
Razonamiento autom

�

ati
o Curso 98{99

Razonamiento autom�ati
o

Pr�a
ti
a 3

Dpto. de Cien
ias de la Computa
i�on e Inteligen
ia Arti�
ial

Universidad de Sevilla

RA 98{99 C

I

a

Pr�a
ti
a 3 3.1

Re
ursi�on e indu

i�on

x

Admisi�on de de�ni
iones DEFN

>(defn longitud (l)

(if (nlistp l) 0 (add1 (longitud (
dr l)))))

...

.... inform us that the measure (COUNT L)

de
reases a

ording to the well-founded relation

LESSP in ea
h re
ursive
all...

...

>(defn
on
atena (l m)

(if (nlistp l) m

(
ons (
ar l) (
on
atena (
dr l) m))))

...

.... inform us that the measure (COUNT L)

de
reases a

ording to the well-founded relation

LESSP in ea
h re
ursive
all...

...

x

Las fun
iones anteriores se admiten porque:

u

En
ada llamada re
ursiva,

u

a uno de los argumentos [(CDR L)℄,

u

se le puede asignar un n�umero [(COUNT (CDR L))℄,

u

que de
re
e respe
to del argumento ini
ial

(LESSP (COUNT (CDR L)) (COUNT L), si (LISTP L)

u

y no puede existir una su
esi�on in�nita estri
ta-

mente de
re
iente de n�umeros naturales.

RA 98{99 C

I

a

Pr�a
ti
a 3 3.2

Esquemas de indu

i�on

x

Al intentar mostrar algo por indu

i�on el sis-

tema presenta previamente el esquema de

indu

i�on:

>(prove-lemma longitud-
on
atena (rewrite)

(equal (longitud (
on
atena l m))

(plus (longitud l) (longitud m))))

....

Perhaps we
an prove it by indu
tion......

....a

ording to the following s
heme:

(AND (IMPLIES (NLISTP L) (p L M))

(IMPLIES (AND (NOT (NLISTP L)) (p (CDR L) M))

(p L M))).

....

x

Un esquema de indu

i�on indi
a:

u

los
asos base del intento de prueba

u

los
asos indu
tivos (donde hay hip�otesis de in-

du

i�on)

u

las hip�otesis de indu

i�on en
ada
aso

x

En este ejemplo:

Caso base: (NLISTP L)

Caso indu
tivo: (LISTP L),
on h. de i. (p (CDR L) M)

RA 98{99 C

I

a

Pr�a
ti
a 3 3.3

Re
ursi�on e indu

i�on

x

Demostra
i�on por indu

i�on:

>(prove-lemma longitud-
on
atena (rewrite)

(equal (longitud (
on
atena l m))

(plus (longitud l) (longitud m))))

....

Perhaps we
an prove it by indu
tion. Three

indu
tions are suggested by terms in the
onje
ture.

They merge into two likely
andidate indu
tions.

However, only one is unflawed. We will indu
t

a

ording to the following s
heme:

(AND (IMPLIES (NLISTP L) (p L M))

(IMPLIES (AND (NOT (NLISTP L)) (p (CDR L) M))

(p L M))).

....

x

Se es
oge tal esquema de indu

i�on porque:

u

Las fun
iones involu
radas en lema son longitud y

on
atena,

u

ambas fun
iones fueron admitidas porque se des-

ubri�o que en en las llamadas re
ursivas se llamaba

a (CDR L)
uando (LISTP L),

u

y (LESSP (COUNT (CDR L)) (COUNT L)),
uando

(LISTP L).

u

El
aso base
oin
ide
on el
ase base de las de�ni-

iones re
ursivas.

RA 98{99 C

I

a

Pr�a
ti
a 3 3.4

Tipos de datos en NQTHM.

x

Un tipo de datos en NQTHM viene de�nido

por:

- Una fun
i�on n-aria CONSTRUCTORA.

- Un objeto BASE (op
ional).

- Un RECONOCEDOR de tipo.

- n fun
iones SELECTORAS o ACCESORAS.

- n restri

iones de TIPO para los argumentos del

onstru
tor.

- n valores por defe
to.

x

La orden ADD-SHELL:

(ADD-SHELL
onstru
tor base re
ono
edor

((sele
tor1 rt1 valor-defe
to1))

....

(sele
torN rtN valor-defe
toN))

- Cada rtI es una restri

i�on de tipo, de la forma

(ONE-OF re
1 ... re
M) �o (NONE-OF re
1 ... re
M)

donde
ada re
I es un re
ono
edor de un T.D.

(posiblemente el mismo que se est�a definiendo).

- Cada valor-defe
toI es el base de un T.D. ya definido.

- El resto de s��mbolos, deben ser nuevos.

- Si no hay elemento base, usar NIL.

x

En
ada momento,
ada objeto que maneje

NQTHM, pertene
e a uno y s�olo uno de los

tipos de�nidos.

RA 98{99 C

I

a

Pr�a
ti
a 3 3.5

De�niendo tipos de datos

x

Ejemplo: �arboles binarios.

(add-shell arbol-b va
 es-arbol

((raiz (none-of) zero)

(hi (one-of es-arbol) va
)

(hd (one-of es-arbol) va
)))

x

Tipos de datos prede�nidos:

(add-shell add1 zero numberp

((sub1 (one-of numberp) zero)))

(add-shell
ons nil listp

((
ar (none-of) zero) (
dr (none-of) zero)))

;; Adem�as, LITATOM y NEGATIVEP.

x

La fun
i�on COUNT:

Dado un objeto A, la fun
i�on (COUNT A) devuelve el

n�umero de
onstru
tores que
onstituyen A.

Ejemplo:

========

(COUNT 4) = (COUNT (ADD1 (ADD1 (ADD1 (ADD1 (ZERO)))))) = 4

(COUNT '(1 . 2)) =

(COUNT (CONS (ADD1 (ZERO)) (ADD1 (ADD1 (ZERO))))) = 4

(COUNT (ARBOL-B 1 (ARBOL-B 2 (VAC) (VAC)) (VAC))) =

(COUNT (ARBOL-B (ADD1 (ZERO))

(ARBOL-B (ADD1 (ADD1 (ZERO))) (VAC)(VAC)) (VAC))) = 5

RA 98{99 C

I

a

Pr�a
ti
a 3 3.6

Observa
iones

x

Los valores por defe
to permiten que las fun-

iones
onstru
toras y a

esoras est�en de�nidas

para
ualquier elemento, sea
ual sea su tipo.

x

Respe
to de los a

esores:

Cuando un a

esor a
t�ua sobre un elemento que no es del

tipo esperado, devuelve el
orrespondiente valor

por defe
to:

Ejemplo:

========

El tipo esperado del argumento de la fun
i�on CAR es LISTP.

Si CAR a
t�ua sobre algo que no es LISTP, devuelve el valor

por defe
to definido en el ADD-SHELL (es de
ir, (ZER0) �o 0).

P.ej. (CAR 3) = 0

x

Respe
to de los
onstru
tores:

Cuando un
onstru
tor a
t�ua sobre alg�un elemento que

no verifi
a la restri

i�on de tipo, a
t�ua
omo si re
ibiera

en su lugar el valor por defe
to.

Ejemplo:

========

ADD1 debe re
ibir elementos que sean n�umeros (NUMBERP).

Si se apli
a a un argumento que no es NUMBERP,

este argumento se transforma al valor por defe
to

(0 �o (ZERO)).

P.ej., (ADD1 'hola) es (ADD1 0), es de
ir, 1.

RA 98{99 C

I

a

Pr�a
ti
a 3 3.7

Fun
iones sobre �arboles

>(defn va
iop (a)

(or (not (es-arbol a))

(equal a (va
))))

...

VACIOP

;;; Fun
i�on no re
ursiva. Se admite sin problemas.

>(defn simetri
o (a)

(if (va
iop a)

a

(arbol-b (raiz a) (simetri
o (hd a))

(simetri
o (hi a)))))

...

...the measure (COUNT A) de
reases a

ording to the

well-founded relation LESSP in ea
h re
ursive
all...

...

SIMETRICO

> (defn son-simetri
os (a b)

(if (va
iop a)

(equal a b)

(and (equal (raiz a) (raiz b))

(son-simetri
os (hi a) (hd b))

(son-simetri
os (hd a) (hi b)))))

...

...(COUNT A) de
reases a

ording to the well-founded

relation LESSP in ea
h re
ursive
all. ...

...

SON-SIMETRICOS

RA 98{99 C

I

a

Pr�a
ti
a 3 3.8

Re
ursi�on e indu

i�on.

� Las fun
iones son admitidas, ya que en
ada llamada

re
ursiva el o los argumentos son los hijos de A (izquierdo

o dere
ho), y se tiene que:

1. (LESSP (COUNT (HI A)) (COUNT A))

2. (LESSP (COUNT (HD A)) (COUNT A))

siempre que A no es VACIOP (que es el \
ontexto" donde

se produ
en las llamadas re
ursivas)

� Demostrando el lema:

>(prove-lemma simetri
o-
orre
to (rewrite)

(son-simetri
os a (simetri
o a)))

...

We will appeal to indu
tion. Two indu
tions are

suggested by terms in the
onje
ture. However, they

merge into one likely
andidate indu
tion.

We will indu
t a

ording to the following s
heme:

(AND (IMPLIES (VACIOP A) (p A))

(IMPLIES (AND (NOT (VACIOP A))

(p (HD A))

(p (HI A)))

(p A))).

...

; Esquema de re
ursi�on inspirado tanto por

; SON-SIMETRICOS
omo por SIMETRICOS.

RA 98{99 C

I

a

Pr�a
ti
a 3 3.9

Esquema de indu

i�on sugerido.

� El esquema de indu

i�on sugerido tanto por simetri
o

omo por es-simetri
o, es:

1. Caso 1 (paso indu
tivo):

Supuesto que

* A es arbol binario no va
��o, i.e.,(NOT (VACIOP A)),

* lo que se quiere probar es
ierto para (HI A),

* lo que se quiere probar es
ierto para (HD A),

hay que probar que:

* es
ierto para A.

2. Caso 2 (
aso base):

Probar el resultado para A,
uando (VACIOP A)

� N�otese que:

1. Por
ada \
ontexto" distinto en el que se produ
e

una llamada re
ursiva, se tiene un
aso distinto en el

esquema de indu

i�on
orrespondiente, adem�as del

aso base. En este
aso, un
aso indu
tivo,
orres-

pondiente a (NOT (VACIOP A)).

2. En
ada
aso indu
tivo, se supone
ierta la propiedad

para tantos elementos
omo llamadas re
ursivas haya.

En este
aso,
ierta para (HI A) y (HD A).

3. El
aso base se obtiene
omo la nega
i�on de la
on-

jun
i�on de todos los
asos indu
tivos. En este
aso,

(VACIOP A)

RA 98{99 C

I

a

Pr�a
ti
a 3 3.10

De�ni
iones no admitidas.

x

La fun
i�on MERGE:

>(defn merge (l m)

(if (not (listp l))

m

(if (not (listp m))

l

(if (lessp (
ar l) (
ar m))

(
ons (
ar l) (merge (
dr l) m))

(
ons (
ar m) (merge l (
dr m)))))))

ERROR: The admissibility of this definition

has not been established.....

x

Razones posibles de la no admisi�on:

u

La fun
i�on puede no terminar (probablemente en

valores an�omalos).

u

Aunque la fun
i�on termina, el sistema no es
apaz

de probarlo.

u

Por defe
to, s�olo se intenta probar que de
re
e

COUNT de
ada argumento.

x

El usuario puede ayudar al demostrador a que

la de�ni
i�on sea admitida.

RA 98{99 C

I

a

Pr�a
ti
a 3 3.11

Consejos para admitir de�ni
iones.

x

Problema:

En una llamada re
ursiva de
re
e el primer argumento:

(MERGE (CDR L) M),

y en la otra de
re
e el segundo argumento,

(MERGE L (CDR M)).

y ha de en
ontrarse una �uni
a medida num�eri
a

que de
rez
a en
ada llamada re
ursiva.

x

Intui
i�on:

En
ada llamada re
ursiva la SUMA de las LONGITUDES

de los dos argumentos DECRECE.

x

Se lo de
imos al sistema:

>(defn merge (l m)

(if (not (listp l)) m

(if (not (listp m)) l

(if (lessp (
ar l) (
ar m))

(
ons (
ar l) (merge (
dr l) m))

(
ons (
ar m) (merge l (
dr m))))))

((lessp (plus (longitud l) (longitud m)))))

....

...the measure (PLUS (LONGITUD L) (LONGITUD M))

de
reases a

ording to the well-founded relation

LESSP in ea
h re
ursive
all.

....

MERGE

RA 98{99 C

I

a

Pr�a
ti
a 3 3.12

Consejos para admitir de�ni
iones.

x

Sintaxis:

(DEFN nombre (x1 ... xN)

uerpo-de-la-fun
ion

((rela
ion expr)))

Donde:

- "rela
i�on" indi
a la rela
i�on de de
re
imiento,

usualmente LESSP.

- "expr" es una expresi�on (medida) en la que

apare
en algunos de los argumentos de la

fun
ion <nombre>

Con este
onsejo, para admitir la defini
i�on,

el sistema intenta probar que para llamada

re
ursiva se verifi
a

(rela
ion expr' expr)

donde expr' es la expresi�on que resulta de

sustituir los argumentos en expr por los

argumentos empleados en la llamada re
ursiva.

En la prueba de esta f�ormula se pueden suponer

iertas todas las
ondi
iones que son
iertas

en el momento en el que se produ
e la llamada

(
ontexto).

RA 98{99 C

I

a

Pr�a
ti
a 3 3.13

Ejemplo.

x

En el ejemplo anterior, el sistema prueba:

Llamada re
ursiva 1

===================

(merge (
dr l) m)

- Contexto en el que se produ
e:

(listp l), (listp m), (lessp (
ar l) (
ar m))

- Rela
i�on que se prueba:

(lessp (plus (longitud (
dr l)) (longitud m))

(plus (longitud l) (longitud m)))

QUE ES CIERTA (ya que l y m son listp)

Llamada re
ursiva 2

===================

(merge l (
dr m))

- Contexto en el que se produ
e:

(listp l), (listp m), (not (lessp (
ar l) (
ar m)))

- Rela
i�on que se prueba:

(lessp (plus (longitud l) (longitud (
dr m)))

(plus (longitud l) (longitud m)))

QUE ES CIERTA (ya que l y m son listp)

POR TANTO LA FUNCION ES ADMITIDA

RA 98{99 C

I

a

Pr�a
ti
a 3 3.14

Otro ejemplo.

>(defn parte-entera-de-la-mitad (n)

(if (or (zerop n) (equal n 1))

0

(add1 (parte-entera-de-la-mitad (sub1 (sub1 n))))))

...

...the measure (COUNT N) de
reases a

ording to the

well-founded relation LESSP in ea
h re
ursive
all.

...

PARTE-ENTERA-DE-LA-MITAD

>(prove-lemma mitad-por-dos ()

(leq (times (parte-entera-de-la-mitad n) 2) n))

...

other. We will indu
t a

ording to the following s
heme:

(AND (IMPLIES (OR (ZEROP N) (EQUAL N 1))

(p N))

(IMPLIES (AND (NOT (OR (ZEROP N) (EQUAL N 1)))

(p (SUB1 (SUB1 N))))

(p N))).

...

MITAD-POR-DOS

RA 98{99 C

I

a

Pr�a
ti
a 3 3.15

El
onsejo INDUCT

x

Los esquemas de indu

i�on intentados por el

demostrador son los sugeridos por las fun
iones

que apare
en en la f�ormula que se quiere de-

mostrar

x

A ve
es no se intenta el esquema ade
uado para

que la prueba tenga �exito.

x

Ejemplo:

(defn suma (m n k)

(if (zerop m)

(equal k n)

(suma (sub1 m) (add1 n) k)))

(prove-lemma suma-es-la-suma ()

(implies (and (numberp k) (suma m n k))

(equal (plus m n) k)))

*** LA PRUEBA NO TIENE EXITO ****

x

El sistema intenta:

(AND (IMPLIES (ZEROP M) (p M N K))

(IMPLIES (AND (NOT (ZEROP M)) (p (SUB1 M) N K))

(p M N K))).

RA 98{99 C

I

a

Pr�a
ti
a 3 3.16

El
onsejo INDUCT

x

Deberia intentar:

(AND (IMPLIES (ZEROP M) (p M N K))

(IMPLIES (AND (NOT (ZEROP M)) (p (SUB1 M) (ADD1 N) K))

(p M N K))).

x

El
onsejo INDUCT permite que el usuario de
ida

el esquema de indu

i�on.

x

Sintaxis:

(prove-lemma NOMBRE ([rewrite℄)

CUERPO

((indu
t (FN V1 ... Vn))))

donde FN es un fun
i�on de n argumentos previamente

definida y las Vi son variables que apare
en en
uerpo.

x

El sistema intenta la prueba por indu

i�on de

CUERPO usando
omo esquema de indu

i�on el

sugerido por la de�ni
i�on de FN

RA 98{99 C

I

a

Pr�a
ti
a 3 3.17

Usando INDUCT

x

Es bastante usual de�nir la fun
i�on FN expre-

samente para obtener el esquema de indu

i�on

ade
uado.

(defn
onsejo-indu

ion (m n)

(if (zerop m)

t

(
onsejo-indu

ion (sub1 m) (add1 n))))

x

Y usarla
on el
onsejo INDUCT:

(prove-lemma suma-es-la-suma ()

(implies (and (numberp k) (suma m n k))

(equal (plus m n) k))

((indu
t (
onsejo-indu

ion m n))))

RA 98{99 C

I

a

Pr�a
ti
a 3 3.18

