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APPIA-GULP-PRODE'99� This is a non-trivial example of how a theorem prover an be used to verifyan algorithm de�ned in a language similar to pure Lisp. It is shown howautomated dedution an be used to examine and understand its propertieswith muh greater detail, rigor, and larity. In the following, when we talkabout \prove", we mean \mehanially prove".� Uni�ation an be seen as a proess that applies transformations to a set ofequations until a solution (or the lak of solutions) is deteted. This rule-based spei�ation turns out to be suitable for mehanial veri�ation. Thesetransformations an be applied non-deterministially (i.e., every strategy forapplying transformations leads to a most general solution, whenever it exists).We show how this non-determinism an be formalized and veri�ed.There is some related work done in mehanial veri�ation of properties of uni-�ation algorithms. Paulson ([10℄) desribes the veri�ation of a uni�ation algo-rithm using the theorem prover LCF. Rouyer ([11℄) does the same using Coq. Usingthe Boyer-Moore theorem prover, we get a higher degree of automation. Using arule-based approah, we get more abstratness, verifying a family of algorithms, in-stead of a partiular algorithm. For some related work in the Boyer-Moore theoremprover, see [5℄, where Kaufmann presents a proof of a generalization algorithm usedin PC-Nqthm.Due to the lak of spae, we do not present details of the proofs here. The om-plete events �les are available on the web in http://www-s.us.es/~jruiz/terms/.1.1 First order terms and substitutionsGiven a set � of funtion symbols (alled signature) and a denumerable set X ofvariable symbols, the set of (�rst-order) terms T (�; X) is the smallest set ontainingX suh that f(t1; : : : ; tn) 2 T (�; X) whenever eah ti 2 T (�; X) (when n = 0, wesay that the term is a onstant). Note that this de�nition allows funtion symbolswith variable arity. The set of variables of a term t is denoted as V(t). A funtion� : X ! T (�; X) is a substitution if only �nitely many variables x1; : : : ; xn are notmapped to themselves. This is denoted as fx1 7! t1; : : : ; xn 7! tng, where �(xi) = ti.A substitution � an be extended to a funtion from terms to terms in suh a waythat �(f(t1; : : : ; tn)) = f(�(t1); : : : ; �(tn)). A term t mathes a term s if �(s) = t forsome substitution �. In that ase, we write s � t, we say that t is an instane of sor that s subsumes t and we say that � is a mathing substitution for s and t. Also,a subsumption relation on substitutions an be de�ned by: � � Æ if there exists asubstitution  suh that Æ =  Æ �, where Æ stands for funtional omposition.We say that a substitution � uni�es (or is a uni�er of) two terms s and t if�(s) = �(t). In that ase we say that s and t are uni�able. Not every pair of termsis uni�able. We say that a uni�er � of s and t is a most general uni�er (mgu) if forevery uni�er Æ of s and t, � � Æ. A uni�ation algorithm is an algorithm that �nds,whenever it exists, a mgu of two given terms. See [7℄ for a survey on uni�ation.1.2 The Boyer-Moore logi and theorem proverWe will briey desribe here the Boyer-Moore theorem prover (also known as Nqthm,preursor of ACL2) and its logi. For a omplete desription, see [1℄. For a desrip-



Mehanial veri�ation of a rule-based uni�ation algorithm in the Boyer-Moore theorem provertion of ACL2, see [6℄.The Boyer-Moore logi is a quanti�er-free �rst-order logi with equality. Thelanguage used is very similar to pure Lisp. There are two logial onstants, abbre-viated as T and F. The propositional onnetives have funtional analogues: AND,IMPLIES, OR, IFF et. These onnetives are all de�ned in terms of the primitive3-plae onnetive IF. The funtional analogue of the equality prediate is EQUAL.The theory inludes axioms and rules of inferene for propositional logi, equality,and instantiation.The shell priniple allows the extension of the logi by addition of axioms de�n-ing a new data type. The initial theory inludes axioms for natural numbers, or-dered pairs, literal atoms, and negative integers. Natural numbers are de�ned by aonstrutor funtion ADD1, a destrutor funtion SUB1 and a base objet, (ZERO).Numbers are abbreviated by the numerals, 0, 1, 2, et. Ordered pairs are de�nedby a shell reognizer (LISTP), two destrutor funtions, (CAR and CDR), and oneonstrutor funtion (CONS). The funtion NLISTP is the negation of LISTP. Thefuntions CAR and CDR, when applied to a non-ordered pair, return 0. As in Lisp,ordered pairs are used to onstrut �nite sequenes or lists. The literal atom NIL isonventionally used to represent the empty list (but NIL is not a LISTP objet). Wewill all an objet a proper list if it is NIL, or it is a LISTP and its CDR is proper (inother words, a proper list is NIL or a LISTP objet with �nal tail NIL).By the priniple of de�nition, new funtion de�nitions are admitted in the theoryonly if there exists and ordinal measure in whih the arguments of eah reursiveall derease. This ensures that no inonsistenies are introdued by new de�nitions.The theory has a onstrutive de�nition of the ordinals up to "0, in terms of listsand natural numbers. One important rule of inferene is the priniple of indution,that permits proofs by indution on "0.The onstraint priniple allows one to de�ne funtions partially by introduingsome properties without omplete de�nitions. To preserve onsisteny, a witnessfuntion must be given, having the same properties.The Boyer-Moore theorem prover is a mehanization of their logi, inludingommands for adding new data types (shells), de�ning new funtions, and provingtheorems. The ommand DEFN allows one to de�ne new funtions, whenever theyan be admitted by the priniple of de�nition, and an inlude hints about theordinal measure to be used. The shell priniple is implemented by the ommandADD-SHELL. The ommand (PROVE-LEMMA name rule-lasses statement hints)starts the attempt of a proof. Usually, rule-lasses is an empty list or (REWRITE),in whih ase the lemma is stored as a rewrite rule if the proof attempt sueeds. IfELIM is one of the rule lasses, the system stores the rule as an elimination rule. Thismeans that the rule will be used to replae destrutor terms in favour of equivalentonstrutor terms. The CONSTRAIN ommand mehanizes the onstraint priniple.The main proof tehniques used by the prover are simpli�ation and indution.Simpli�ation is a ombination of deision proedures, mainly term rewriting, usingthe rewrite rules previously proved by the user. For a suessful appliation of itspriniple of indution, the system has a number of heuristis to �nd indutive argu-ments suitable for a onjeture. Eah reursive funtion in the onjeture \suggests"an indution sheme.The theorem prover is automati in one sense: one PROVE-LEMMA is invoked, theuser an no longer interat with the system. However, the user an interat with the



APPIA-GULP-PRODE'99prover by previously proving lemmas and de�nitions, used in the proofs as rewriterules. Additionally, the user an give \hints" to the prover when PROVE-LEMMAis invoked. The USE hint fores the use of spei� instanes of previously provedlemmas. We mainly use the USE hint (instead of the rewriting mehanism) if freevariables appear in the lemma to be used (see [1℄ for details). For readability, wewill not print the hints of a PROVE-LEMMA, but we will omment it if needed.2 Formalizing �rst-order terms and substitutionsIn this setion, we explain how we de�ne terms and substitutions as objets in ourlogi, to reason about them.We will not use any spei� prediate for de�ning terms. Every objet in thelogi represents a �rst order term, with the following onventions. Every non-LISTPobjet will be onsidered as a variable symbol:(defn variablep (x) (nlistp x))Every LISTP objet an be seen as the term with its CAR as the top funtionsymbol and its CDR as the list of its arguments. In this way, every �rst order termfor a given signature an be represented. For example, the term k(x; a; g(y); h(x))is represented as '(k x (a) (g y) (h x)).Using this wider representation, some objets represent non-proper terms, beausethe list of its arguments an be non-proper. For example, the term '(k x (a) (g y)(h x) . 3) has the same struture than the above term, but it is a di�erent term.Sine our lemmas don't use a prediate for de�ning terms, our results are also validfor these non-proper terms (this means that we are formalizing a theory that stritlyontains �rst-order terms). Note that terms and lists of terms are de�ned by mutualreursion. Most of our results are proved also for lists of terms, with some minormodi�ations.We represent substitutions as lists of ordered pairs and we will not use any spe-i� funtion to de�ne them: every objet an be seen as the representation of asubstitution. We use the following onvention: if several pairs with the same �rstelement appear in a substitution, only the �rst one is onsidered. The funtion(VALUE x sigma) returns the value assigned by the substitution sigma to x. Unliketerms, the same substitution an be represented by di�erent assoiation lists. Thus,we annot use the prediate EQUAL when we talk about equality of substitutions.Instead, we will use some kind of funtional equality in �nite domains.We de�ne the appliation of a substitution to a term (or list of terms) by mu-tual reursion, using a standard trik in the Boyer-Moore logi. If flg is not F,(APPLY flg sigma term) is the term obtained by applying the substitution sigmato the term term. (APPLY F sigma term) is the list of terms obtained by applyingsigma to the list term of terms:(defn apply (flg sigma term)(if flg(if (variablep term) (value term sigma)(ons (ar term) (apply F sigma (dr term))))(if (nlistp term) term(ons (apply T sigma (ar term))(apply F sigma (dr term))))))



Mehanial veri�ation of a rule-based uni�ation algorithm in the Boyer-Moore theorem proverThis style for de�ning funtions on terms is typial in our formalization. Funtionsare de�ned for terms and for lists of terms, and properties are stated for terms andfor lists of terms. This is speially well-suited for the heuristis of the system usedto �nd an indution sheme: de�nitions by mutual reursion suggest an indutionsheme analogue to indution on the term struture used in most of hand proofs inthe literature. Let's see an example.An elementary property says that if �(t) = Æ(t), then �(x) = Æ(x) for everyx 2 V(t). If we previously de�ne (EQUAL-IN-LIST sigma delta l) as the funtionthat tests if the substitutions sigma and delta take the same values on the variablesof the list l, and (VARIABLES flg term) as the funtion that returns the list ofvariables of the term (or list of terms) term, then the property an be stated asfollows (valid for terms and for list of terms):(prove-lemma equal-in-term-implies-equal-in-variables (rewrite)(implies (equal (apply flg sigma term)(apply flg delta term))(equal-in-list sigma delta (variables flg term))))This ommand leads the prover to a proof attempt with the indution shemein Figure 1, whih is, in essene, an indution on the struture of term (here,(p SIGMA DELTA FLG TERM) is an abbreviation of the lemma to be proved).(AND (IMPLIES (AND FLG (VARIABLEP TERM)) ; *1*(p SIGMA DELTA FLG TERM))(IMPLIES (AND FLG (NOT (VARIABLEP TERM)) ; *2*(p SIGMA DELTA F (CDR TERM)))(p SIGMA DELTA FLG TERM))(IMPLIES (AND (NOT FLG) (NLISTP TERM)) ; *3*(p SIGMA DELTA FLG TERM))(IMPLIES (AND (NOT FLG) (NOT (NLISTP TERM)) ; *4*(p SIGMA DELTA T (CAR TERM))(p SIGMA DELTA F (CDR TERM)))(p SIGMA DELTA FLG TERM))).Figure 1: An example of strutural indutionCases *1* and *3* are respetively the base ases for terms (variable) and listsof terms (empty list of terms). The indutive ase *2* orresponds to non-variableterms and the indution hypothesis assumes the lemma true for the list of its ar-guments. The indutive ase *4* orresponds to a non-empty list of terms. Theindution hypothesis assumes the lemma true for the �rst term and for the list ofthe rest of the terms. The lemma is easily proved by the prover using this indutionsheme, without help from the user.Several funtions on terms and substitutions are de�ned. Here is a brief desrip-tion of some of them:� (SIZE flg term), the number of funtion symbols in a term or list of terms.� (DOMAIN sigma), the list of CAR's of eah element of sigma.� (CO-DOMAIN sigma), the list of CDR's of eah element of sigma.



APPIA-GULP-PRODE'99� (EXTENSION sigma1 sigma2), a prediate for testing if sigma1 assoiates thesame terms as sigma2 for the variables of the domain of sigma2.� (RESTRICTION sigma l), the funtional restrition of sigma to the variablesin l.3 Subsumption between terms and substitutions3.1 A subsumption algorithmThe de�nition of subsumption between terms previously given is not onstrutive.Due to the restritions of our logi, we need to de�ne the subsumption relationbetween terms in a onstrutive way. That is, we will de�ne a subsumption al-gorithm, that given two terms, �nds, if it exists, a substitution that, when ap-plied to the �rst term, gives the seond. This funtion, given in Figure 2, is(SUBSUMPTION flg t1 t2 sigma) and reeives as arguments one ag flg, twoterms (or list of terms, depending on the value of flg) t1 and t2, and a substi-tution sigma. We have to prove that it returns a substitution that extends sigmaand that applied to t1 gives t2, if it exists. If not, it returns F.(defn subsumption (flg t1 t2 sigma)(if flg(if (variablep t1)(if (member t1 (domain sigma))(if (equal (value t1 sigma) t2) sigma F)(ons (ons t1 t2) sigma))(if (variablep t2) F(if (equal (ar t1) (ar t2))(subsumption F (dr t1) (dr t2) sigma) F)))(if (nlistp t1)(if (equal t1 t2) sigma F)(if (nlistp t2) F(let ((subs-first (subsumption T (ar t1) (ar t2) sigma)))(if subs-first(subsumption F (dr t1) (dr t2) subs-first)F))))))Figure 2: A subsumption algorithmWe de�ne subsumption between terms or lists of terms as the result of this sub-sumption algorithm starting with an empty set of bindings as the initial substitution.We all this funtion subs*:(defn subs* (flg t1 t2) (subsumption flg t1 t2 nil))We prove the two following lemmas stating that the algorithm subs* has theintended behaviour:(prove-lemma subs*-soundness ()(implies (subs* flg t1 t2)(equal (apply flg (subs* flg t1 t2) t1) t2)))



Mehanial veri�ation of a rule-based uni�ation algorithm in the Boyer-Moore theorem prover(prove-lemma subs*-ompleteness ()(implies (equal (apply flg sigma t1) t2)(subs* flg t1 t2)))3.2 The subsumption relation between termsThe two previous lemmas haraterize exatly what we intended when we de�nedthe subsumption relation. Thus, we an de�ne the subsumption relation as a fun-tion, alled subs, with these two key properties, using the CONSTRAIN ommand(Figure 3). To preserve onsisteny, we have to exhibit a witness funtion, subs* inour ase, having the same properties.The use of CONSTRAIN assures that we will not use any other partiular propertyof our subsumption algorithm: for example, although the substitution returned byour algorithm only binds variables in t1, we annot use this. That means that ourproofs will be valid also if we use another subsumption algorithm with the same twofundamental properties.(onstrain subsumption-definition ()(and (implies (subs flg t1 t2)(equal (apply flg (subs flg t1 t2) t1) t2))(implies (equal (apply flg sigma t1) t2)(subs flg t1 t2)))((subs subs*))((use (subs*-soundness) (subs*-ompleteness))))(prove-lemma subsumption-soundness (rewrite elim)(implies (subs flg t1 t2)(equal (apply flg (subs flg t1 t2) t1) t2)))(prove-lemma subsumption-ompleteness ()(implies (equal (apply flg sigma t1) t2)(subs flg t1 t2)))Figure 3: Subsumption: de�nition and rules.In Figure 3 we also give two lemmas for subs, one for eah fundamental prop-erty. Note that subsumption-soundness is stored both as rewrite rule and elimi-nation rule. The use of the elimination rule is espeially fruitful here: in a proofattempt, if (subs flg t1 t2) is among the assumptions, then the prover will sub-stitute t2 by (apply flg x t1), for some substitution x. The use of the lemmasubsumption-ompleteness is not so automati, beause of the free variable sigma.The standard way to prove a property of the form (subs flg t1 t2) is to �nda witness mathing substitution and use ompleteness making it expliit with anUSE hint. For example, transitivity of subsumption an be easily proved usingsubsumption-ompleteness as follows:(prove-lemma subsumption-transitive ()(implies (and (subs flg t1 t2) (subs flg t2 t3))(subs flg t1 t3))((use (subsumption-ompleteness



APPIA-GULP-PRODE'99(sigma (omposition (subs flg t2 t3) (subs flg t1 t2)))(t2 t3)))))Thus, we �rst state and prove properties at the level of instanes and then wereformulate the lemmas using the subsumption relation.3.3 Subsumption between substitutionsIt is evident from the given de�nition of most general uni�er that if we want toexpress the formal properties of our uni�ation algorithm, we have to de�ne thenotion of subsumption between substitutions. The de�nition ommonly given in theliterature is � � Æ () 9( Æ � = Æ). This de�nition is not suitable for our logi,due to two reasons. First, we have to �nd a \witness" substitution to eliminatethe existential quanti�ation. Seond, we annot state funtional equality betweensubstitutions beause this needs the use of universal quanti�ation.Instead, we will use an equivalent2 de�nition:� � Æ () 8t(�(t) � Æ(t))We an remove the universal quanti�er by paying attention only to the variables ofthe domains of � and Æ and the variables of the range of � (returned by the fun-tion IMPORTANT-VARIABLES). Thus, the following is our de�nition of subsumptionbetween substitutions:(defn subs-subst (sigma delta)(let ((V (important-variables sigma delta)))(subs F (apply F sigma V) (apply F delta V))))We prove that this de�nition of subsumption between substitutions is equivalentto the intended de�nition. The following lemma state its main property3:(prove-lemma subs-subst-main-property (rewrite)(implies (subs-subst sigma delta)(subs flg (apply flg sigma term) (apply flg delta term))))This lemma is proved using the same mathing substitution for all terms. In otherwords, if (subs-subst sigma delta) we �nd in a onstrutive way, a substitutionsuh that omposed with sigma is funtionally equal to delta. This mathingsubstitution is:(defn subs-sust-restrition (sigma delta)(restrition (subs-subst sigma delta)(important-variables sigma delta)))It is worth pointing that we annot assure that subs-subst is the witness math-ing substitution, although with our subsumption algorithm, subs-subst andsubs-sust-restrition are the same (when they sueed). But this is a parti-ular property of our subsumption algorithm and annot be proved using only thetwo harateristi properties (soundness and ompleteness), a limitation we imposedourselves to build a more general theory.2If at least we have a binary funtion symbol, whih is our ase.3Note that we don't need to prove the reverse impliation beause this is a trivial onsequeneof our de�nition.



Mehanial veri�ation of a rule-based uni�ation algorithm in the Boyer-Moore theorem prover4 Transforming system of equationsUni�ation an be seen as an algorithm to solve term equations or, more generally,systems of equations. We will de�ne an algorithm for solving systems of equationsusing the transformation method, whih transforms systems of equations until thesolution is obvious. This was already antiipated in Herbrand's thesis ([3℄) and wasused for the �rst time in the ontext of uni�ation by Martelli and Montanari ([9℄).In this moment, it is a standard formalism for disussing uni�ation algorithms ([4℄,[2℄).4.1 Systems of equationsAn equation is a pair of terms, denoted as t1 =? t2. A substitution � is a solutionof t1 =? t2 if �(t1) = �(t2), and it is a solution of a system of equations S if it is asolution of every member of S. The system obtained by applying the substitution �to the system S is denoted as �S. A system with no solution is alled unsolvable, andsolvable otherwise. A solution of S is a most general solution (mgs) if it subsumesevery other solution of S. Note that a substitution � is a mgu of t1 and t2 if, andonly if, it is a mgs of the system ft1 =? t2g, so if we have an algorithm for �ndingan mgs of a system of equations, in partiular we have a uni�ation algorithm. Ouruni�ation algorithm, alled mgs and de�ned later, �nds, whenever it exists, a mostgeneral solution of a given system of equations, following Martelli and Montanari's.In our formalization, we will represent equations as ordered pairs of terms andsystems of equations as lists of equations. We also onsider an speial system, F,representing unsolvability. Note that every substitution an be seen as a system.As usual, we will not use any spei� prediates for de�ning equations or systemsof equations.In our de�nition, the transformation rules are de�ned on pairs of systems. Forthe sake of readability, we will de�ne a new data type, PAIRP, to onstrut pairs ofsystems:(add-shell pair nil pairp ((first (none-of) zero)(seond (none-of) zero)))We now briey desribe some useful funtions over systems of equations:� (SOLUTION sigma S), tests if sigma is a solution of the system S.� (SYSTEM-VARS S), the list of variables of the terms in the equations of S.� (RANGE-VARS S), the list of variables of the terms in the right-hand side ofequations of S.� (APPLY-SYSTEM sigma S), the system obtained by applying the substitutionsigma to every term in the equations of S.� (APPLY-RANGE sigma S), the system obtained by applying the substitutionsigma to every term in the right-hand side of equations of S.� (PAIR-ARGS l m), the system obtained pairing the respetive elements of thelists of terms l and m if they have the same length and �nal tail, F otherwise.



APPIA-GULP-PRODE'994.2 Idempotent substitutions and solved systemsWe say that a substitution � is idempotent if � = � Æ �. Again, this de�ni-tion is not suitable for the Boyer-Moore logi. Instead, we de�ne the funtion(IDEMPOTENT S), that tests if S is a system whose domain is a set of variables,disjoint from (range-vars S). Note that we are exploiting here that a system ofequations an be seen as a substitution. Idempotent substitutions are also alledsystems in solved form, depending on the ontext.The following is the main lemma for expressing the relationship between sub-sumption and solution of systems, and exploits that substitutions an be seen assystems:(prove-lemma main-property-mgs (rewrite)(implies (solution sigma delta)(equal (apply flg sigma (apply flg delta term))(apply flg sigma term))))In other words, if � is a solution of Æ, then � = � Æ Æ, and, onsequently, Æ � �.This means that if Æ is a solution of itself, it is the least suh solution with respetto the subsumption ordering. Idempotent substitutions (or systems in solved forms)are solutions, (and therefore most general solutions) of themselves.(prove-lemma idempotent (rewrite)(implies (idempotent S) (solution S S)))Note that the above two lemmas on�rm that our de�nition of idempoteny is theintended: if � is idempotent, then � is a solution of � and, using the main property,� = � Æ �.4.3 Transformation rules and seletion funtionThe transformation rules given by Martelli and Montanari ([9℄) appears in Figure 4.This set of rules will suÆe to solve every system of equations, as we will prove.Note that the rules at on pairs of systems of equations, denoted as S;T . The �rstsystem ontains the equations to be solved and the seond one the solved equations.To solve a system of equations S, we begin with the pair of systems S; ; andapply the transformation rules until unsolvability (i.e., F) is deteted or a pair ofsystems in the form ;;T appears. To apply a rule, an equation is seleted in thesystem of non-solved equations, and the form of this equation determines the ruleto apply. This kind of non-determinism an be formalized in the Boyer-Moore logiusing a onstrained de�nition of a seletion funtion. The only property that wewill assume is that the seletion funtion hooses an element of non-empty systems.The following CONSTRAIN ommand de�nes the seletion funtion sel. The witnessfuntion we use in this ase is ar.(onstrain seletion-funtion (rewrite)(implies (listp l) (member (sel l) l))((sel ar)))The funtion TRANSFORM in Figure 5 implements the rules of transformation.It applies, in a non-deterministi way, one of the rules, to perform one step oftransformation.



Mehanial veri�ation of a rule-based uni�ation algorithm in the Boyer-Moore theorem proverDelete: ft =? tg [ R;T ) R;TChek: fx =? tg [ R;T ) Fif x 2 V(t), x 6= tEliminate: fx =? tg [ R;T ) fx 7! tgR; fx =? tg [ fx 7! tgTif x 2 X y x =2 V(t)Deompose: ff(s1; : : : ; sn) =? f(t1; : : : ; tn)g [ R;T ) fs1 =? t1; : : : ; sn =? tng [ R;TConit: ff(s1; : : : ; sn) =? g(t1; : : : ; tn)g [ R;T ) Fif f 6= gNot-pair: ff(s1; : : : ; sn) =? f(t1; : : : ; tm)g [R;T ) Fif n 6= mOrient: ft =? xg [ R;T ) fx =? tg [ R;Tif x 2 X, t =2 XFigure 4: Transformation rules5 The uni�ation algorithm5.1 Applying transformations non-deterministiallyWe de�ne a funtion solve to apply transformations to pairs of systems of equationsuntil a normal form is reahed. A pair of systems is in normal form if it is F or ifthe �rst system is empty:(defn normal-form-syst (S-sol)(or (nlistp (first S-sol)) (not S-sol)))The de�nition of solve is very simple but its admission is not trivial. To proveits termination, we have to de�ne a measure funtion, unifiation-measure, onpair of systems:(defn unifiation-measure (S-sol)(ons (ons (add1 (n-system-var (first S-sol)))(size-system (first S-sol)))(n-variables-right-hand-side (first S-sol))))The funtion unifiation-measure is a lexiographi ombination of:1. The number of distint variables in the �rst system, n-system-var.2. The number of funtion symbols in the �rst system, size-system.3. The number of equations in the �rst system with a variable in its right-handside, n-variables-right-hand-side.Lemmas have been proved for eah of the rules of transformation and eah ofthese three quantities, some to prove that the quantity remains the same, some toprove that it dereases, in eah step of transformation. With these lemmas, and ahint about the measure, the following de�nition is admitted:



APPIA-GULP-PRODE'99(defn transform (S-sol)(let ((S (first S-sol)) (sol (seond S-sol)))(let ((equ (sel S)))(let ((t1 (ar equ)) (t2 (dr equ)) (R (delete equ S)))(ond((equal t1 t2) (pair R sol)) ;;; *DELETE*((variablep t1)(if (member t1 (variables t t2))F ;;; *CHECK*(pair ;;; *ELIMINATE*(apply-system (list equ) R)(ons equ (apply-range (list equ) sol)))))((variablep t2)(pair (ons (ons t2 t1) R) sol)) ;;; *ORIENT*((not (equal (ar t1) (ar t2))) F) ;;; *CONFLICT*(t (let ((pairing (pair-args (dr t1) (dr t2))))(if pairing(pair (append pairing R) sol) ;;; *DESCOMPOSE*F)))))))) ;;; *NOT-PAIR*Figure 5: Transformation rules(defn solve (S-sol)(if (normal-form-syst S-sol) S-sol (solve (transform S-sol)))((ord-lessp (unifiation-measure S-sol))))Note that this funtion is not ompletely spei�ed beause the seletion funtionused in transform is only partially de�ned. For every partiular seletion funtionthere exists an \instane" of solve, that takes a pair of systems and applies therules of transformation, with that spei� seletion riterion, until a normal form isreahed. Conversely, for every sequene of transformations starting from a pair ofsystems and ending in a normal form, there exists a partiular seletion funtion forwhih the orresponding \instane" of solve returns this normal form when appliedto the initial pair of systems, performing the given sequene of transformations. Inthis sense, we are formalizing non-determinism, and at the same time verifying theformal properties of a number of uni�ation algorithms, that apply the rules withsome spei� seletion riterion that an be seen as a ontrol strategy.5.2 Invariants of the transformationsThe two key properties of the given rules of transformation an be stated in termsof invariants. There are two invariants in any sequene of transformations:� The set of solutions of both systems of the pair.� The idempoteny of the seond system (if unsolvability is not deteted).The following lemmas state that the transformations preserve the set of solu-tions (here, (union-systems S-sol) is the union of the systems that form the pairS-sol):



Mehanial veri�ation of a rule-based uni�ation algorithm in the Boyer-Moore theorem prover(prove-lemma transform-equivalent (rewrite)(implies (and (pairp S-sol) (listp (first S-sol))(transform S-sol))(iff (solution sigma (union-systems (transform S-sol)))(solution sigma (union-systems S-sol)))))(prove-lemma transform-unsolvable (rewrite)(implies (and (pairp S-sol) (listp (first S-sol))(not (transform S-sol)))(not (solution sigma (union-systems S-sol)))))Idempoteny of the seond system is preserved if we also have an additionalinvariant: the variables of the domain of the seond system does not appear in the�rst system (i.e., the variables are solved). The following lemma states this:(prove-lemma transform-preserves-idempoteny (rewrite)(let ((transformed (transform (pair S sol))))(let ((St (first transformed)) (solt (seond transformed)))(implies (and (listp S)transformed(idempotent sol)(disjoint (system-vars S) (domain sol)))(and (idempotent solt)(disjoint (system-vars St) (domain solt)))))))To prove the lemmas stated in this subsetion, we have to prove previously anal-ogous lemmas for eah of the transformation rules that transform may apply.5.3 A uni�ation algorithmThe funtion solve is used to de�ne an algorithm that �nds a most general solutionof a system of equations, whenever it exists. We de�ne mgs, a funtion ating onsystems of equations in the following way:(defn mgs (S)(let ((solved (solve (pair S nil))))(if solved (seond solved) F)))This funtion applies the rules of transformation starting with S; ;, until a normalform is reahed. If unsolvability is deteted, it returns F, otherwise returns the seondsystem of the pair. The previous properties are used to verify that mgs implementsa orret uni�ation algorithm. The fundamental properties of the funtion mgs,appear in Figure 6. These properties are a formalization of the following theorem,and are the desired properties of a orret uni�ation algorithm:Theorem: The funtion mgs has the following properties:1. If S is a solvable system of equations, then mgs returns a non-F value (i.e., thealgorithm sueeds). This is stated in the lemma ompleteness-mgs.2. If mgs sueeds when applied to a system S, then:



APPIA-GULP-PRODE'99(prove-lemma ompleteness-mgs ()(implies (solution sigma S) (mgs S)))(prove-lemma soundness-mgs ()(implies (mgs S) (solution (mgs S) S)))(prove-lemma most-general-solution-mgs ()(implies (solution sigma S) (subs-subst (mgs S) sigma)))(prove-lemma idempotent-mgs ()(idempotent (mgs S)))Figure 6: Properties of the mgs algorithm(a) It returns a solution of S. This is the lemma soundness-mgs.(b) It returns a substitution that subsumes every solution of S. This thelemma alled most-general-solution-mgs.() It returns an idempotent substitution. The lemma idempotent-mgs statethis property.Note that beause of the de�nition of solve and the use of a seletion funtion,we have also proved that any sequene of transformations starting with S; ; ends in;;T , with T a most general solution, if S is solvable, or in F if S is unsolvable. Thisproperty is alled non-deterministi ompleteness.An interesting remark an be made here. Our de�ned algorithm an be seenas a pattern of di�erent uni�ation algorithms. For every partiular strategy inapplying transformation rules, we have a onrete uni�ation algorithm. This par-tiular strategy orresponds to an instantiation of the partially de�ned seletionfuntion sel. The orretness of all those onrete uni�ation algorithms are a triv-ial onsequene of the above theorem, and are easily proved by the system using theommand FUNCTIONALLY-INSTANTIATE.6 ConlusionsWe have presented here a suessful appliation of the Boyer-Moore theorem proverto the proof of orretness of a uni�ation algorithm. This algorithm is desribedin terms of transformation rules ating non-deterministially on system of equa-tions. To perform the mehanial proofs, we have formalized a theory of terms andsubstitutions in the Boyer-Moore logi.The use of rules as a formalism to represent algorithms, uni�ation algorithms inthis ase, turns out to be well-suited for mehanial veri�ation. The use of seletionfuntions, partially de�ned, formalizes the non-deterministi behaviour of this kindof algorithms, getting a learer separation of logi and ontrol.This is a �rst step to provide a number of basi results needed to apply formalmethods to the design of reasoning systems. This mehanial proof is part of themehanial proof of lattie-theoreti properties of �rst-order terms ([12℄). As wementioned earlier, terms and their properties are used in most of �elds in Arti�ialIntelligene and Delarative Programming.
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