RAZONAMIENTO AUTOMATICO

CURSO 98-99

Razonamiento automatico
Practica 3

Dpto. de Ciencias de la Computacion e Inteligencia Artificial

UNIVERSIDAD DE SEVILLA

RA 98-99

Ccla

Practica 3

3.1

Recursion e induccion

® Admision de definiciones DEFN

>(defn longitud (1)
(if (nlistp 1) 0 (addl (longitud (cdr 1)))))

. inform us that the measure (COUNT L)
decreases according to the well-founded relation
LESSP in each recursive call...

>(defn concatena (1 m)
(if (nlistp 1) m
(cons (car 1) (concatena (cdr 1) m))))

. inform us that the measure (COUNT L)
decreases according to the well-founded relation
LESSP in each recursive call...

e Las funciones anteriores se admiten porque:
e En cada llamada recursiva,
e a uno de los argumentos [(CDR L)],
e se le puede asignar un niimero [(COUNT (CDR L))],

e que decrece respecto del argumento inicial
(LESSP (COUNT (CDR L)) (COUNT L), si (LISTP L)

e y no puede existir una sucesién infinita estricta-
mente decreciente de niimeros naturales.

RA 98-99 Ccla Prictica 3

3.2

Esquemas de induccién

e Al intentar mostrar algo por induccion el sis-
tema presenta previamente el esquema de
induccion:

>(prove-lemma longitud-concatena (rewrite)
(equal (longitud (concatena 1 m))
(plus (longitud 1) (longitud m))))

Perhaps we can prove it by induction......
....according to the following scheme:
(AND (IMPLIES (NLISTP L) (p L M))
(IMPLIES (AND (NOT (NLISTP L)) (p (CDR L) M))
(p L M)).

e Un esquema de induccion indica:
e los casos base del intento de prueba

e los casos inductivos (donde hay hipétesis de in-
duccién)

e las hipdtesis de induccion en cada caso

e En este ejemplo:

Caso base: (NLISTP L)
Caso inductivo: (LISTP L), con h. de i. (p (CDR L) M)

RA 98-99 Ccla Prictica 3 3.3

Recursion e induccion

e Demostraciéon por induccion:

>(prove-lemma longitud-concatena (rewrite)
(equal (longitud (concatena 1 m))
(plus (longitud 1) (longitud m))))

Perhaps we can prove it by induction. Three
inductions are suggested by terms in the conjecture.
They merge into two likely candidate inductions.
However, only one is unflawed. We will induct
according to the following scheme:

(AND (IMPLIES (NLISTP L) (p L M))
(IMPLIES (AND (NOT (NLISTP L)) (p (CDR L) M))
(p L M)).

® Se escoge tal esquema de induccion porque:

e Las funciones involucradas en lema son longitud y
concatena,

e ambas funciones fueron admitidas porque se des-
cubrié que en en las llamadas recursivas se llamaba
a (CDR L) cuando (LISTP L),

oy (LESSP (COUNT (CDR L)) (COUNT L)), cuando
(LISTP L).

e El caso base coincide con el case base de las defini-
clones recursivas.

RA 98-99 Ccla Prdctica 3 3.4

Tipos de datos en NQTHM.

e Un tipo de datos en NQTHM viene definido
por:

- Una funcidén n-aria CONSTRUCTORA.

- Un objeto BASE (opciomnal).

- Un RECONOCEDOR de tipo.

- n funciones SELECTORAS o ACCESORAS.

- n restricciones de TIPO para los argumentos del
constructor.

- n valores por defecto.

e LLa orden ADD-SHELL:

(ADD-SHELL constructor base reconocedor
((selectorl rtl1 valor-defectol))

(selectorN rtN valor-defectolN))

Cada rtl es una restriccidén de tipo, de la forma

(ONE-OF recl ... recM) 6 (NONE-OF recl ... recM)
donde cada recl es un reconocedor de un T.D.
(posiblemente el mismo que se estd definiendo).
Cada valor-defectol es el base de un T.D. ya definido.
El resto de simbolos, deben ser nuevos.
- S1 no hay elemento base, usar NIL.

e En cada momento, cada objeto que maneje
NQTHM, pertenece a uno y sélo uno de los
tipos definidos.

RA 98-99 Ccla Prictica 3 3.5

Definiendo tipos de datos

e Ejemplo: arboles binarios.

(add-shell arbol-b vac es-arbol
((raiz (none-of) zero)
(hi (one-of es-arbol) vac)
(hd (one-of es-arbol) vac)))

e Tipos de datos predefinidos:

(add-shell addl zero numberp
((subl (one-of numberp) zero)))

(add-shell cons nil listp
((car (none-of) zero) (cdr (none-of) zero)))

;; Ademas, LITATOM y NEGATIVEP.

e La funcidon COUNT:

Dado un objeto A, la funcidén (COUNT A) devuelve el
nimero de constructores que constituyen A.

(COUNT 4) = (COUNT (ADD1 (ADD1 (ADD1 (ADD1 (ZERQ0)))))) = 4
(COUNT (1 . 2)) =

(COUNT (CONS (ADD1 (ZERO)) (ADD1 (ADD1 (ZERD))))) = 4
(COUNT (ARBOL-B 1 (ARBOL-B 2 (VAC) (VAC)) (VAC))) =
(COUNT (ARBOL-B (ADD1 (ZEROQ))

(ARBOL-B (ADD1 (ADD1 (ZERQ))) (VAC) (VAC)) (VAC)))

I
ol

RA 98-99 Ccla Prictica 3 3.6

Observaciones

® Los valores por defecto permiten que las fun-
ciones constructoras y accesoras estén definidas
para cualquier elemento, sea cual sea su tipo.

® Respecto de los accesores:

Cuando un accesor actda sobre un elemento que no es del
tipo esperado, devuelve el correspondiente valor

por defecto:

Ejemplo:

El tipo esperado del argumento de la funcidén CAR es LISTP.
51 CAR actuia sobre algo que no es LISTP, devuelve el valor
por defecto definido en el ADD-SHELL (es decir, (ZERO) 6 0).
P.ej. (CAR 3) =0

® Respecto de los constructores:

Cuando un constructor actida sobre algun elemento que

no verifica la restriccidén de tipo, actia como si recibiera
en su lugar el valor por defecto.

Ejemplo:

ADD1 debe recibir elementos que sean nimeros (NUMBERP).
51 se aplica a un argumento que no es NUMBERP,

este argumento se transforma al valor por defecto

(0 6 (ZERO)).

P.ej., (ADD1 ’hola) es (ADD1 0), es decir, 1.

RA 98-99 Ccla Prictica 3 3.7

Funciones sobre arboles

>(defn vaciop (a)
(or (not (es-arbol a))
(equal a (vac))))
VACIOP
;55 Funcidén no recursiva. Se admite sin problemas.
>(defn simetrico (a)
(if (vaciop a)
a

(arbol-b (raiz a) (simetrico (hd a))
(simetrico (hi a)))))

.. .the measure (COUNT A) decreases according to the
well-founded relation LESSP in each recursive call...

SIMETRICO
> (defn son-simetricos (a b)
(if (vaciop a)
(equal a b)
(and (equal (raiz a) (raiz b))

(son-simetricos (hi a) (hd b))
(son-simetricos (hd a) (hi b)))))

... (COUNT A) decreases according to the well-founded
relation LESSP in each recursive call.

SON-SIMETRICOS

RA 98-99 Ccla Prictica 3 3.8

Recursion e induccion.

e Las funciones son admitidas, ya que en cada llamada
recursiva el o los argumentos son los hijos de A (izquierdo
o derecho), y se tiene que:

1. (LESSP (COUNT (HI A)) (COUNT A))
2. (LESSP (COUNT (HD A)) (COUNT A))

siempre que A no es VACIOP (que es el “contexto” donde
se producen las llamadas recursivas)

e Demostrando el lema:

>(prove-lemma simetrico-correcto (rewrite)
(son-simetricos a (simetrico a)))

We will appeal to induction. Two inductions are
suggested by terms in the conjecture. However, they
merge into one likely candidate induction.

We will induct according to the following scheme:
(AND (IMPLIES (VACIOP A) (p A))
(IMPLIES (AND (NOT (VACIOP A))
(p (HD A))
(p (HI A)))
(p A))).

; Esquema de recursidn inspirado tanto por
; SON-SIMETRICOS como por SIMETRICOS.

RA 98-99 Ccla Prictica 3 3.9

Esquema de induccion sugerido.

e El esquema de induccion sugerido tanto por simetrico
COomo por es-simetrico, es:

1. Caso 1 (paso inductivo):

Supuesto que
* A es arbol binario no vacio, i.e., (NOT (VACIOP A)),
* 1o que se quiere probar es cierto para (HI A4),
* 1o que se quiere probar es cierto para (HD A4),
hay que probar que:
* es cilerto para A.

2. Caso 2 (caso base):

Probar el resultado para A, cuando (VACIOP A)
e Noétese que:

1. Por cada “contexto” distinto en el que se produce
una llamada recursiva, se tiene un caso distinto en el
esquema de induccion correspondiente, ademas del
caso base. En este caso, un caso inductivo, corres-
pondiente a (NOT (VACIOP A)).

2. En cada caso inductivo, se supone cierta la propiedad
para tantos elementos como llamadas recursivas haya.
En este caso, cierta para (HI A) y (HD A).

3. El caso base se obtiene como la negacién de la con-
juncion de todos los casos inductivos. En este caso,
(VACIOP A)

RA 98-99 Ccla Prictica 3 3.10

Definiciones no admitidas.

e La funcién MERGE:

>(defn merge (1 m)
(if (not (listp 1))
m
(if (not (listp m))
1
(if (lessp (car 1) (car m))
(cons (car 1) (merge (cdr 1) m))
(cons (car m) (merge 1 (cdr m)))))))

ERROR: The admissibility of this definition
has not been established.....

e Razones posibles de la no admisién:

e La funcién puede no terminar (probablemente en
valores anémalos).

e Aunque la funcién termina, el sistema no es capaz
de probarlo.

e Por defecto, sd6lo se intenta probar que decrece

COUNT de cada argumento.

e El usuario puede ayudar al demostrador a que
la definiciéon sea admitida.

RA 98-99 Ccla Prictica 3 3.11

Consejos para admitir definiciones.

e Problema:

En una llamada recursiva decrece el primer argumento:

(MERGE (CDR L) M),
y en la otra decrece el segundo argumento,
(MERGE L (CDR M)).
y ha de encontrarse una uUnica medida numérica
que decrezca en cada llamada recursiva.

e Intuicion:

En cada llamada recursiva la SUMA de las LONGITUDES
de los dos argumentos DECRECE.

® Se lo decimos al sistema:

>(defn merge (1 m)
(if (not (listp 1)) m
(if (not (listp m)) 1
(if (lessp (car 1) (car m))
(cons (car 1) (merge (cdr 1) m))
(cons (car m) (merge 1 (cdr m))))))
((lessp (plus (longitud 1) (longitud m)))))

.. .the measure (PLUS (LONGITUD L) (LONGITUD M))
decreases according to the well-founded relation
LESSP in each recursive call.

MERGE

RA 98-99 Ccla Prictica 3

3.12

Consejos para admitir definiciones.

e Sintaxis:

(DEFN nombre (x1 ... xN)
cuerpo-de-la-funcion
((relacion expr)))

Donde:
- "relacién'" indica la relacidén de decrecimiento,
usualmente LESSP.
- "expr" es una expresién (medida) en la que
aparecen algunos de los argumentos de la
funcion <nombre>

Con este consejo, para admitir la definiciédn,
el sistema intenta probar que para llamada
recursiva se verifica

(relacion expr’ expr)

donde expr’ es la expresidén que resulta de
sustituir los argumentos en expr por los
argumentos empleados en la llamada recursiva.

En la prueba de esta fdérmula se pueden suponer
ciertas todas las condiciones que son ciertas

en el momento en el que se produce la llamada

(contexto) .

RA 98-99 Ccla Prictica 3 3.13

Ejemplo.

e En el ejemplo anterior, el sistema prueba:

Llamada recursiva 1

(merge (cdr 1) m)

- Contexto en el que se produce:
(listp 1), (listp m), (lessp (car 1) (car m))

- Relacidén que se prueba:

(lessp (plus (longitud (cdr 1)) (longitud m))
(plus (longitud 1) (longitud m)))

QUE ES CIERTA (ya que 1 y m son listp)

Llamada recursiva 2

(merge 1 (cdr m))

- Contexto en el que se produce:
(listp 1), (listp m), (not (lessp (car 1) (car m)))

- Relacidén que se prueba:

(lessp (plus (longitud 1) (longitud (cdr m)))
(plus (longitud 1) (longitud m)))

QUE ES CIERTA (ya que 1 y m son listp)

POR TANTO LA FUNCION ES ADMITIDA

RA 98-99 Ccla Prictica 3 3.14

Otro ejemplo.

>(defn parte-entera-de-la-mitad (n)
(if (or (zerop n) (equal n 1))
0
(addl (parte-entera-de-la-mitad (subl (subl n))))))

...the measure (COUNT N) decreases according to the
well-founded relation LESSP in each recursive call.

PARTE-ENTERA-DE-LA-MITAD
>(prove-lemma mitad-por-dos ()
(leq (times (parte-entera-de-la-mitad n) 2) n))

other. We will induct according to the following scheme:
(AND (IMPLIES (OR (ZEROP N) (EQUAL N 1))
(p N))
(IMPLIES (AND (NOT (OR (ZEROP N) (EQUAL N 1)))
(p (SUB1 (SUB1 N))))
(p M))).

MITAD-POR-DOS

RA 98-99 Ccla Prictica 3 3.15

El consejo INDUCT

® Los esquemas de induccién intentados por el
demostrador son los sugeridos por las funciones
que aparecen en la formula que se quiere de-
mostrar

® A veces no se intenta el esquema adecuado para
que la prueba tenga éxito.

e Ejemplo:

(defn suma (m n k)
(if (zerop m)
(equal k n)
(suma (subl m) (addl n) k)))

(prove-lemma suma-es-la-suma ()
(implies (and (numberp k) (suma m n k))
(equal (plus m n) k)))
x* LA PRUEBA NO TIENE EXITO *x

e FEl sistema intenta:

(AND (IMPLIES (ZEROP M) (p M N K))
(IMPLIES (AND (NOT (ZEROP M)) (p (SUB1 M) N K))
(p M N K))).

RA 98-99 Ccla Prictica 3 3.16

El consejo INDUCT

e Deberia intentar:

(AND (IMPLIES (ZEROP M) (p M N K))
(IMPLIES (AND (NOT (ZEROP M)) (p (SUB1 M) (ADD1 N) K))
(p M N K))).

e El consejo INDUCT permite que el usuario decida
el esquema de induccion.

e Sintaxis:

(prove-lemma NOMBRE ([rewrite])
CUERPO
((induct (FN V1 ... Vn))))

donde FN es un funcién de n argumentos previamente
definida y las Vi son variables que aparecen en cuerpo.

e El sistema intenta la prueba por induccién de
CUERPO usando como esquema de induccion el
sugerido por la definicion de FN

RA 98-99 Ccla Prictica 3 3.17

Usando INDUCT

e Es bastante usual definir la funcién FN expre-
samente para obtener el esquema de induccion
adecuado.

(defn consejo-induccion (m n)
(if (zerop m)
t
(consejo-induccion (subl m) (addl n))))

e Y usarla con el consejo INDUCT:

(prove-lemma suma-es-la-suma ()
(implies (and (numberp k) (suma m n k))
(equal (plus m n) k))
((induct (consejo-induccion m n))))

RA 98-99 Ccla Prictica 3 3.18

