
Me
hani
al veri�
ation of a rule-based uni�
ationalgorithm in the Boyer-Moore theorem proverJ.L. Ruiz-Reina, J.A. Alonso, M.J. Hidalgo and F.J. Mart��nfjruiz,jalonso,mjoseh,fjesusg�
i
a.esDepartamento de Cien
ias de la Computa
i�on e Inteligen
ia Arti�
ial.Fa
ultad de Inform�ati
a y Estad��sti
a, Universidad de SevillaAvda. Reina Mer
edes, s/n. 41012 Sevilla, SpainPhone: 954552791 Fax: 954557970Abstra
tWe des
ribe here the formalization and me
hani
al proofs of the mainproperties of a uni�
ation algorithm. The veri�ed uni�
ation algorithm isde�ned as a set of transformation rules a
ting on sets of equations, followingMartelli and Montanari. These rules are non-deterministi
ally applied until asolution (or the la
k of solutions) is dete
ted. This algorithm and its proper-ties are formalized using the Boyer-Moore logi
 and
arried out me
hani
allyusing the Boyer-Moore theorem prover. The language used is very similar topure Lisp. We have formalized and me
hani
ally proved a number of
on
eptsand properties about �rst-order terms, substitutions, equations and transfor-mation rules. We have also formalized the non-deterministi
 behaviour of theveri�ed algorithm using sele
tion fun
tions.Keywords: Uni�
ation, Me
hani
al Veri�
ation, Boyer-Moore TheoremProver, First Order Terms.1 Introdu
tionUni�
ation is a
entral pro
ess in logi
 programming. Through its use of resolution,Prolog inherited uni�
ation as a fundamental operation. It is also important in anumber of �elds, in
luding automated dedu
tion, natural language pro
essing andma
hine learning. The use of a theorem prover (the Boyer-Moore theorem proverin this
ase) to me
hani
ally prove the
orre
tness of a uni�
ation algorithm isinteresting for some reasons:� Formal methods are applied to an algorithm widely used in a number of sys-tems. It is not rare to see some bugs in uni�
ation algorithms given in theliterature (see, for example [8℄)1.This work has been supported by DGES/MEC: Proje
ts PB96-0098-C04-04 and PB96-1345.1The uni�
ation algorithm given in page 53 of [8℄ should
ompose the substitutions partially
omputed instead of using append.

APPIA-GULP-PRODE'99� This is a non-trivial example of how a theorem prover
an be used to verifyan algorithm de�ned in a language similar to pure Lisp. It is shown howautomated dedu
tion
an be used to examine and understand its propertieswith mu
h greater detail, rigor, and
larity. In the following, when we talkabout \prove", we mean \me
hani
ally prove".� Uni�
ation
an be seen as a pro
ess that applies transformations to a set ofequations until a solution (or the la
k of solutions) is dete
ted. This rule-based spe
i�
ation turns out to be suitable for me
hani
al veri�
ation. Thesetransformations
an be applied non-deterministi
ally (i.e., every strategy forapplying transformations leads to a most general solution, whenever it exists).We show how this non-determinism
an be formalized and veri�ed.There is some related work done in me
hani
al veri�
ation of properties of uni-�
ation algorithms. Paulson ([10℄) des
ribes the veri�
ation of a uni�
ation algo-rithm using the theorem prover LCF. Rouyer ([11℄) does the same using Coq. Usingthe Boyer-Moore theorem prover, we get a higher degree of automation. Using arule-based approa
h, we get more abstra
tness, verifying a family of algorithms, in-stead of a parti
ular algorithm. For some related work in the Boyer-Moore theoremprover, see [5℄, where Kaufmann presents a proof of a generalization algorithm usedin PC-Nqthm.Due to the la
k of spa
e, we do not present details of the proofs here. The
om-plete events �les are available on the web in http://www-
s.us.es/~jruiz/terms/.1.1 First order terms and substitutionsGiven a set � of fun
tion symbols (
alled signature) and a denumerable set X ofvariable symbols, the set of (�rst-order) terms T (�; X) is the smallest set
ontainingX su
h that f(t1; : : : ; tn) 2 T (�; X) whenever ea
h ti 2 T (�; X) (when n = 0, wesay that the term is a
onstant). Note that this de�nition allows fun
tion symbolswith variable arity. The set of variables of a term t is denoted as V(t). A fun
tion� : X ! T (�; X) is a substitution if only �nitely many variables x1; : : : ; xn are notmapped to themselves. This is denoted as fx1 7! t1; : : : ; xn 7! tng, where �(xi) = ti.A substitution �
an be extended to a fun
tion from terms to terms in su
h a waythat �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)). A term t mat
hes a term s if �(s) = t forsome substitution �. In that
ase, we write s � t, we say that t is an instan
e of sor that s subsumes t and we say that � is a mat
hing substitution for s and t. Also,a subsumption relation on substitutions
an be de�ned by: � � Æ if there exists asubstitution
 su
h that Æ =
 Æ �, where Æ stands for fun
tional
omposition.We say that a substitution � uni�es (or is a uni�er of) two terms s and t if�(s) = �(t). In that
ase we say that s and t are uni�able. Not every pair of termsis uni�able. We say that a uni�er � of s and t is a most general uni�er (mgu) if forevery uni�er Æ of s and t, � � Æ. A uni�
ation algorithm is an algorithm that �nds,whenever it exists, a mgu of two given terms. See [7℄ for a survey on uni�
ation.1.2 The Boyer-Moore logi
 and theorem proverWe will brie
y des
ribe here the Boyer-Moore theorem prover (also known as Nqthm,pre
ursor of ACL2) and its logi
. For a
omplete des
ription, see [1℄. For a des
rip-

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem provertion of ACL2, see [6℄.The Boyer-Moore logi
 is a quanti�er-free �rst-order logi
 with equality. Thelanguage used is very similar to pure Lisp. There are two logi
al
onstants, abbre-viated as T and F. The propositional
onne
tives have fun
tional analogues: AND,IMPLIES, OR, IFF et
. These
onne
tives are all de�ned in terms of the primitive3-pla
e
onne
tive IF. The fun
tional analogue of the equality predi
ate is EQUAL.The theory in
ludes axioms and rules of inferen
e for propositional logi
, equality,and instantiation.The shell prin
iple allows the extension of the logi
 by addition of axioms de�n-ing a new data type. The initial theory in
ludes axioms for natural numbers, or-dered pairs, literal atoms, and negative integers. Natural numbers are de�ned by a
onstru
tor fun
tion ADD1, a destru
tor fun
tion SUB1 and a base obje
t, (ZERO).Numbers are abbreviated by the numerals, 0, 1, 2, et
. Ordered pairs are de�nedby a shell re
ognizer (LISTP), two destru
tor fun
tions, (CAR and CDR), and one
onstru
tor fun
tion (CONS). The fun
tion NLISTP is the negation of LISTP. Thefun
tions CAR and CDR, when applied to a non-ordered pair, return 0. As in Lisp,ordered pairs are used to
onstru
t �nite sequen
es or lists. The literal atom NIL is
onventionally used to represent the empty list (but NIL is not a LISTP obje
t). Wewill
all an obje
t a proper list if it is NIL, or it is a LISTP and its CDR is proper (inother words, a proper list is NIL or a LISTP obje
t with �nal tail NIL).By the prin
iple of de�nition, new fun
tion de�nitions are admitted in the theoryonly if there exists and ordinal measure in whi
h the arguments of ea
h re
ursive
all de
rease. This ensures that no in
onsisten
ies are introdu
ed by new de�nitions.The theory has a
onstru
tive de�nition of the ordinals up to "0, in terms of listsand natural numbers. One important rule of inferen
e is the prin
iple of indu
tion,that permits proofs by indu
tion on "0.The
onstraint prin
iple allows one to de�ne fun
tions partially by introdu
ingsome properties without
omplete de�nitions. To preserve
onsisten
y, a witnessfun
tion must be given, having the same properties.The Boyer-Moore theorem prover is a me
hanization of their logi
, in
luding
ommands for adding new data types (shells), de�ning new fun
tions, and provingtheorems. The
ommand DEFN allows one to de�ne new fun
tions, whenever they
an be admitted by the prin
iple of de�nition, and
an in
lude hints about theordinal measure to be used. The shell prin
iple is implemented by the
ommandADD-SHELL. The
ommand (PROVE-LEMMA name rule-
lasses statement hints)starts the attempt of a proof. Usually, rule-
lasses is an empty list or (REWRITE),in whi
h
ase the lemma is stored as a rewrite rule if the proof attempt su

eeds. IfELIM is one of the rule
lasses, the system stores the rule as an elimination rule. Thismeans that the rule will be used to repla
e destru
tor terms in favour of equivalent
onstru
tor terms. The CONSTRAIN
ommand me
hanizes the
onstraint prin
iple.The main proof te
hniques used by the prover are simpli�
ation and indu
tion.Simpli�
ation is a
ombination of de
ision pro
edures, mainly term rewriting, usingthe rewrite rules previously proved by the user. For a su

essful appli
ation of itsprin
iple of indu
tion, the system has a number of heuristi
s to �nd indu
tive argu-ments suitable for a
onje
ture. Ea
h re
ursive fun
tion in the
onje
ture \suggests"an indu
tion s
heme.The theorem prover is automati
 in one sense: on
e PROVE-LEMMA is invoked, theuser
an no longer intera
t with the system. However, the user
an intera
t with the

APPIA-GULP-PRODE'99prover by previously proving lemmas and de�nitions, used in the proofs as rewriterules. Additionally, the user
an give \hints" to the prover when PROVE-LEMMAis invoked. The USE hint for
es the use of spe
i�
 instan
es of previously provedlemmas. We mainly use the USE hint (instead of the rewriting me
hanism) if freevariables appear in the lemma to be used (see [1℄ for details). For readability, wewill not print the hints of a PROVE-LEMMA, but we will
omment it if needed.2 Formalizing �rst-order terms and substitutionsIn this se
tion, we explain how we de�ne terms and substitutions as obje
ts in ourlogi
, to reason about them.We will not use any spe
i�
 predi
ate for de�ning terms. Every obje
t in thelogi
 represents a �rst order term, with the following
onventions. Every non-LISTPobje
t will be
onsidered as a variable symbol:(defn variablep (x) (nlistp x))Every LISTP obje
t
an be seen as the term with its CAR as the top fun
tionsymbol and its CDR as the list of its arguments. In this way, every �rst order termfor a given signature
an be represented. For example, the term k(x; a; g(y); h(x))is represented as '(k x (a) (g y) (h x)).Using this wider representation, some obje
ts represent non-proper terms, be
ausethe list of its arguments
an be non-proper. For example, the term '(k x (a) (g y)(h x) . 3) has the same stru
ture than the above term, but it is a di�erent term.Sin
e our lemmas don't use a predi
ate for de�ning terms, our results are also validfor these non-proper terms (this means that we are formalizing a theory that stri
tly
ontains �rst-order terms). Note that terms and lists of terms are de�ned by mutualre
ursion. Most of our results are proved also for lists of terms, with some minormodi�
ations.We represent substitutions as lists of ordered pairs and we will not use any spe-
i�
 fun
tion to de�ne them: every obje
t
an be seen as the representation of asubstitution. We use the following
onvention: if several pairs with the same �rstelement appear in a substitution, only the �rst one is
onsidered. The fun
tion(VALUE x sigma) returns the value assigned by the substitution sigma to x. Unliketerms, the same substitution
an be represented by di�erent asso
iation lists. Thus,we
annot use the predi
ate EQUAL when we talk about equality of substitutions.Instead, we will use some kind of fun
tional equality in �nite domains.We de�ne the appli
ation of a substitution to a term (or list of terms) by mu-tual re
ursion, using a standard tri
k in the Boyer-Moore logi
. If flg is not F,(APPLY flg sigma term) is the term obtained by applying the substitution sigmato the term term. (APPLY F sigma term) is the list of terms obtained by applyingsigma to the list term of terms:(defn apply (flg sigma term)(if flg(if (variablep term) (value term sigma)(
ons (
ar term) (apply F sigma (
dr term))))(if (nlistp term) term(
ons (apply T sigma (
ar term))(apply F sigma (
dr term))))))

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem proverThis style for de�ning fun
tions on terms is typi
al in our formalization. Fun
tionsare de�ned for terms and for lists of terms, and properties are stated for terms andfor lists of terms. This is spe
ially well-suited for the heuristi
s of the system usedto �nd an indu
tion s
heme: de�nitions by mutual re
ursion suggest an indu
tions
heme analogue to indu
tion on the term stru
ture used in most of hand proofs inthe literature. Let's see an example.An elementary property says that if �(t) = Æ(t), then �(x) = Æ(x) for everyx 2 V(t). If we previously de�ne (EQUAL-IN-LIST sigma delta l) as the fun
tionthat tests if the substitutions sigma and delta take the same values on the variablesof the list l, and (VARIABLES flg term) as the fun
tion that returns the list ofvariables of the term (or list of terms) term, then the property
an be stated asfollows (valid for terms and for list of terms):(prove-lemma equal-in-term-implies-equal-in-variables (rewrite)(implies (equal (apply flg sigma term)(apply flg delta term))(equal-in-list sigma delta (variables flg term))))This
ommand leads the prover to a proof attempt with the indu
tion s
hemein Figure 1, whi
h is, in essen
e, an indu
tion on the stru
ture of term (here,(p SIGMA DELTA FLG TERM) is an abbreviation of the lemma to be proved).(AND (IMPLIES (AND FLG (VARIABLEP TERM)) ; *1*(p SIGMA DELTA FLG TERM))(IMPLIES (AND FLG (NOT (VARIABLEP TERM)) ; *2*(p SIGMA DELTA F (CDR TERM)))(p SIGMA DELTA FLG TERM))(IMPLIES (AND (NOT FLG) (NLISTP TERM)) ; *3*(p SIGMA DELTA FLG TERM))(IMPLIES (AND (NOT FLG) (NOT (NLISTP TERM)) ; *4*(p SIGMA DELTA T (CAR TERM))(p SIGMA DELTA F (CDR TERM)))(p SIGMA DELTA FLG TERM))).Figure 1: An example of stru
tural indu
tionCases *1* and *3* are respe
tively the base
ases for terms (variable) and listsof terms (empty list of terms). The indu
tive
ase *2*
orresponds to non-variableterms and the indu
tion hypothesis assumes the lemma true for the list of its ar-guments. The indu
tive
ase *4*
orresponds to a non-empty list of terms. Theindu
tion hypothesis assumes the lemma true for the �rst term and for the list ofthe rest of the terms. The lemma is easily proved by the prover using this indu
tions
heme, without help from the user.Several fun
tions on terms and substitutions are de�ned. Here is a brief des
rip-tion of some of them:� (SIZE flg term), the number of fun
tion symbols in a term or list of terms.� (DOMAIN sigma), the list of CAR's of ea
h element of sigma.� (CO-DOMAIN sigma), the list of CDR's of ea
h element of sigma.

APPIA-GULP-PRODE'99� (EXTENSION sigma1 sigma2), a predi
ate for testing if sigma1 asso
iates thesame terms as sigma2 for the variables of the domain of sigma2.� (RESTRICTION sigma l), the fun
tional restri
tion of sigma to the variablesin l.3 Subsumption between terms and substitutions3.1 A subsumption algorithmThe de�nition of subsumption between terms previously given is not
onstru
tive.Due to the restri
tions of our logi
, we need to de�ne the subsumption relationbetween terms in a
onstru
tive way. That is, we will de�ne a subsumption al-gorithm, that given two terms, �nds, if it exists, a substitution that, when ap-plied to the �rst term, gives the se
ond. This fun
tion, given in Figure 2, is(SUBSUMPTION flg t1 t2 sigma) and re
eives as arguments one
ag flg, twoterms (or list of terms, depending on the value of flg) t1 and t2, and a substi-tution sigma. We have to prove that it returns a substitution that extends sigmaand that applied to t1 gives t2, if it exists. If not, it returns F.(defn subsumption (flg t1 t2 sigma)(if flg(if (variablep t1)(if (member t1 (domain sigma))(if (equal (value t1 sigma) t2) sigma F)(
ons (
ons t1 t2) sigma))(if (variablep t2) F(if (equal (
ar t1) (
ar t2))(subsumption F (
dr t1) (
dr t2) sigma) F)))(if (nlistp t1)(if (equal t1 t2) sigma F)(if (nlistp t2) F(let ((subs-first (subsumption T (
ar t1) (
ar t2) sigma)))(if subs-first(subsumption F (
dr t1) (
dr t2) subs-first)F))))))Figure 2: A subsumption algorithmWe de�ne subsumption between terms or lists of terms as the result of this sub-sumption algorithm starting with an empty set of bindings as the initial substitution.We
all this fun
tion subs*:(defn subs* (flg t1 t2) (subsumption flg t1 t2 nil))We prove the two following lemmas stating that the algorithm subs* has theintended behaviour:(prove-lemma subs*-soundness ()(implies (subs* flg t1 t2)(equal (apply flg (subs* flg t1 t2) t1) t2)))

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem prover(prove-lemma subs*-
ompleteness ()(implies (equal (apply flg sigma t1) t2)(subs* flg t1 t2)))3.2 The subsumption relation between termsThe two previous lemmas
hara
terize exa
tly what we intended when we de�nedthe subsumption relation. Thus, we
an de�ne the subsumption relation as a fun
-tion,
alled subs, with these two key properties, using the CONSTRAIN
ommand(Figure 3). To preserve
onsisten
y, we have to exhibit a witness fun
tion, subs* inour
ase, having the same properties.The use of CONSTRAIN assures that we will not use any other parti
ular propertyof our subsumption algorithm: for example, although the substitution returned byour algorithm only binds variables in t1, we
annot use this. That means that ourproofs will be valid also if we use another subsumption algorithm with the same twofundamental properties.(
onstrain subsumption-definition ()(and (implies (subs flg t1 t2)(equal (apply flg (subs flg t1 t2) t1) t2))(implies (equal (apply flg sigma t1) t2)(subs flg t1 t2)))((subs subs*))((use (subs*-soundness) (subs*-
ompleteness))))(prove-lemma subsumption-soundness (rewrite elim)(implies (subs flg t1 t2)(equal (apply flg (subs flg t1 t2) t1) t2)))(prove-lemma subsumption-
ompleteness ()(implies (equal (apply flg sigma t1) t2)(subs flg t1 t2)))Figure 3: Subsumption: de�nition and rules.In Figure 3 we also give two lemmas for subs, one for ea
h fundamental prop-erty. Note that subsumption-soundness is stored both as rewrite rule and elimi-nation rule. The use of the elimination rule is espe
ially fruitful here: in a proofattempt, if (subs flg t1 t2) is among the assumptions, then the prover will sub-stitute t2 by (apply flg x t1), for some substitution x. The use of the lemmasubsumption-
ompleteness is not so automati
, be
ause of the free variable sigma.The standard way to prove a property of the form (subs flg t1 t2) is to �nda witness mat
hing substitution and use
ompleteness making it expli
it with anUSE hint. For example, transitivity of subsumption
an be easily proved usingsubsumption-
ompleteness as follows:(prove-lemma subsumption-transitive ()(implies (and (subs flg t1 t2) (subs flg t2 t3))(subs flg t1 t3))((use (subsumption-
ompleteness

APPIA-GULP-PRODE'99(sigma (
omposition (subs flg t2 t3) (subs flg t1 t2)))(t2 t3)))))Thus, we �rst state and prove properties at the level of instan
es and then wereformulate the lemmas using the subsumption relation.3.3 Subsumption between substitutionsIt is evident from the given de�nition of most general uni�er that if we want toexpress the formal properties of our uni�
ation algorithm, we have to de�ne thenotion of subsumption between substitutions. The de�nition
ommonly given in theliterature is � � Æ () 9
(
 Æ � = Æ). This de�nition is not suitable for our logi
,due to two reasons. First, we have to �nd a \witness" substitution to eliminatethe existential quanti�
ation. Se
ond, we
annot state fun
tional equality betweensubstitutions be
ause this needs the use of universal quanti�
ation.Instead, we will use an equivalent2 de�nition:� � Æ () 8t(�(t) � Æ(t))We
an remove the universal quanti�er by paying attention only to the variables ofthe domains of � and Æ and the variables of the range of � (returned by the fun
-tion IMPORTANT-VARIABLES). Thus, the following is our de�nition of subsumptionbetween substitutions:(defn subs-subst (sigma delta)(let ((V (important-variables sigma delta)))(subs F (apply F sigma V) (apply F delta V))))We prove that this de�nition of subsumption between substitutions is equivalentto the intended de�nition. The following lemma state its main property3:(prove-lemma subs-subst-main-property (rewrite)(implies (subs-subst sigma delta)(subs flg (apply flg sigma term) (apply flg delta term))))This lemma is proved using the same mat
hing substitution for all terms. In otherwords, if (subs-subst sigma delta) we �nd in a
onstru
tive way, a substitutionsu
h that
omposed with sigma is fun
tionally equal to delta. This mat
hingsubstitution is:(defn subs-sust-restri
tion (sigma delta)(restri
tion (subs-subst sigma delta)(important-variables sigma delta)))It is worth pointing that we
annot assure that subs-subst is the witness mat
h-ing substitution, although with our subsumption algorithm, subs-subst andsubs-sust-restri
tion are the same (when they su

eed). But this is a parti
-ular property of our subsumption algorithm and
annot be proved using only thetwo
hara
teristi
 properties (soundness and
ompleteness), a limitation we imposedourselves to build a more general theory.2If at least we have a binary fun
tion symbol, whi
h is our
ase.3Note that we don't need to prove the reverse impli
ation be
ause this is a trivial
onsequen
eof our de�nition.

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem prover4 Transforming system of equationsUni�
ation
an be seen as an algorithm to solve term equations or, more generally,systems of equations. We will de�ne an algorithm for solving systems of equationsusing the transformation method, whi
h transforms systems of equations until thesolution is obvious. This was already anti
ipated in Herbrand's thesis ([3℄) and wasused for the �rst time in the
ontext of uni�
ation by Martelli and Montanari ([9℄).In this moment, it is a standard formalism for dis
ussing uni�
ation algorithms ([4℄,[2℄).4.1 Systems of equationsAn equation is a pair of terms, denoted as t1 =? t2. A substitution � is a solutionof t1 =? t2 if �(t1) = �(t2), and it is a solution of a system of equations S if it is asolution of every member of S. The system obtained by applying the substitution �to the system S is denoted as �S. A system with no solution is
alled unsolvable, andsolvable otherwise. A solution of S is a most general solution (mgs) if it subsumesevery other solution of S. Note that a substitution � is a mgu of t1 and t2 if, andonly if, it is a mgs of the system ft1 =? t2g, so if we have an algorithm for �ndingan mgs of a system of equations, in parti
ular we have a uni�
ation algorithm. Ouruni�
ation algorithm,
alled mgs and de�ned later, �nds, whenever it exists, a mostgeneral solution of a given system of equations, following Martelli and Montanari's.In our formalization, we will represent equations as ordered pairs of terms andsystems of equations as lists of equations. We also
onsider an spe
ial system, F,representing unsolvability. Note that every substitution
an be seen as a system.As usual, we will not use any spe
i�
 predi
ates for de�ning equations or systemsof equations.In our de�nition, the transformation rules are de�ned on pairs of systems. Forthe sake of readability, we will de�ne a new data type, PAIRP, to
onstru
t pairs ofsystems:(add-shell pair nil pairp ((first (none-of) zero)(se
ond (none-of) zero)))We now brie
y des
ribe some useful fun
tions over systems of equations:� (SOLUTION sigma S), tests if sigma is a solution of the system S.� (SYSTEM-VARS S), the list of variables of the terms in the equations of S.� (RANGE-VARS S), the list of variables of the terms in the right-hand side ofequations of S.� (APPLY-SYSTEM sigma S), the system obtained by applying the substitutionsigma to every term in the equations of S.� (APPLY-RANGE sigma S), the system obtained by applying the substitutionsigma to every term in the right-hand side of equations of S.� (PAIR-ARGS l m), the system obtained pairing the respe
tive elements of thelists of terms l and m if they have the same length and �nal tail, F otherwise.

APPIA-GULP-PRODE'994.2 Idempotent substitutions and solved systemsWe say that a substitution � is idempotent if � = � Æ �. Again, this de�ni-tion is not suitable for the Boyer-Moore logi
. Instead, we de�ne the fun
tion(IDEMPOTENT S), that tests if S is a system whose domain is a set of variables,disjoint from (range-vars S). Note that we are exploiting here that a system ofequations
an be seen as a substitution. Idempotent substitutions are also
alledsystems in solved form, depending on the
ontext.The following is the main lemma for expressing the relationship between sub-sumption and solution of systems, and exploits that substitutions
an be seen assystems:(prove-lemma main-property-mgs (rewrite)(implies (solution sigma delta)(equal (apply flg sigma (apply flg delta term))(apply flg sigma term))))In other words, if � is a solution of Æ, then � = � Æ Æ, and,
onsequently, Æ � �.This means that if Æ is a solution of itself, it is the least su
h solution with respe
tto the subsumption ordering. Idempotent substitutions (or systems in solved forms)are solutions, (and therefore most general solutions) of themselves.(prove-lemma idempotent (rewrite)(implies (idempotent S) (solution S S)))Note that the above two lemmas
on�rm that our de�nition of idempoten
y is theintended: if � is idempotent, then � is a solution of � and, using the main property,� = � Æ �.4.3 Transformation rules and sele
tion fun
tionThe transformation rules given by Martelli and Montanari ([9℄) appears in Figure 4.This set of rules will suÆ
e to solve every system of equations, as we will prove.Note that the rules a
t on pairs of systems of equations, denoted as S;T . The �rstsystem
ontains the equations to be solved and the se
ond one the solved equations.To solve a system of equations S, we begin with the pair of systems S; ; andapply the transformation rules until unsolvability (i.e., F) is dete
ted or a pair ofsystems in the form ;;T appears. To apply a rule, an equation is sele
ted in thesystem of non-solved equations, and the form of this equation determines the ruleto apply. This kind of non-determinism
an be formalized in the Boyer-Moore logi
using a
onstrained de�nition of a sele
tion fun
tion. The only property that wewill assume is that the sele
tion fun
tion
hooses an element of non-empty systems.The following CONSTRAIN
ommand de�nes the sele
tion fun
tion sel. The witnessfun
tion we use in this
ase is
ar.(
onstrain sele
tion-fun
tion (rewrite)(implies (listp l) (member (sel l) l))((sel
ar)))The fun
tion TRANSFORM in Figure 5 implements the rules of transformation.It applies, in a non-deterministi
 way, one of the rules, to perform one step oftransformation.

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem proverDelete: ft =? tg [R;T) R;TChe
k: fx =? tg [R;T) Fif x 2 V(t), x 6= tEliminate: fx =? tg [R;T) fx 7! tgR; fx =? tg [fx 7! tgTif x 2 X y x =2 V(t)De
ompose: ff(s1; : : : ; sn) =? f(t1; : : : ; tn)g [R;T) fs1 =? t1; : : : ; sn =? tng [R;TCon
i
t: ff(s1; : : : ; sn) =? g(t1; : : : ; tn)g [R;T) Fif f 6= gNot-pair: ff(s1; : : : ; sn) =? f(t1; : : : ; tm)g [R;T) Fif n 6= mOrient: ft =? xg [R;T) fx =? tg [R;Tif x 2 X, t =2 XFigure 4: Transformation rules5 The uni�
ation algorithm5.1 Applying transformations non-deterministi
allyWe de�ne a fun
tion solve to apply transformations to pairs of systems of equationsuntil a normal form is rea
hed. A pair of systems is in normal form if it is F or ifthe �rst system is empty:(defn normal-form-syst (S-sol)(or (nlistp (first S-sol)) (not S-sol)))The de�nition of solve is very simple but its admission is not trivial. To proveits termination, we have to de�ne a measure fun
tion, unifi
ation-measure, onpair of systems:(defn unifi
ation-measure (S-sol)(
ons (
ons (add1 (n-system-var (first S-sol)))(size-system (first S-sol)))(n-variables-right-hand-side (first S-sol))))The fun
tion unifi
ation-measure is a lexi
ographi

ombination of:1. The number of distin
t variables in the �rst system, n-system-var.2. The number of fun
tion symbols in the �rst system, size-system.3. The number of equations in the �rst system with a variable in its right-handside, n-variables-right-hand-side.Lemmas have been proved for ea
h of the rules of transformation and ea
h ofthese three quantities, some to prove that the quantity remains the same, some toprove that it de
reases, in ea
h step of transformation. With these lemmas, and ahint about the measure, the following de�nition is admitted:

APPIA-GULP-PRODE'99(defn transform (S-sol)(let ((S (first S-sol)) (sol (se
ond S-sol)))(let ((equ (sel S)))(let ((t1 (
ar equ)) (t2 (
dr equ)) (R (delete equ S)))(
ond((equal t1 t2) (pair R sol)) ;;; *DELETE*((variablep t1)(if (member t1 (variables t t2))F ;;; *CHECK*(pair ;;; *ELIMINATE*(apply-system (list equ) R)(
ons equ (apply-range (list equ) sol)))))((variablep t2)(pair (
ons (
ons t2 t1) R) sol)) ;;; *ORIENT*((not (equal (
ar t1) (
ar t2))) F) ;;; *CONFLICT*(t (let ((pairing (pair-args (
dr t1) (
dr t2))))(if pairing(pair (append pairing R) sol) ;;; *DESCOMPOSE*F)))))))) ;;; *NOT-PAIR*Figure 5: Transformation rules(defn solve (S-sol)(if (normal-form-syst S-sol) S-sol (solve (transform S-sol)))((ord-lessp (unifi
ation-measure S-sol))))Note that this fun
tion is not
ompletely spe
i�ed be
ause the sele
tion fun
tionused in transform is only partially de�ned. For every parti
ular sele
tion fun
tionthere exists an \instan
e" of solve, that takes a pair of systems and applies therules of transformation, with that spe
i�
 sele
tion
riterion, until a normal form isrea
hed. Conversely, for every sequen
e of transformations starting from a pair ofsystems and ending in a normal form, there exists a parti
ular sele
tion fun
tion forwhi
h the
orresponding \instan
e" of solve returns this normal form when appliedto the initial pair of systems, performing the given sequen
e of transformations. Inthis sense, we are formalizing non-determinism, and at the same time verifying theformal properties of a number of uni�
ation algorithms, that apply the rules withsome spe
i�
 sele
tion
riterion that
an be seen as a
ontrol strategy.5.2 Invariants of the transformationsThe two key properties of the given rules of transformation
an be stated in termsof invariants. There are two invariants in any sequen
e of transformations:� The set of solutions of both systems of the pair.� The idempoten
y of the se
ond system (if unsolvability is not dete
ted).The following lemmas state that the transformations preserve the set of solu-tions (here, (union-systems S-sol) is the union of the systems that form the pairS-sol):

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem prover(prove-lemma transform-equivalent (rewrite)(implies (and (pairp S-sol) (listp (first S-sol))(transform S-sol))(iff (solution sigma (union-systems (transform S-sol)))(solution sigma (union-systems S-sol)))))(prove-lemma transform-unsolvable (rewrite)(implies (and (pairp S-sol) (listp (first S-sol))(not (transform S-sol)))(not (solution sigma (union-systems S-sol)))))Idempoten
y of the se
ond system is preserved if we also have an additionalinvariant: the variables of the domain of the se
ond system does not appear in the�rst system (i.e., the variables are solved). The following lemma states this:(prove-lemma transform-preserves-idempoten
y (rewrite)(let ((transformed (transform (pair S sol))))(let ((St (first transformed)) (solt (se
ond transformed)))(implies (and (listp S)transformed(idempotent sol)(disjoint (system-vars S) (domain sol)))(and (idempotent solt)(disjoint (system-vars St) (domain solt)))))))To prove the lemmas stated in this subse
tion, we have to prove previously anal-ogous lemmas for ea
h of the transformation rules that transform may apply.5.3 A uni�
ation algorithmThe fun
tion solve is used to de�ne an algorithm that �nds a most general solutionof a system of equations, whenever it exists. We de�ne mgs, a fun
tion a
ting onsystems of equations in the following way:(defn mgs (S)(let ((solved (solve (pair S nil))))(if solved (se
ond solved) F)))This fun
tion applies the rules of transformation starting with S; ;, until a normalform is rea
hed. If unsolvability is dete
ted, it returns F, otherwise returns the se
ondsystem of the pair. The previous properties are used to verify that mgs implementsa
orre
t uni�
ation algorithm. The fundamental properties of the fun
tion mgs,appear in Figure 6. These properties are a formalization of the following theorem,and are the desired properties of a
orre
t uni�
ation algorithm:Theorem: The fun
tion mgs has the following properties:1. If S is a solvable system of equations, then mgs returns a non-F value (i.e., thealgorithm su

eeds). This is stated in the lemma
ompleteness-mgs.2. If mgs su

eeds when applied to a system S, then:

APPIA-GULP-PRODE'99(prove-lemma
ompleteness-mgs ()(implies (solution sigma S) (mgs S)))(prove-lemma soundness-mgs ()(implies (mgs S) (solution (mgs S) S)))(prove-lemma most-general-solution-mgs ()(implies (solution sigma S) (subs-subst (mgs S) sigma)))(prove-lemma idempotent-mgs ()(idempotent (mgs S)))Figure 6: Properties of the mgs algorithm(a) It returns a solution of S. This is the lemma soundness-mgs.(b) It returns a substitution that subsumes every solution of S. This thelemma
alled most-general-solution-mgs.(
) It returns an idempotent substitution. The lemma idempotent-mgs statethis property.Note that be
ause of the de�nition of solve and the use of a sele
tion fun
tion,we have also proved that any sequen
e of transformations starting with S; ; ends in;;T , with T a most general solution, if S is solvable, or in F if S is unsolvable. Thisproperty is
alled non-deterministi

ompleteness.An interesting remark
an be made here. Our de�ned algorithm
an be seenas a pattern of di�erent uni�
ation algorithms. For every parti
ular strategy inapplying transformation rules, we have a
on
rete uni�
ation algorithm. This par-ti
ular strategy
orresponds to an instantiation of the partially de�ned sele
tionfun
tion sel. The
orre
tness of all those
on
rete uni�
ation algorithms are a triv-ial
onsequen
e of the above theorem, and are easily proved by the system using the
ommand FUNCTIONALLY-INSTANTIATE.6 Con
lusionsWe have presented here a su

essful appli
ation of the Boyer-Moore theorem proverto the proof of
orre
tness of a uni�
ation algorithm. This algorithm is des
ribedin terms of transformation rules a
ting non-deterministi
ally on system of equa-tions. To perform the me
hani
al proofs, we have formalized a theory of terms andsubstitutions in the Boyer-Moore logi
.The use of rules as a formalism to represent algorithms, uni�
ation algorithms inthis
ase, turns out to be well-suited for me
hani
al veri�
ation. The use of sele
tionfun
tions, partially de�ned, formalizes the non-deterministi
 behaviour of this kindof algorithms, getting a
learer separation of logi
 and
ontrol.This is a �rst step to provide a number of basi
 results needed to apply formalmethods to the design of reasoning systems. This me
hani
al proof is part of theme
hani
al proof of latti
e-theoreti
 properties of �rst-order terms ([12℄). As wementioned earlier, terms and their properties are used in most of �elds in Arti�
ialIntelligen
e and De
larative Programming.

Me
hani
al veri�
ation of a rule-based uni�
ation algorithm in the Boyer-Moore theorem proverReferen
es[1℄ Boyer, R., and Moore, J. A Computational Logi
 Handbook, 2nd ed.A
ademi
 Press, 1998.[2℄ Gallier, J., and Snyder, W. Designing uni�
ation pro
edures using trans-formations: A survey. Bulletin of the EATCS, 40 (1990), 273{326.[3℄ Herbrand, J. Re
her
hes sur la Th�eorie de la D�emonstration. PhD thesis,Sorbonne, Paris, 1930.[4℄ Jouannaud, J.-P., and Kir
hner, C. Solving equations in abstra
t alge-bras: A rule based survey of uni�
ation. In Computational Logi
: Essays inhonour of Alan Robison (1992), J.-L. Lassez and G. Plotkin, Eds., MIT Press.[5℄ Kaufmann, M. Generalization in the presen
e of free variables: A me
han-i
ally
he
ked proof for one algorithm. Journal of Automated Reasoning 7, 1(1991), 109{158.[6℄ Kaufmann, M., and Moore, J. An industrial strength theorem prover fora logi
 based on Common Lisp. IEEE Transa
tions on Software Engineering23, 4 (1997), 203{213.[7℄ Lassez, J.-L., Maher, M., and Marriott, K. Uni�
ation revisited. InFoundations of Dedu
tive Databases and Logi
 Programming. Morgan Kauf-mann, 1988, pp. 587{625.[8℄ Lu
as, P., and Van der Gaag, L. Prin
iples of Expert Systems. AddisonWesley, 1991.[9℄ Martelli, A., and Montanari, U. An eÆ
ient uni�
ation algorithm. ACMTransa
tions on Programming Languages and Systems 4, 2 (1982), 258{282.[10℄ Paulson, L. Verifying the uni�
ation algorithm in LCF. S
ien
e of ComputerProgramming, 5 (1985).[11℄ Rouyer, J. D�eveloppement de l'algorithme d'uni�
ation dans le
al
ul des
onstru
tions ave
 types indu
tifs. Te
h. Rep. 1795, INRIA Lorraine, 1992.[12℄ Ruiz-Reina, J., Alonso, J., Hidalgo, M., and Mart��n, F. Formalizingproperties of �rst-order terms in the Boyer-Moore logi
. Te
h. rep., CCIA,University of Sevilla, 1999. http://www-
s.us.es/~jruiz/terms/.

