
Razonamiento autom

�

atico Curso 98{99

Razonamiento autom�atico

Pr�actica 2

Dpto. de Ciencias de la Computaci�on e Inteligencia Arti�cial

Universidad de Sevilla

RA 98{99 C

c

I

a

Pr�actica 2 1.1



El factorial.

x

Versi�on recursiva:

(defn factorial (n)

(if (zerop n)

1

(times n (factorial (sub1 n)))))

;; Ejemplo de traza:

;; (factorial 4) =

;; (times 4 (factorial 3)) =

;; (times 4 (times 3 (factorial 2))) =

;; (times 4 (times 3 (times 2 (factorial 1)))) =

;; (times 4 (times 3 (times 2 (times 1 (factorial 0))))) =

;; (times 4 (times 3 (times 2 (times 1 1)))) =

;; (times 4 (times 3 (times 2 1))) =

;; (times 4 (times 3 2)) = (times 4 6) = 24

x

Versi�on iterativa (recursiva �nal):

(defn fact1 (n acc)

(if (zerop n)

acc

(fact1 (sub1 n) (times n acc))))

(defn fact (n)

(fact1 n 1))

;; Ejemplo de traza:

;; (fact 4) = (fact1 4 1) =

;; (fact1 3 (times 4 1)) = (fact1 3 4) =

;; (fact1 2 (times 3 4)) = (fact1 2 12) =

;; (fact1 1 (times 2 12)) = (fact1 1 24) =

;; (fact1 0 (times 1 24)) = (fact1 0 24) = 24

RA 98{99 C

c

I

a

Pr�actica 2 1.2



Algunas funciones aritm�eticas.

x

De�niciones ya existentes (primitivas):

>(ppe 'zerop)

(DEFN ZEROP

(X)

(IF (EQUAL X 0)

T

(IF (NUMBERP X) F T)))

...

>(ppe 'plus)

(DEFN PLUS

(X Y)

(IF (ZEROP X)

(FIX Y)

(ADD1 (PLUS (SUB1 X) Y))))

>(ppe 'fix)

(DEFN FIX (X) (IF (NUMBERP X) X 0))

...

>(ppe 'times)

(DEFN TIMES

(I J)

(IF (ZEROP I)

0

(PLUS J (TIMES (SUB1 I) J))))

...

x

Otras primitivas:

MAX, DIFFERENCE, QUOTIENT, REMAINDER

LESSP, GREATERP, GEQ, LEQ, COUNT

RA 98{99 C

c

I

a

Pr�actica 2 1.3



Primer intento.

x

Intento fallido:

(prove-lemma fact-igual-que-factorial ()

(equal (fact n) (factorial n)))

;;; PRIMER INTENTO FALLIDO (Cortar con C-c C-c)

x

Inspeccionar la prueba fallida.

x

Esquema de inducci�on.

...

(AND (IMPLIES (ZEROP N) (p N))

(IMPLIES (AND (NOT (ZEROP N)) (p (SUB1 N)))

(p N))).

...

;;; Induccion en los numeros naturales (en principio,

;;; es la induccion adecuada).

x

Paso \peligroso".

(IMPLIES (AND (NUMBERP X)

(EQUAL (FACT1 X 1) (FACTORIAL X)))

(EQUAL (FACT1 X (PLUS 1 (TIMES X 1)))

(PLUS (FACTORIAL X)

(TIMES X (FACTORIAL X))))).

We now use the above equality hypothesis by substituting

(FACT1 X 1) for .....

;;; VA A USAR IGUALDADES EN HIPOTESIS, PASO PELIGROSO.

RA 98{99 C

c

I

a

Pr�actica 2 1.4



Teoremas generales.

x

Problema:

La expresion con FACT1 en la hipotesis, (FACT1 X 1),

no se puede usar en la conclusion, ya que lo que

aparece es (FACT1 X (PLUS 1 (TIMES X 1)))

x

Soluci�on:

En lugar de probar la relacion entre (FACT1 X 1) y

(FACTORIAL X), intentemos algo mas general:

pensemos en la relacion general entre (FACT1 X ACC) y

(FACTORIAL X).

x

Una posibilidad:

(equal (fact1 n acc) (times acc (factorial n)))))

x

CONSEJO:

\En general, los resultados m�as generales se

prueban m�as f�acilmente"

RA 98{99 C

c

I

a

Pr�actica 2 1.5



Comprobaci�on previa.

x

Antes de probarlo, veamos si esto basta:

>(add-axiom fact1-relacion-factorial (rewrite)

(equal (fact1 n acc)

(times acc (factorial n))))

[ 0.0 0.0 0.0 ]

FACT1-RELACION-FACTORIAL

>(prove-lemma fact-igual-que-factorial ()

(equal (fact n) (factorial n)))

This formula can be simplified, using the abbreviations

FACT1-RELACION-FACTORIAL and FACT, to:

(EQUAL (TIMES 1 (FACTORIAL N))

(FACTORIAL N)),

which simplifies, using linear arithmetic, to:

T.

Q.E.D.

[ 0.0 0.0 0.0 ]

FACT-IGUAL-QUE-FACTORIAL

;;; Efectivamente, bastaria con probar FACT1-RELACION-FACTORIAL.

;;; Deshacemos ahora lo que hemos hecho:

>(ubt fact1-relacion-factorial)

FACT1-RELACION-FACTORIAL

x

El objetivo, por tanto, es probar:

(prove-lemma fact1-relacion-factorial (rewrite)

(equal (fact1 n acc) (times acc (factorial n))))

RA 98{99 C

c

I

a

Pr�actica 2 1.6



fact1-relacion-factorial es falso.

x

Prueba fallida de fact1-relacion-factorial:

...

This again simplifies, clearly, to the new conjecture:

...

(EQUAL ACC (TIMES ACC 1)),

which we will name *1.1.

...

;;; Aqui se la da un numero a la formula (*1.1) y se guarda

;;; para intentarla posteriormente por induccion.

;;; Es un paso "peligroso".

x

> Es cierto (EQUAL ACC (TIMES ACC 1))?:

x

Funciones aritm�eticas: casos an�omalos.

EN GENERAL, TODAS LAS FUNCIONES ARITMETICAS PRIMITIVAS

TRATAN ARGUMENTOS NO NUMERICOS COMO 0.

Por tanto, (TIMES ACC 1) es igual a ACC siempre que

ACC sea un numero, es decir, (NUMBERP ACC)

RA 98{99 C

c

I

a

Pr�actica 2 1.7



Nuevo fact1-relacion-factorial.

x

Revisando fact1-relacion-factorial

En el caso N=0 y ACC no numero, fact1-relacion-factorial

NO es cierto. Ejemplo:

>(r-loop)

*(fact1 0 'x)

'X

*(times 'x (factorial 0))

0

x

Nuevo fact1-relacion-factorial

(prove-lemma fact1-relacion-factorial (rewrite)

(implies (numberp acc)

(equal (fact1 n acc)

(times acc (factorial n)))))

x

Intento nuevamente fallido:

This again simplifies, trivially, to:

.....

(IMPLIES (NUMBERP ACC)

(EQUAL ACC (TIMES ACC 1))),

which we will name *1.1.

;;; A ESTA FORMULA SE LE DA NUMERO PARA APLICAR

;;; INDUCCION POSTERIORMENTE.

;;; El resultado es suficientemente interesante como para

;;; guardarlo como regla de reescritura.

RA 98{99 C

c

I

a

Pr�actica 2 1.8



Un primer lema auxiliar.

x

Formulamos el nuevo lema como de reescritura:

>(prove-lemma times-1 (rewrite)

(implies (numberp n)

(equal (times n 1) n)))

...

[ 0.0 0.0 0.0 ]

TIMES-1

;;; SE PRUEBA!!!

x

N�otese que:

EL DEMOSTRADOR MANEJA UN CONOCIMIENTO ELEMENTAL PREVIO DE ARITMETICA:

...

which again simplifies, using linear arithmetic, to:

...

EN LA PRUEBA SOLO HAY UNA INDUCCION, Y LA MAYORIA DE

LOS PROCESOS APLICADOS SON DE SIMPLIFICACION:

...

That finishes the proof of *1. Q.E.D.

...

;; Solo se le ha asignado numero a la formula inicial

;; Por tanto, solo hay una induccion.

x

CONSEJO:

\Siempre que se pueda, buscar que las pruebas

tengan una sola inducci�on y el resto simpli�-

caci�on"

RA 98{99 C

c

I

a

Pr�actica 2 1.9



Nuevo intento.

x

Otro intento fallido:

(prove-lemma fact1-relacion-factorial (rewrite)

(implies (numberp acc)

(equal (fact1 n acc)

(times acc (factorial n)))))

x

Caso base resuelto:

Case 2. (IMPLIES (AND (ZEROP N) (NUMBERP ACC))

(EQUAL (FACT1 N ACC)

(TIMES ACC (FACTORIAL N)))).

This simplifies, applying TIMES-1, and expanding the

functions ZEROP, EQUAL, FACT1, and FACTORIAL, to:

T.

x

Problemas en el paso inductivo:

(IMPLIES (AND (NUMBERP X)

(EQUAL (FACT1 X (PLUS ACC (TIMES X ACC)))

(TIMES (PLUS ACC (TIMES X ACC))

(FACTORIAL X)))

(NUMBERP ACC))

(EQUAL (FACT1 X (PLUS ACC (TIMES X ACC)))

(TIMES ACC (PLUS (FACTORIAL X)

(TIMES X (FACTORIAL X)))))).

We use the above equality hypothesis by substituting:

....

;;; ATENCION: "uso de igualdades en las hipotesis" es

;;; un paso PELIGROSO.

RA 98{99 C

c

I

a

Pr�actica 2 1.10



Buscando lemas.

x

Inspeccionado la prueba fallida:

El sistema debe ser capaz de darse cuenta que

(TIMES (PLUS ACC (TIMES X ACC)) (FACTORIAL X))) =

(TIMES ACC (PLUS (FACTORIAL X) (TIMES X (FACTORIAL X))))))

Al menos necesitamos reglas que expresen la

distributividad de la suma respecto al producto.

x

Reglas de distributividad suma-producto:

(prove-lemma distributividad-times-plus-1 (rewrite)

(equal (times (plus y z) x)

(plus (times y x) (times z x))))

(prove-lemma distributividad-time-plus-2 (rewrite)

(equal (times x (plus y z))

(plus (times x y) (times x z))))

x

Se prueba:

>(prove-lemma distributividad-times-plus-1 (rewrite)

(equal (times (plus y z) x)

(plus (times y x) (times z x))))

...

That finishes the proof of *1. Q.E.D.

...

;;; EL TIPO DE PRUEBA QUE BUSCAMOS.

RA 98{99 C

c

I

a

Pr�actica 2 1.11



Buscando lemas.

x

Se prueba:

>(prove-lemma distributividad-time-plus-2 (rewrite)

(equal (times x (plus y z))

(plus (times x y) (times x z))))

...

That finishes the proof of *1. Q.E.D.

...

;;; EL TIPO DE PRUEBA QUE BUSCAMOS.

x

Nuevo intento:

(prove-lemma fact1-relacion-factorial (rewrite)

(implies (numberp acc)

(equal (fact1 n acc)

(times acc (factorial n)))))

x

Por �n:

...

That finishes the proof of *1.1.1.1, which, consequently, also finishes

the proof of *1.1.1, which, consequently, also finishes the proof of *1.1,

which, in turn, also finishes the proof of *1. Q.E.D.

[ 0.0 0.2 0.0 ]

FACT1-RELACION-FACTORIAL

RA 98{99 C

c

I

a

Pr�actica 2 1.12



Buscando lemas.

x

Problema:

;; DEMASIADAS INDUCCIONES EN UNA SOLA PRUEBA

...

That finishes the proof of *1.1.1.1, which, ....

... of *1.1.1, which, consquently.... of *1.1,

which, in turn, .... of *1. Q.E.D.

...

;; CUATRO PRUEBAS POR INDUCCION.

;; Busquemos *1.1 por si es resultado que merece la pena

;; tenerlo aparte como lema de reescritura.

x

Inspecci�on de la prueba:

...

(IMPLIES (AND (NUMBERP A)

(NUMBERP Y)

(NUMBERP X)

(NUMBERP ACC))

(EQUAL (PLUS A (TIMES (TIMES X ACC) Y))

(PLUS A (TIMES ACC X Y)))),

which we will finally name *1.1.

...

x

Asociatividad:

(TIMES X Y Z) es una abreviatura de (TIMES X (TIMES Y Z))

(PLUS X Y Z) es una abreviatura de (PLUS X (PLUS Y Z))

RA 98{99 C

c

I

a

Pr�actica 2 1.13



Buscando lemas.

x

Un lema que ser��a de utilidad para *1.1

(prove-lemma asociatividad-conmutatividad-times (rewrite)

(equal (times (times a b) c) (times b a c)))

x

Deshacemos fact1-relacion-factorial

>(ubt)

FACT1-RELACION-FACTORIAL

x

Probamos la asociatividad-conmutatividad:

>(prove-lemma asociatividad-conmutatividad-times (rewrite)

(equal (times (times a b) c) (times b a c)))

...

That finishes the proof of *1.1, which, in turn, finishes the proof of *1.

Q.E.D.

[ 0.0 0.0 0.0 ]

ASOCIATIVIDAD-CONMUTATIVIDAD-TIMES

x

Se puede mejorar:

...

(EQUAL 0 (TIMES B 0)),

which we will name *1.1.

...

RA 98{99 C

c

I

a

Pr�actica 2 1.14



Ultimo lema.

x

Deshacemos asociatividad-conmutatividad-times

>(ubt)

ASOCIATIVIDAD-CONMUTATIVIDAD-TIMES

x

El �ultimo lema necesario:

(prove-lemma times-0 (rewrite)

(equal (times b 0) 0))

;;; Cuidado con el sentido en que se orienta!!!

x

El �ultimo lema necesario:

...

That finishes the proof of *1. Q.E.D.

[ 0.0 0.0 0.0 ]

TIMES-0

x

Rehacemos asociatividad-conmutatividad-times.

...

That finishes the proof of *1. Q.E.D.

[ 0.0 0.0 0.0 ]

ASOCIATIVIDAD-CONMUTATIVIDAD-TIMES

;;; EL TIPO DE PRUEBA QUE BUSCAMOS

RA 98{99 C

c

I

a

Pr�actica 2 1.15



Rehaciendo la prueba.

x

Rehacemos fact1-relacion-factorial.

...

That finishes the proof of *1. Q.E.D.

[ 0.0 0.0 0.0 ]

FACT1-RELACION-FACTORIAL

;;; EL TIPO DE PRUEBA QUE BUSCAMOS

x

Probamos ahora el resultado que se buscaba

inicialmente:

(prove-lemma fact-igual-que-factorial ()

(equal (fact n) (factorial n)))

x

La prueba es s�olo con simpli�caci�on:

This formula can be simplified, using the abbreviation FACT, to:

(EQUAL (FACT1 N 1) (FACTORIAL N)),

which simplifies, applying the lemma FACT1-RELACION-FACTORIAL, to the goal:

(EQUAL (TIMES 1 (FACTORIAL N)) (FACTORIAL N)).

This again simplifies, using linear arithmetic, to:

T.

Q.E.D.

[ 0.0 0.0 0.0 ]

FACT-IGUAL-QUE-FACTORIAL

RA 98{99 C

c

I

a

Pr�actica 2 1.16



Fichero practica-2.events

(boot-strap nqthm)

(defn factorial (n)

(if (zerop n)

1

(times n (factorial (sub1 n)))))

(defn fact1 (n acc)

(if (zerop n)

acc

(fact1 (sub1 n) (times n acc))))

(defn fact (n)

(fact1 n 1))

(prove-lemma times-1 (rewrite)

(implies (numberp n)

(equal (times n 1) n)))

(prove-lemma distributividad-times-plus-1 (rewrite)

(equal (times (plus y z) x)

(plus (times y x) (times z x))))

(prove-lemma distributividad-times-plus-2 (rewrite)

(equal (times x (plus y z))

(plus (times x y) (times x z))))

RA 98{99 C

c

I

a

Pr�actica 2 1.17



Fichero practica-2.events

(prove-lemma times-0 (rewrite)

(equal (times b 0) 0))

(prove-lemma asociatividad-conmutatividad-times (rewrite)

(equal (times (times a b) c)

(times b a c)))

(prove-lemma fact1-relacion-factorial (rewrite)

(implies (numberp acc)

(equal (fact1 n acc)

(times acc (factorial n)))))

(prove-lemma fact-igual-que-factorial ()

(equal (fact n) (factorial n)))

;;; Opcional

(make-lib "practica-2")

x

Usando prove-file

(prove-file "practica-2")

x

Usando note-lib

(note-lib "practica-2")

RA 98{99 C

c

I

a

Pr�actica 2 1.18



Conclusiones:

x

Resultados m�as generales se prueban mejor que

los particulares.

x

El desarrollo de una prueba es tarea del de-

mostrador y el usuario.

x

El usuario coopera con el demostrador suminis-

trando los lemas adecuados.

x

Buscamos pruebas con s�olo una inducci�on y

principalmente con simpli�caci�on.

x

Buscamos los lemas necesarios inspeccionando

en las pruebas fallidas:

u

Justo antes de hacer una inducci�on (cuando se

asigna n�umero a una f�ormula).

...which we will finally name *1.1.

u

Justo de antes de aplicar \generalizaci�on".

...which we generalize by replacing ....

u

Justo antes de aplicar \uso de igualdades en

hip�otesis".

..We now use the above equality hypothesis by substituting:...

RA 98{99 C

c

I

a

Pr�actica 2 1.19


