
Razonamiento autom

�

atico Curso 98{99

Introducci�on al demostrador de

B. & M. (NQTHM)

Dpto. de Ciencias de la Computaci�on e Inteligencia Arti�cial

Universidad de Sevilla

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.1

Introducci�on

x

NQTHM: demostrador de Boyer y Moore.

x

Demostrador de teoremas.

x

Probar propiedades sobre programas LISP y

otros lenguajes:

u

formalmente.

u

autom�aticamente.

x

M�etodos formales aplicados a la IS.

x

NQTHM est�a programado en LISP:

u

mismo entorno que LISP.

u

LISP + funciones propias del demostrador.

x

Similitudes y diferencias con LISP.

x

Principales t�ecnicas de prueba:

u

Inducci�on.

u

Simpli�caci�on.

x

Sucesor: ACL2.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.2

Aplicaciones.

x

Matem�aticas y L�ogica:

u

Teorema de Gauss (cuadrados rec��procos).

u

Teorema de tautolog��a.

u

Teorema de incompletitud de G�odel.

u

Teorema de Ramsey.

u

Teorema de Church-Rosser.

x

Veri�caci�on de programas:

u

algoritmo de b�usqueda r�apida de cadenas.

u

compilador de expresiones.

u

c�odigo m�aquina generado por compiladores.

u

control de ruta de veh��culos.

x

Veri�caci�on de hardware (industria):

u

protocolos de comunicaciones.

u

microprocesadores.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.3

F�ormulas

x

Estilo Lisp:

(equal (reverse (append a b))

(append (reverse b) (reverse a)))

(implies (properp x)

(equal (reverse (reverse x)) x))

x

El comando PROVE-LEMMA:

(prove-lemma reverse-append (rewrite)

(equal (reverse (append a b))

(append (reverse b) (reverse a))))

(prove-lemma reverse-reverse (rewrite)

(implies (properp x)

(equal (reverse (reverse x)) x)))

x

El comando DEFN:

(defn reverse (x)

(if (nlistp x)

nil

(append (reverse (cdr x))

(list (car x)))))

(defn properp (x)

(if (nlistp x)

(equal x nil)

(properp (cdr x))))

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.4

Organizaci�on del demostrador.

Simplificación

Eliminación de destructores

Uso de igualdades

Generalización

Eliminación de irrelevanciasInducción

Usuario

FÓRMULAS

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.5

Organizaci�on del demostrador.

x

Seis procesos:

u

Reciben una f�ormula y devuelven un conjunto de

f�ormulas.

u

Las f�ormulas de salida implican la de entrada.

u

Un objetivo se divide en subobjetivos.

u

S�olo los dos primeros preservan la equivalencia.

u

El resto son procesos \peligrosos".

u

Las f�ormulas a probar son almacenadas en una

\bolsa".

u

La salida de cada proceso se almacena en la

\bolsa".

x

Casos particulares:

u

Se descubre que es un teorema (simpli�cando).

Salida vac��a.

u

Un proceso no es aplicable. Salida igual a la en-

trada.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.6

Organizaci�on del demostrador.

x

Secuencia de procesos:

u

La f�ormula inicial la introduce el usario

(PROVE-LEMMA).

u

Si un proceso no es aplicable a una f�ormula, pasa

al siguiente.

u

Si es aplicable, se introduce su salida en la \bolsa".

u

Una f�ormula s�olo llega a un proceso si los anteriores

no son aplicables.

u

A veces espera antes de intentar inducci�on.

x

Finalizaci�on:

u

La \bolsa" queda vac��a: el objetivo inicial es teo-

rema.

u

El sistema para y la \bolsa" no est�a vac��a: no se

sabe.

u

Es posible ciclar, pero es muy raro.

x

Salida:

u

Una f�ormula se imprime s�olo despu�es de que se haya

procesado.

u

Esto permite una explicaci�on detallada.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.7

Ejemplo: REVERSE-REVERSE.

(defn reverse (x)

(if (nlistp x)

nil

(append (reverse (cdr x))

(list (car x)))))

(defn properp (x)

(if (nlistp x)

(equal x nil)

(properp (cdr x))))

(prove-lemma append-identidad-derecha (rewrite)

(implies (properp x)

(equal (append x nil) x)))

(prove-lemma append-es-propio (rewrite)

(implies (properp y)

(properp (append x y))))

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.8

Ejemplo: REVERSE-REVERSE.

(prove-lemma properp-reverse (rewrite)

(properp (reverse x)))

(prove-lemma asoc-app (rewrite)

(equal (append (append x y) z)

(append x (append y z))))

(prove-lemma reverse-append (rewrite)

(equal (reverse (append a b))

(append (reverse b) (reverse a))))

(prove-lemma reverse-reverse (rewrite)

(implies (properp x)

(equal (reverse (reverse x)) x)))

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.9

Ejemplo de sesi�on.

x

Entrada del usuario.

>(prove-lemma reverse-append (rewrite)

(equal (reverse (append a b))

(append (reverse b) (reverse a))))

x

F�ormulas en la \bolsa":

* F�ormula 1:

(equal (reverse (append a b))

(append (reverse b) (reverse a)))

x

Procesando f�ormula 1

Call the conjecture *1.

;;;; NINGUN PROCESO PREVIO A LA INDUCCION ES APLICABLE.

Perhaps we can prove it by induction. Three inductions are suggested by

terms in the conjecture. They merge into two likely candidate inductions.

However, only one is unflawed. We will induct according to the following

scheme:

(AND (IMPLIES (AND (LISTP A) (p (CDR A) B))

(p A B))

(IMPLIES (NOT (LISTP A)) (p A B))).

Linear arithmetic and the lemma CDR-LESSP can be used to prove that the

measure (COUNT A) decreases according to the well-founded relation LESSP in

each induction step of the scheme. The above induction scheme leads to two

new goals:

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.10

Ejemplo de sesi�on.

x

F�ormulas en la \bolsa":

* F�ormula 1.1:

(IMPLIES (NOT (LISTP A))

(EQUAL (REVERSE (APPEND A B))

(APPEND (REVERSE B) (REVERSE A)))).

* F�ormula 1.2:

(IMPLIES (AND (LISTP A)

(EQUAL (REVERSE (APPEND (CDR A) B))

(APPEND (REVERSE B)

(REVERSE (CDR A)))))

(EQUAL (REVERSE (APPEND A B))

(APPEND (REVERSE B) (REVERSE A)))),

x

Procesando f�ormula 1.2

Case 2. (IMPLIES (AND (LISTP A)

(EQUAL (REVERSE (APPEND (CDR A) B))

(APPEND (REVERSE B)

(REVERSE (CDR A)))))

(EQUAL (REVERSE (APPEND A B))

(APPEND (REVERSE B) (REVERSE A)))),

;;;; SE APLICA SIMPLIFICACION.

which simplifies, applying the lemmas CAR-CONS and CDR-CONS, and opening up

the definitions of APPEND and REVERSE, to:

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.11

Ejemplo de sesi�on.

x

F�ormulas en la \bolsa":

* F�ormula 1.1

* F�ormula 1.2a:

(IMPLIES (AND (LISTP A)

(EQUAL (REVERSE (APPEND (CDR A) B))

(APPEND (REVERSE B)

(REVERSE (CDR A)))))

(EQUAL (APPEND

(REVERSE (APPEND (CDR A) B))

(LIST (CAR A)))

(APPEND (REVERSE B)

(APPEND (REVERSE (CDR A))

(LIST (CAR A)))))).

x

Procesando f�ormula 1.2a

(IMPLIES (AND (LISTP A)

(EQUAL (REVERSE (APPEND (CDR A) B))

(APPEND (REVERSE B)

(REVERSE (CDR A)))))

(EQUAL (APPEND (REVERSE (APPEND (CDR A) B))

(LIST (CAR A)))

(APPEND (REVERSE B)

(APPEND (REVERSE (CDR A))

(LIST (CAR A)))))).

;;;; SIMPLIFICACION NO ES APLICABLE, PERO SI LO ES LA ELIMINACION

;;;; DE DESTRUCTORES

Appealing to the lemma CAR-CDR-ELIM, we now replace A by (CONS Z X) to

eliminate (CDR A) and (CAR A). This generates the goal:

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.12

Ejemplo de sesi�on.

x

F�ormulas en la \bolsa":

* F�ormula 1.1

* F�ormula 1.2b:

(IMPLIES (EQUAL (REVERSE (APPEND X B))

(APPEND (REVERSE B) (REVERSE X)))

(EQUAL (APPEND (REVERSE (APPEND X B))

(LIST Z))

(APPEND (REVERSE B)

(APPEND (REVERSE X) (LIST Z))))).

x

Procesando f�ormula 1.2b

(IMPLIES (EQUAL (REVERSE (APPEND X B))

(APPEND (REVERSE B) (REVERSE X)))

(EQUAL (APPEND (REVERSE (APPEND X B))

(LIST Z))

(APPEND (REVERSE B)

(APPEND (REVERSE X) (LIST Z))))).

;;;; NO ES APLICABLE NI SIMPLIFICACION NI ELIMINACION

;;;; PERO SI ES POSIBLE EL USO DE UNA IGUALDAD EN LAS PREMISAS

We use the above equality hypothesis by substituting:

(APPEND (REVERSE B) (REVERSE X))

for (REVERSE (APPEND X B)) and throwing away the equality. This produces

the new conjecture:

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.13

Ejemplo de sesi�on.

x

F�ormulas en la \bolsa":

* F�ormula 1.1

* F�ormula 1.2c:

(EQUAL (APPEND (APPEND (REVERSE B) (REVERSE X))

(LIST Z))

(APPEND (REVERSE B)

(APPEND (REVERSE X) (LIST Z)))),

x

Procesando f�ormula 1.2c

(EQUAL (APPEND (APPEND (REVERSE B) (REVERSE X))

(LIST Z))

(APPEND (REVERSE B)

(APPEND (REVERSE X) (LIST Z)))),

;;;; SIMPLIFICACION ES APLICABLE Y ADEMAS RECONOCE

;;;; QUE LA FORMULA ES UN TEOREMA.

which further simplifies, applying ASOC-APP, to:

T.

x

F�ormulas en la \bolsa":

* F�ormula 1.1

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.14

Ejemplo de sesi�on.

x

Procesando f�ormula 1.1

Case 1. (IMPLIES (NOT (LISTP A))

(EQUAL (REVERSE (APPEND A B))

(APPEND (REVERSE B) (REVERSE A)))).

;;;; SE APLICA SIMPLIFICACION Y LA FORMULA SE RECONOCE

;;;; COMO TEOREMA

This simplifies, applying PROPERP-REVERSE and APPEND-IDENTIDAD-DERECHA, and

opening up APPEND and REVERSE, to:

T.

x

F�ormulas en la \bolsa":

NINGUNA

x

Por tanto, la f�ormula inicial es un teorema:

That finishes the proof of *1. Q.E.D.

[0.0 0.4 0.1]

REVERSE-APPEND

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.15

Representaci�on clausal.

x

Las f�ormulas se convierten internamente a

clausulas.

x

Ejemplo:

La f�ormula:

(IMPLIES (AND (NOT (NLISTP X))

(EQUAL (APPEND (CDR X) NIL) (CDR X))

(PROPERP X))

(EQUAL (APPEND X NIL) X)).

se representa internamente como la lista cuyos

elementos son los literales:

(NLISTP X)

(NOT (EQUAL (APPEND (CDR X) NIL) (CDR X)))

(NOT (PROPERP X))

(EQUAL (APPEND X NIL) X)

x

Proceso transparente al usuario.

x

Tratamiento sim�etrico de los literales.

x

Papel especial de las conectivas l�ogicas.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.16

La base de datos de las reglas.

x

Se a~naden reglas cada vez que:

u

Se de�nen funciones (defn).

u

Se prueban lemas (prove-lemma).

u

Se a~nade un nuevo tipo de datos (add-shell).

u

Se a~naden axiomas (add-axiom).

x

Un evento es el acto de a~nadir o quitar una regla

de la base de datos.

x

Eliminaci�on de reglas:

u

Han de ser eliminadas todas las reglas de eventos

posteriores a ella.

u

As�� se mantiene la consistencia.

x

Comandos de modi�caci�on de la base de datos:

u

Consulta: ch, ppe.

u

Eliminaci�on: ubt, undo-name.

x

Ficheros y librer��as: prove-file, note-lib,

make-lib.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.17

El papel del usuario.

x

Las reglas activas en cada momento son usadas

por el demostrador como herramienta para re-

alizar demostraciones.

x

El proceso de demostraci�on NO es interactivo.

x

Sin embargo, el usuario puede in
uir en la

prueba creando la base de datos de reglas

disponibles:

u

De�niciones.

u

Reglas obtenidas a partir de resultados previa-

mente demostrados.

u

Habilitando y desabilitando informaci�on.

u

Dando consejos (HINT).

x

Una prueba se obtiene estudiando los fallos del

sistema.

x

Hay que evitar los procesos \peligrosos".

x

Se consiguen pruebas en las que mayoritaria-

mente se aplica inducci�on y simpli�caci�on.

RA 98{99 C

c

I

a

Introducci�on al demostrador de B. & M. (NQTHM) P1.18

