r\}) & = \{p,r\} \\ & \mathsf{Res}_q(\{q,\neg p\},\{p,\neg q\}) & = \{p,\neg p\} \\ & \mathsf{Res}_p(\{q,\neg p\},\{p,\neg q\}) & = \{q,\neg q\} \\ & \mathsf{Res}_p(\{q,\neg p\},\{q,p\}) & = \{q\} \\ & \mathsf{Res}_p(\{p\},\{\neg p\}) & = \Box \\ \end{array}$$

- Def.: $Res(C_1, C_2)$ es el conjunto de las resolventes entre C_1 y C_2
- Ejemplos: $\operatorname{Res}(\{\neg p,q\},\{p,\neg q\}) = \{\{p,\neg p\},\{q,\neg q\}\}$ $\operatorname{Res}(\{\neg p,q\},\{p,q\}) = \{\{q\}\}$ $\operatorname{Res}(\{\neg p,q\},\{q,r\}) = \emptyset$
- $\bullet \ \, \mathsf{Nota} \colon \Box \not \in \mathsf{Res}(\{p,q\}, \{\neg p, \neg q\})$

Demostraciones por resolución

- Sea S un conjunto de cláusulas.
- La sucesión (C_1,\ldots,C_n) es una demostración por resolución de la cláusula C a partir de S si $C=C_n$ y para todo $i\in\{1,...,n\}$ se verifica una de las siguientes condiciones:
 - $ightharpoonup C_i \in S$;
 - ightharpoonup existen j,k < i tales que C_i es una resolvente de C_i y C_k
- La cláusula C es demostrable por resolución a partir de S si existe una demostración por resolución de C a partir de S.
- Una refutación por resolución de S es una demostración por resolución de la cláusula vacía a partir de S.
- Se dice que *S* es refutable por resolución si existe una refutación por resolución a partir de *S*.

Ejemplo de refutación por resolución

- Refutación de $\{\{p,q\},\{\neg p,q\},\{p,\neg q\},\{\neg p,\neg q\}\}$:
 - 1 $\{p,q\}$ Hipótesis
 - 2 $\{\neg p, q\}$ Hipótesis
 - 3 $\{p, \neg q\}$ Hipótesis
 - 4 $\{\neg p, \neg q\}$ Hipótesis
 - 5 $\{q\}$ Resolvente de 1 y 2
 - 6 $\{\neg q\}$ Resolvente de 3 y 4
 - 7
 Resolvente de 5 y 6

Demostraciones por resolución

• Def.: Sean S_1, \dots, S_n formas clausales de las fórmulas F_1, \dots, F_n y S una forma clausal de $\neg F$

Una demostración por resolución de F a partir de $\{F_1,\ldots,F_n\}$ es una refutación por resolución de $S_1\cup\ldots\cup S_n\cup S$.

- Def.: La fórmula F es demostrable por resolución a partir de $\{F_1, \ldots, F_n\}$ si existe una demostración por resolución de F a partir de $\{F_1, \ldots, F_n\}$. Se representa por $\{F_1, \ldots, F_n\} \vdash_{Res} F$.
- Ejemplo: Demostración por resolución de $p \land q$ a partir de $\{p \lor q, p \leftrightarrow q\}$
 - 1 $\{p,q\}$ Hipótesis
 - 2 $\{\neg p, q\}$ Hipótesis
 - $3 \{p, \neg q\}$ Hipótesis
 - 4 $\{\neg p, \neg q\}$ Hipótesis
 - 5 $\{q\}$ Resolvente de 1 y 2
 - 6 $\{\neg q\}$ Resolvente de 3 y 4
 - 7 Resolvente de 5 y 6

9

Adecuación y completitud de la resolución

- Si *C* es una resolvente de C_1 y C_2 , entonces $\{C_1, C_2\} \models C$.
- Si $\square \in S$, entonces S es inconsistente.
- Si el conjunto de cláusulas S es refutable, entonces S es inconsistente.
- Teor.: El cálculo de resolución es adecuado y completo; es decir,

 $\begin{array}{lll} \mbox{Adecuado:} & S \vdash_{Res} F & \Longrightarrow & S \models F \\ \mbox{Completo:} & S \models F & \Longrightarrow & S \vdash_{Res} F \\ \end{array}$

Argumentación y resolución

- Problema de los animales: Se sabe que
 - 1. Los animales con pelo y los que dan leche son mamíferos.
 - 2. Los mamíferos que tienen pezuñas o que rumian son ungulados.
 - 3. Los ungulados de cuello largo son jirafas.
 - Los ungulados con rayas negras son cebras.
 Se observa un animal que tiene pelos, pezuñas y rayas negras. Por consiguiente, se concluye que el animal es una cebra.
- Formalización:

```
 \{ & \mathsf{tiene\_pelos} \lor \mathsf{da\_leche} \to \mathsf{es\_mamifero}, \\ & \mathsf{es\_mamifero} \land (\mathsf{tiene\_pezu\~nas} \lor \mathsf{rumia}) \to \mathsf{es\_ungulado}, \\ & \mathsf{es\_ungulado} \land \mathsf{tiene\_cuello\_largo} \to \mathsf{es\_jirafa}, \\ & \mathsf{es\_ungulado} \land \mathsf{tiene\_rayas\_negras} \to \mathsf{es\_cebra}, \\ & \mathsf{tiene\_pelos} \land \mathsf{tiene\_pezu\~nas} \land \mathsf{tiene\_rayas\_negras} \, \} \\ & \vdash_{\mathit{Res}} \mathsf{es\_cebra}
```

Argumentación y resolución

1	{¬ tiene_pelos, es_mamífero}	Hipótesis
2	{¬ da_leche, es_mamífero}	Hipótesis
3	{¬es_mamífero, ¬tiene_pezuñas, es_ungulado}	Hipótesis
4	{¬es_mamífero, ¬rumia, es_ungulado}	Hipótesis
5	{¬es_ungulado, ¬tiene_cuello_largo, es_jirafa}	Hipótesis
6	{¬es_ungulado, ¬tiene_rayas_negras, es_cebra}	Hipótesis
7	{tiene_pelos}	Hipótesis
8	{tiene_pezuñas}	Hipótesis
9	{tiene_rayas_negras}	Hipótesis
10	{¬es_cebra}	Hipótesis
11	{es_mamífero}	Resolvente de 1 y 7
12	{¬tiene_pezuñas, es_ungulado}	Resolvente de 11 y 3
13	{es_ungulado}	Resolvente de 12 y 8
14	{¬tiene_rayas_negras, es_cebra}	Resolvente de 13 y 6
15	{es_cebra}	Resolvente de 14 y 9
16		Resolvente de 15 y 10

13 15

Bibliografía

- 1. M. Ben–Ari, *Mathematical logic for computer science (2nd ed.).* (Springer, 2001).
 - Cap. 4: Propositional calculus: resolution and BDDs.
- 2. C.–L. Chang y R.C.–T. Lee *Symbolic Logic and Mechanical Theorem Proving* (Academic Press, 1973).
 - Cap. 5.2: The resolution principle for the proposicional logic.
- 3. N.J. Nilsson *Inteligencia artificial (Una nueva síntesis)* (McGraw–Hill, 2001). Cap. 14: La resolución en el cálculo proposicional.
- 4. E. Paniagua, J.L. Sánchez y F. Martín *Lógica computacional* (Thomson, 2003).
 - Cap. 5.7: El principio de resolución en lógica proposicional.
- U. Schöning Logic for Computer Scientists (Birkäuser, 1989).
 Cap. 1.5: Resolution.

14 16