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Abstract

We describe here the formalization and mechanical proofs of the main
properties of a unification algorithm. The verified unification algorithm is
defined as a set of transformation rules acting on sets of equations, following
Martelli and Montanari. These rules are non-deterministically applied until a
solution (or the lack of solutions) is detected. This algorithm and its proper-
ties are formalized using the Boyer-Moore logic and carried out mechanically
using the Boyer-Moore theorem prover. The language used is very similar to
pure Lisp. We have formalized and mechanically proved a number of concepts
and properties about first-order terms, substitutions, equations and transfor-
mation rules. We have also formalized the non-deterministic behaviour of the
verified algorithm using selection functions.

Keywords:  Unification, Mechanical Verification, Boyer-Moore Theorem
Prover, First Order Terms.

1 Introduction

Unification is a central process in logic programming. Through its use of resolution,
Prolog inherited unification as a fundamental operation. It is also important in a
number of fields, including automated deduction, natural language processing and
machine learning. The use of a theorem prover (the Boyer-Moore theorem prover
in this case) to mechanically prove the correctness of a unification algorithm is
interesting for some reasons:

e Formal methods are applied to an algorithm widely used in a number of sys-
tems. It is not rare to see some bugs in unification algorithms given in the
literature (see, for example [8])".

This work has been supported by DGES/MEC: Projects PB96-0098-C04-04 and PB96-1345.
'The unification algorithm given in page 53 of [8] should compose the substitutions partially
computed instead of using append.
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e This is a non-trivial example of how a theorem prover can be used to verify
an algorithm defined in a language similar to pure Lisp. It is shown how
automated deduction can be used to examine and understand its properties
with much greater detail, rigor, and clarity. In the following, when we talk
about “prove”, we mean “mechanically prove”.

e Unification can be seen as a process that applies transformations to a set of
equations until a solution (or the lack of solutions) is detected. This rule-
based specification turns out to be suitable for mechanical verification. These
transformations can be applied non-deterministically (i.e., every strategy for
applying transformations leads to a most general solution, whenever it exists).
We show how this non-determinism can be formalized and verified.

There is some related work done in mechanical verification of properties of uni-
fication algorithms. Paulson ([10]) describes the verification of a unification algo-
rithm using the theorem prover LCF. Rouyer ([11]) does the same using Coq. Using
the Boyer-Moore theorem prover, we get a higher degree of automation. Using a
rule-based approach, we get more abstractness, verifying a family of algorithms, in-
stead of a particular algorithm. For some related work in the Boyer-Moore theorem
prover, see [5], where Kaufmann presents a proof of a generalization algorithm used
in PC-Nqthm.

Due to the lack of space, we do not present details of the proofs here. The com-
plete events files are available on the web in http://www-cs.us.es/"jruiz/terms/.

1.1 First order terms and substitutions

Given a set ¥ of function symbols (called signature) and a denumerable set X of
variable symbols, the set of (first-order) terms T(3, X) is the smallest set containing
X such that f(t1,...,t,) € T(X, X) whenever each ¢; € T(X, X) (when n = 0, we
say that the term is a constant). Note that this definition allows function symbols
with wvariable arity. The set of variables of a term ¢ is denoted as V(¢). A function
o:X — T(%, X) is a substitution if only finitely many variables zy, ..., z, are not
mapped to themselves. This is denoted as {x1 +— t1,..., 2, — t,}, where o(z;) = ;.
A substitution o can be extended to a function from terms to terms in such a way
that o(f(t1,...,tn)) = f(o(t1),...,0(tn)). A term t matches a term s if o(s) = ¢ for
some substitution o. In that case, we write s < ¢, we say that ¢ is an instance of s
or that s subsumes t and we say that o is a matching substitution for s and t. Also,
a subsumption relation on substitutions can be defined by: o < § if there exists a
substitution v such that § = v o o, where o stands for functional composition.

We say that a substitution o wunifies (or is a unifier of) two terms s and ¢ if
o(s) = o(t). In that case we say that s and ¢ are unifiable. Not every pair of terms
is unifiable. We say that a unifier o of s and ¢ is a most general unifier (mgu) if for
every unifier § of s and ¢, 0 < . A wunification algorithm is an algorithm that finds,
whenever it exists, a mgu of two given terms. See [7] for a survey on unification.

1.2 The Boyer-Moore logic and theorem prover

We will briefly describe here the Boyer-Moore theorem prover (also known as Nqthm,
precursor of ACL2) and its logic. For a complete description, see [1]. For a descrip-
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tion of ACL2, see [6].

The Boyer-Moore logic is a quantifier-free first-order logic with equality. The
language used is very similar to pure Lisp. There are two logical constants, abbre-
viated as T and F. The propositional connectives have functional analogues: AND,
IMPLIES, OR, IFF etc. These connectives are all defined in terms of the primitive
3-place connective IF. The functional analogue of the equality predicate is EQUAL.
The theory includes axioms and rules of inference for propositional logic, equality,
and instantiation.

The shell principle allows the extension of the logic by addition of axioms defin-
ing a new data type. The initial theory includes axioms for natural numbers, or-
dered pairs, literal atoms, and negative integers. Natural numbers are defined by a
constructor function ADD1, a destructor function SUB1 and a base object, (ZEROD).
Numbers are abbreviated by the numerals, 0, 1, 2, etc. Ordered pairs are defined
by a shell recognizer (LISTP), two destructor functions, (CAR and CDR), and one
constructor function (CONS). The function NLISTP is the negation of LISTP. The
functions CAR and CDR, when applied to a non-ordered pair, return 0. As in Lisp,
ordered pairs are used to construct finite sequences or lists. The literal atom NIL is
conventionally used to represent the empty list (but NIL is not a LISTP object). We
will call an object a proper list if it is NIL, or it is a LISTP and its CDR is proper (in
other words, a proper list is NIL or a LISTP object with final tail NIL).

By the principle of definition, new function definitions are admitted in the theory
only if there exists and ordinal measure in which the arguments of each recursive
call decrease. This ensures that no inconsistencies are introduced by new definitions.
The theory has a constructive definition of the ordinals up to g, in terms of lists
and natural numbers. One important rule of inference is the principle of induction,
that permits proofs by induction on &g.

The constraint principle allows one to define functions partially by introducing
some properties without complete definitions. To preserve consistency, a witness
function must be given, having the same properties.

The Boyer-Moore theorem prover is a mechanization of their logic, including
commands for adding new data types (shells), defining new functions, and proving
theorems. The command DEFN allows one to define new functions, whenever they
can be admitted by the principle of definition, and can include hints about the
ordinal measure to be used. The shell principle is implemented by the command
ADD-SHELL. The command (PROVE-LEMMA name rule-classes statement hints)
starts the attempt of a proof. Usually, rule-classes is an empty list or (REWRITE),
in which case the lemma is stored as a rewrite rule if the proof attempt succeeds. If
ELIM is one of the rule classes, the system stores the rule as an elimination rule. This
means that the rule will be used to replace destructor terms in favour of equivalent
constructor terms. The CONSTRAIN command mechanizes the constraint principle.

The main proof techniques used by the prover are simplification and induction.
Simplification is a combination of decision procedures, mainly term rewriting, using
the rewrite rules previously proved by the user. For a successful application of its
principle of induction, the system has a number of heuristics to find inductive argu-
ments suitable for a conjecture. Each recursive function in the conjecture “suggests”
an induction scheme.

The theorem prover is automatic in one sense: once PROVE-LEMMA is invoked, the
user can no longer interact with the system. However, the user can interact with the
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prover by previously proving lemmas and definitions, used in the proofs as rewrite
rules. Additionally, the user can give “hints” to the prover when PROVE-LEMMA
is invoked. The USE hint forces the use of specific instances of previously proved
lemmas. We mainly use the USE hint (instead of the rewriting mechanism) if free
variables appear in the lemma to be used (see [1] for details). For readability, we
will not print the hints of a PROVE-LEMMA, but we will comment it if needed.

2 Formalizing first-order terms and substitutions

In this section, we explain how we define terms and substitutions as objects in our
logic, to reason about them.

We will not use any specific predicate for defining terms. Every object in the
logic represents a first order term, with the following conventions. Every non-LISTP
object will be considered as a variable symbol:

(defn variablep (x) (nlistp x))

Every LISTP object can be seen as the term with its CAR as the top function
symbol and its CDR as the list of its arguments. In this way, every first order term
for a given signature can be represented. For example, the term k(x,a, g(y), h(x))
is represented as ’(k x (a) (g y) (h x)).

Using this wider representation, some objects represent non-proper terms, because
the list of its arguments can be non-proper. For example, the term > (k x (a) (g y)
(h x) . 3) has the same structure than the above term, but it is a different term.
Since our lemmas don’t use a predicate for defining terms, our results are also valid
for these non-proper terms (this means that we are formalizing a theory that strictly
contains first-order terms). Note that terms and lists of terms are defined by mutual
recursion. Most of our results are proved also for lists of terms, with some minor
modifications.

We represent substitutions as lists of ordered pairs and we will not use any spe-
cific function to define them: every object can be seen as the representation of a
substitution. We use the following convention: if several pairs with the same first
element appear in a substitution, only the first one is considered. The function
(VALUE x sigma) returns the value assigned by the substitution sigma to x. Unlike
terms, the same substitution can be represented by different association lists. Thus,
we cannot use the predicate EQUAL when we talk about equality of substitutions.
Instead, we will use some kind of functional equality in finite domains.

We define the application of a substitution to a term (or list of terms) by mu-
tual recursion, using a standard trick in the Boyer-Moore logic. If flg is not F,
(APPLY flg sigma term) is the term obtained by applying the substitution sigma
to the term term. (APPLY F sigma term) is the list of terms obtained by applying
sigma to the list term of terms:

(defn apply (flg sigma term)
(if flg
(if (variablep term) (value term sigma)
(cons (car term) (apply F sigma (cdr term))))
(if (nlistp term) term
(cons (apply T sigma (car term))
(apply F sigma (cdr term))))))
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This style for defining functions on terms is typical in our formalization. Functions
are defined for terms and for lists of terms, and properties are stated for terms and
for lists of terms. This is specially well-suited for the heuristics of the system used
to find an induction scheme: definitions by mutual recursion suggest an induction
scheme analogue to induction on the term structure used in most of hand proofs in
the literature. Let’s see an example.

An elementary property says that if o(t) = d(¢), then o(z) = d6(z) for every
x € V(t). If we previously define (EQUAL-IN-LIST sigma delta 1) as the function
that tests if the substitutions sigma and delta take the same values on the variables
of the list 1, and (VARIABLES flg term) as the function that returns the list of
variables of the term (or list of terms) term, then the property can be stated as
follows (valid for terms and for list of terms):

(prove-lemma equal-in-term-implies-equal-in-variables (rewrite)
(implies (equal (apply flg sigma term)
(apply flg delta term))
(equal-in-list sigma delta (variables flg term))))

This command leads the prover to a proof attempt with the induction scheme
in Figure 1, which is, in essence, an induction on the structure of term (here,
(p SIGMA DELTA FLG TERM) is an abbreviation of the lemma to be proved).

(AND (IMPLIES (AND FLG (VARIABLEP TERM)) ; ok1k
(p SIGMA DELTA FLG TERM))
(IMPLIES (AND FLG (NOT (VARIABLEP TERM)) s %%

(p SIGMA DELTA F (CDR TERM)))
(p SIGMA DELTA FLG TERM))

(IMPLIES (AND (NOT FLG) (NLISTP TERM)) ; 3%
(p SIGMA DELTA FLG TERM))
(IMPLIES (AND (NOT FLG) (NOT (NLISTP TERM)) 5 k4

(p SIGMA DELTA T (CAR TERM))
(p SIGMA DELTA F (CDR TERM)))
(p SIGMA DELTA FLG TERM))).

Figure 1: An example of structural induction

Cases *1x and *3x are respectively the base cases for terms (variable) and lists
of terms (empty list of terms). The inductive case *2* corresponds to non-variable
terms and the induction hypothesis assumes the lemma true for the list of its ar-
guments. The inductive case *4* corresponds to a non-empty list of terms. The
induction hypothesis assumes the lemma true for the first term and for the list of
the rest of the terms. The lemma is easily proved by the prover using this induction
scheme, without help from the user.

Several functions on terms and substitutions are defined. Here is a brief descrip-
tion of some of them:

e (SIZE flg term), the number of function symbols in a term or list of terms.
e (DOMAIN sigma), the list of CAR’s of each element of sigma.

e (CO-DOMAIN sigma), the list of CDR’s of each element of sigma.
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e (EXTENSION sigmal sigma2), a predicate for testing if sigmal associates the
same terms as sigma?2 for the variables of the domain of sigma?2.

e (RESTRICTION sigma 1), the functional restriction of sigma to the variables
in 1.

3 Subsumption between terms and substitutions

3.1 A subsumption algorithm

The definition of subsumption between terms previously given is not constructive.
Due to the restrictions of our logic, we need to define the subsumption relation
between terms in a constructive way. That is, we will define a subsumption al-
gorithm, that given two terms, finds, if it exists, a substitution that, when ap-
plied to the first term, gives the second. This function, given in Figure 2, is
(SUBSUMPTION flg t1 t2 sigma) and receives as arguments one flag flg, two
terms (or list of terms, depending on the value of £f1g) t1 and t2, and a substi-
tution sigma. We have to prove that it returns a substitution that extends sigma
and that applied to t1 gives t2, if it exists. If not, it returns F.

(defn subsumption (flg t1 t2 sigma)
(if flg
(if (variablep t1)
(if (member t1 (domain sigma))
(if (equal (value tl1 sigma) t2) sigma F)
(cons (comns tl t2) sigma))
(if (variablep t2) F
(if (equal (car t1) (car t2))
(subsumption F (cdr t1) (cdr t2) sigma) F)))
(if (nlistp t1)
(if (equal t1 t2) sigma F)
(if (nlistp t2) F
(let ((subs-first (subsumption T (car tl1) (car t2) sigma)))
(if subs-first
(subsumption F (cdr t1) (cdr t2) subs-first)
F))))))

Figure 2: A subsumption algorithm

We define subsumption between terms or lists of terms as the result of this sub-
sumption algorithm starting with an empty set of bindings as the initial substitution.
We call this function subs*:

(defn subs* (flg t1 t2) (subsumption flg t1 t2 nil))

We prove the two following lemmas stating that the algorithm subs* has the
intended behaviour:

(prove-lemma subs*-soundness ()
(implies (subs* flg t1 t2)
(equal (apply flg (subs* flg t1 t2) t1) t2)))
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(prove-lemma subs*-completeness ()
(implies (equal (apply flg sigma t1) t2)
(subs* flg t1 t2)))

3.2 The subsumption relation between terms

The two previous lemmas characterize exactly what we intended when we defined
the subsumption relation. Thus, we can define the subsumption relation as a func-
tion, called subs, with these two key properties, using the CONSTRAIN command
(Figure 3). To preserve consistency, we have to exhibit a witness function, subs* in
our case, having the same properties.

The use of CONSTRAIN assures that we will not use any other particular property
of our subsumption algorithm: for example, although the substitution returned by
our algorithm only binds variables in t1, we cannot use this. That means that our
proofs will be valid also if we use another subsumption algorithm with the same two
fundamental properties.

(constrain subsumption-definition ()
(and (implies (subs flg t1 t2)
(equal (apply flg (subs flg t1 t2) t1) t2))
(implies (equal (apply flg sigma t1) t2)
(subs flg t1 t2)))
((subs subs*))
((use (subs*-soundness) (subs*-completeness))))

(prove-lemma subsumption-soundness (rewrite elim)
(implies (subs flg t1 t2)
(equal (apply flg (subs flg t1l t2) t1) t2)))

(prove-lemma subsumption-completeness ()
(implies (equal (apply flg sigma t1) t2)
(subs flg t1 t2)))

Figure 3: Subsumption: definition and rules.

In Figure 3 we also give two lemmas for subs, one for each fundamental prop-
erty. Note that subsumption-soundness is stored both as rewrite rule and elimi-
nation rule. The use of the elimination rule is especially fruitful here: in a proof
attempt, if (subs flg t1 t2) is among the assumptions, then the prover will sub-
stitute t2 by (apply flg x t1), for some substitution x. The use of the lemma
subsumption-completeness is not so automatic, because of the free variable sigma.
The standard way to prove a property of the form (subs flg t1 t2) is to find
a witness matching substitution and use completeness making it explicit with an
USE hint. For example, transitivity of subsumption can be easily proved using
subsumption-completeness as follows:

(prove-lemma subsumption-transitive ()
(implies (and (subs flg t1 t2) (subs flg t2 t3))
(subs flg t1 t3))
((use (subsumption-completeness
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(sigma (composition (subs flg t2 t3) (subs flg tl t2)))
(t2 t3)))))

Thus, we first state and prove properties at the level of instances and then we
reformulate the lemmas using the subsumption relation.

3.3 Subsumption between substitutions

It is evident from the given definition of most general unifier that if we want to
express the formal properties of our unification algorithm, we have to define the
notion of subsumption between substitutions. The definition commonly given in the
literature is 0 < 0 <= Jy(y oo = d). This definition is not suitable for our logic,
due to two reasons. First, we have to find a “witness” substitution to eliminate
the existential quantification. Second, we cannot state functional equality between
substitutions because this needs the use of universal quantification.
Instead, we will use an equivalent? definition:

0 < = Vi(o(t) <))

We can remove the universal quantifier by paying attention only to the variables of
the domains of o and § and the variables of the range of o (returned by the func-
tion IMPORTANT-VARIABLES). Thus, the following is our definition of subsumption
between substitutions:

(defn subs-subst (sigma delta)
(let ((V (important-variables sigma delta)))
(subs F (apply F sigma V) (apply F delta V))))

We prove that this definition of subsumption between substitutions is equivalent
to the intended definition. The following lemma state its main property?:

(prove-lemma subs-subst-main-property (rewrite)
(implies (subs-subst sigma delta)
(subs flg (apply flg sigma term) (apply flg delta term))))

This lemma is proved using the same matching substitution for all terms. In other
words, if (subs-subst sigma delta) we find in a constructive way, a substitution
such that composed with sigma is functionally equal to delta. This matching
substitution is:

(defn subs-sust-restriction (sigma delta)
(restriction (subs-subst sigma delta)
(important-variables sigma delta)))

It is worth pointing that we cannot assure that subs-subst is the witness match-
ing substitution, although with our subsumption algorithm, subs-subst and
subs-sust-restriction are the same (when they succeed). But this is a partic-
ular property of our subsumption algorithm and cannot be proved using only the
two characteristic properties (soundness and completeness), a limitation we imposed
ourselves to build a more general theory.

2If at least we have a binary function symbol, which is our case.
3Note that we don’t need to prove the reverse implication because this is a trivial consequence
of our definition.
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4 Transforming system of equations

Unification can be seen as an algorithm to solve term equations or, more generally,
systems of equations. We will define an algorithm for solving systems of equations
using the transformation method, which transforms systems of equations until the
solution is obvious. This was already anticipated in Herbrand’s thesis ([3]) and was
used for the first time in the context of unification by Martelli and Montanari ([9]).
In this moment, it is a standard formalism for discussing unification algorithms ([4],

2]).

4.1 Systems of equations

An equation is a pair of terms, denoted as t; =’ t,. A substitution o is a solution
of t; ="ty if o(t;) = o(ty), and it is a solution of a system of equations S if it is a
solution of every member of S. The system obtained by applying the substitution o
to the system S is denoted as 0S. A system with no solution is called unsolvable, and
solvable otherwise. A solution of S is a most general solution (mgs) if it subsumes
every other solution of S. Note that a substitution ¢ is a mgu of #; and ¢, if, and
only if, it is a mgs of the system {t, =" #,}, so if we have an algorithm for finding
an mgs of a system of equations, in particular we have a unification algorithm. Our
unification algorithm, called mgs and defined later, finds, whenever it exists, a most
general solution of a given system of equations, following Martelli and Montanari’s.

In our formalization, we will represent equations as ordered pairs of terms and
systems of equations as lists of equations. We also consider an special system, F,
representing unsolvability. Note that every substitution can be seen as a system.
As usual, we will not use any specific predicates for defining equations or systems
of equations.

In our definition, the transformation rules are defined on pairs of systems. For
the sake of readability, we will define a new data type, PAIRP, to construct pairs of
systems:

(add-shell pair nil pairp ((first (none-of) zero)
(second (none-of) zero)))

We now briefly describe some useful functions over systems of equations:

e (SOLUTION sigma S), tests if sigma is a solution of the system S.
e (SYSTEM-VARS S), the list of variables of the terms in the equations of S.

e (RANGE-VARS S), the list of variables of the terms in the right-hand side of
equations of S.

e (APPLY-SYSTEM sigma S), the system obtained by applying the substitution
sigma to every term in the equations of S.

e (APPLY-RANGE sigma S), the system obtained by applying the substitution
sigma to every term in the right-hand side of equations of S.

e (PAIR-ARGS 1 m), the system obtained pairing the respective elements of the
lists of terms 1 and m if they have the same length and final tail, F otherwise.
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4.2 Idempotent substitutions and solved systems

We say that a substitution o is idempotent if 0 = o o 0. Again, this defini-
tion is not suitable for the Boyer-Moore logic. Instead, we define the function
(IDEMPOTENT S), that tests if S is a system whose domain is a set of variables,
disjoint from (range-vars S). Note that we are exploiting here that a system of
equations can be seen as a substitution. Idempotent substitutions are also called
systems in solved form, depending on the context.

The following is the main lemma for expressing the relationship between sub-
sumption and solution of systems, and exploits that substitutions can be seen as
systems:

(prove-lemma main-property-mgs (rewrite)
(implies (solution sigma delta)
(equal (apply flg sigma (apply flg delta term))
(apply flg sigma term))))

In other words, if ¢ is a solution of §, then 0 = ¢ o §, and, consequently, § < o.
This means that if § is a solution of itself, it is the least such solution with respect
to the subsumption ordering. Idempotent substitutions (or systems in solved forms)
are solutions, (and therefore most general solutions) of themselves.

(prove-lemma idempotent (rewrite)
(implies (idempotent S) (solution S S)))

Note that the above two lemmas confirm that our definition of idempotency is the
intended: if ¢ is idempotent, then o is a solution of ¢ and, using the main property,
o=000.

4.3 Transformation rules and selection function

The transformation rules given by Martelli and Montanari ([9]) appears in Figure 4.
This set of rules will suffice to solve every system of equations, as we will prove.
Note that the rules act on pairs of systems of equations, denoted as S;T. The first
system contains the equations to be solved and the second one the solved equations.

To solve a system of equations S, we begin with the pair of systems S; 0 and
apply the transformation rules until unsolvability (i.e., F) is detected or a pair of
systems in the form (); T appears. To apply a rule, an equation is selected in the
system of non-solved equations, and the form of this equation determines the rule
to apply. This kind of non-determinism can be formalized in the Boyer-Moore logic
using a constrained definition of a selection function. The only property that we
will assume is that the selection function chooses an element of non-empty systems.
The following CONSTRAIN command defines the selection function sel. The witness
function we use in this case is car.

(constrain selection-function (rewrite)
(implies (listp 1) (member (sel 1) 1))
((sel car)))

The function TRANSFORM in Figure 5 implements the rules of transformation.
It applies, in a non-deterministic way, one of the rules, to perform one step of
transformation.
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Delete: {t="t}UR;T =RT
Check: {z="t}UR;T = F
itz eV(t), z#t
Eliminate: {z="t}UR;T s {z— iR {z ="t} U{z — t}T

ifreXyazd¢gV(t)
Decompose: {f(s1,...,8,) =" f(t1,..,tp))JURT = {s1 ="t1,...,8p, = ty, ) UR;T
Conflict: {f(s1,...,80) = g(t1,...,t,))}URT =F

iff#g
Not-pair: {f(s1,.--y80) =" f(t1,.. ., tm)}UR;T =F

ifn#m
Orient: {t="2}UR;T = {z="t}URT

ifzreX, t¢X

Figure 4: Transformation rules

5 The unification algorithm

5.1 Applying transformations non-deterministically

We define a function solve to apply transformations to pairs of systems of equations
until a normal form is reached. A pair of systems is in normal form if it is F or if
the first system is empty:

(defn normal-form-syst (S-sol)
(or (nlistp (first S-sol)) (not S-so0l)))

The definition of solve is very simple but its admission is not trivial. To prove
its termination, we have to define a measure function, unification-measure, on
pair of systems:

(defn unification-measure (S-sol)
(cons (cons (addl (n-system-var (first S-sol)))
(size-system (first S-sol)))
(n-variables-right-hand-side (first S-sol))))

The function unification-measure is a lexicographic combination of:
1. The number of distinct variables in the first system, n-system-var.
2. The number of function symbols in the first system, size-system.

3. The number of equations in the first system with a variable in its right-hand
side, n-variables-right-hand-side.

Lemmas have been proved for each of the rules of transformation and each of
these three quantities, some to prove that the quantity remains the same, some to
prove that it decreases, in each step of transformation. With these lemmas, and a
hint about the measure, the following definition is admitted:



APPIA-GULP-PRODE’99

(defn transform (S-sol)
(let ((S (first S-sol)) (sol (second S-sol)))
(let ((equ (sel S)))
(let ((t1 (car equ)) (t2 (cdr equ)) (R (delete equ S)))
(cond
((equal t1 t2) (pair R sol)) ;33 *DELETE*
((variablep t1)
(if (member t1 (variables t t2))
F ;33 *CHECKx*
(pair s 33 *ELIMINATE=*
(apply-system (list equ) R)
(cons equ (apply-range (list equ) sol)))))
((variablep t2)
(pair (cons (comns t2 t1) R) sol)) ;33 *ORIENT*
((not (equal (car t1) (car t2))) F) ;33 *CONFLICTx*
(t (let ((pairing (pair-args (cdr t1) (cdr t2))))
(if pairing
(pair (append pairing R) sol) ;33 *DESCOMPOSEx*
F)>))) ;35 *NOT-PAIRx

Figure 5: Transformation rules

(defn solve (S-sol)
(if (normal-form-syst S-sol) S-sol (solve (transform S-sol)))
((ord-lessp (unification-measure S-s0l))))

Note that this function is not completely specified because the selection function
used in transform is only partially defined. For every particular selection function
there exists an “instance” of solve, that takes a pair of systems and applies the
rules of transformation, with that specific selection criterion, until a normal form is
reached. Conversely, for every sequence of transformations starting from a pair of
systems and ending in a normal form, there exists a particular selection function for
which the corresponding “instance” of solve returns this normal form when applied
to the initial pair of systems, performing the given sequence of transformations. In
this sense, we are formalizing non-determinism, and at the same time verifying the
formal properties of a number of unification algorithms, that apply the rules with
some specific selection criterion that can be seen as a control strategy.

5.2 Invariants of the transformations

The two key properties of the given rules of transformation can be stated in terms
of invariants. There are two invariants in any sequence of transformations:

e The set of solutions of both systems of the pair.
e The idempotency of the second system (if unsolvability is not detected).

The following lemmas state that the transformations preserve the set of solu-
tions (here, (union-systems S-sol) is the union of the systems that form the pair
S-sol):
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(prove-lemma transform-equivalent (rewrite)
(implies (and (pairp S-sol) (listp (first S-sol))
(transform S-sol))
(iff (solution sigma (union-systems (transform S-sol)))
(solution sigma (union-systems S-sol)))))

(prove-lemma transform-unsolvable (rewrite)
(implies (and (pairp S-sol) (listp (first S-sol))
(not (transform S-sol)))
(not (solution sigma (union-systems S-sol)))))

Idempotency of the second system is preserved if we also have an additional
invariant: the variables of the domain of the second system does not appear in the
first system (i.e., the variables are solved). The following lemma states this:

(prove-lemma transform-preserves-idempotency (rewrite)
(let ((transformed (transform (pair S sol))))
(let ((St (first transformed)) (solt (second transformed)))
(implies (and (listp S)
transformed
(idempotent sol)
(disjoint (system-vars S) (domain so0l)))
(and (idempotent solt)
(disjoint (system-vars St) (domain solt)))))))

To prove the lemmas stated in this subsection, we have to prove previously anal-
ogous lemmas for each of the transformation rules that transform may apply.

5.3 A unification algorithm

The function solve is used to define an algorithm that finds a most general solution
of a system of equations, whenever it exists. We define mgs, a function acting on
systems of equations in the following way:

(defn mgs (S)
(let ((solved (solve (pair S nil))))
(if solved (second solved) F)))

This function applies the rules of transformation starting with S; (), until a normal
form is reached. If unsolvability is detected, it returns F, otherwise returns the second
system of the pair. The previous properties are used to verify that mgs implements
a correct unification algorithm. The fundamental properties of the function mgs,
appear in Figure 6. These properties are a formalization of the following theorem,
and are the desired properties of a correct unification algorithm:

Theorem: The function mgs has the following properties:

1. If S is a solvable system of equations, then mgs returns a non-F value (i.e., the
algorithm succeeds). This is stated in the lemma completeness-mgs.

2. If mgs succeeds when applied to a system S, then:
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(prove-lemma completeness-mgs ()
(implies (solution sigma S) (mgs S)))

(prove-lemma soundness-mgs ()
(implies (mgs S) (solution (mgs S) S)))

(prove-lemma most-general-solution-mgs ()
(implies (solution sigma S) (subs-subst (mgs S) sigma)))

(prove-lemma idempotent-mgs ()
(idempotent (mgs S)))

Figure 6: Properties of the mgs algorithm

(a) It returns a solution of S. This is the lemma soundness-mgs.

(b) It returns a substitution that subsumes every solution of S. This the
lemma called most-general-solution-mgs.

(c) Tt returns an idempotent substitution. The lemma idempotent-mgs state
this property.

Note that because of the definition of solve and the use of a selection function,
we have also proved that any sequence of transformations starting with S; () ends in
(; T, with T a most general solution, if S is solvable, or in F if S is unsolvable. This
property is called non-deterministic completeness.

An interesting remark can be made here. Our defined algorithm can be seen
as a pattern of different unification algorithms. For every particular strategy in
applying transformation rules, we have a concrete unification algorithm. This par-
ticular strategy corresponds to an instantiation of the partially defined selection
function sel. The correctness of all those concrete unification algorithms are a triv-
ial consequence of the above theorem, and are easily proved by the system using the
command FUNCTIONALLY-INSTANTIATE.

6 Conclusions

We have presented here a successful application of the Boyer-Moore theorem prover
to the proof of correctness of a unification algorithm. This algorithm is described
in terms of transformation rules acting non-deterministically on system of equa-
tions. To perform the mechanical proofs, we have formalized a theory of terms and
substitutions in the Boyer-Moore logic.

The use of rules as a formalism to represent algorithms, unification algorithms in
this case, turns out to be well-suited for mechanical verification. The use of selection
functions, partially defined, formalizes the non-deterministic behaviour of this kind
of algorithms, getting a clearer separation of logic and control.

This is a first step to provide a number of basic results needed to apply formal
methods to the design of reasoning systems. This mechanical proof is part of the
mechanical proof of lattice-theoretic properties of first-order terms ([12]). As we
mentioned earlier, terms and their properties are used in most of fields in Artificial
Intelligence and Declarative Programming.
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