
Automati Veri�ation of Polynomial Rings FundamentalProperties in Al2I. Medina-Buloy, J. A. Alonso-Jiménez�, F. Palomo-Lozanoyfinmaulada.medina; franiso.palomog�ua.esyjalonso�ia.es�Department of Computing Sienes and Arti�ial Intelligene�University of SevillaDepartment of Computer Languages and SystemsyUniversity of CádizKeywords: Computer Algebra, multivariate polynomial, Al2, Nqthm, automati reason-ing, appliative programming language AbstratIn this paper we present a formalization of multivariate polynomials over a oe�ient �eld(initially, Q) and of their main properties. This formalization is shown to be adequate forthe automati veri�ation, in an appliative logi like Al2, of fundamental properties whihstruture them as a ring, with its main goal being to provide a reusable book on polynomialsfor the development of further work. As this work omes from a previous formalizationattempt in Nqthm, some of the advantages provided by Al2 regarding this latter systemare analyzed in the onlusions.1 IntrodutionMany of the most important algorithms from Computer Algebra [7, 9, 19℄ work on multivariatepolynomials. Several symboli omputation systems have been built over the last �fty years withthe aim to automate the growing requirements for the resolution of mathematial problems inSiene and Engineering. At the same time, the popularity of these systems has favoured theappearane of new algorithms.Nevertheless, the kernel of eah and every one of these systems develops a solution, usuallydi�erent, to the problem of representing (e�iently) the di�erent mathematial entities and, par-tiularly, multivariate polynomials and their operations.In spite of its relevane, it seems that not enough e�ort has been devoted to omputationalformalization of the polynomial onept, though there are some works in this diretion [2, 14℄,espeially in the ontext of tools whose reasoning is more guided by the user [3, 18℄.This paper tries to over this lak by providing Al2 with a reusable book that failitatesstruturing further work in automati veri�ation of polynomial algorithms. Nevertheless, this isnot the only goal beause it does not only aim at �nding a proper formalization for proving, butalso for omputing (e�iently, as muh as possible).�Faultad de Informátia y Estadístia. Avda. Reina Meredes, s/n. 41012 Sevilla. Spain.yEsuela Superior de Ingeniería de Cádiz. C/ Chile, s/n. 11003 Cádiz. Spain.



2 Code OrganizationOur Al2 ode has been divided into several �les that form three pakages. A make�le is providedwith them to automate the proess of separate erti�ation. Modular deomposition is shown intable 1.Pakage Files DesriptionTER term.lisp Termslexiographial-ordering.lisp Lexiographial ordering on termsMON monomial.lisp MonomialsPOL polynomial.lisp Polynomialsnormal-form.lisp Polynomial normalization and equalityaddition.lisp Polynomial additionnegation.lisp Polynomial negationongruenes-1.lisp Congruenes with polynomial onstru-tion, addition and negationmultipliation.lisp Polynomial multipliationongruenes-2.lisp Congruenes with polynomial multipli-ationTable 1: Logial and physial pakagingThese pakages import symbols that are typial of Al2 (those given by *al2-exports* andothers), but they do not import arithmetial symbols, nor relational ones, as we have found itmore natural to use + to stand for addition, - for negation, * for multipliation, < for the orderingrelation and = for equality. Name resolution mehanism supplied by defpkg and in-pakageassures that these names may be used homogeneously in all pakages without on�it.For the sake of brevity, we refrain from inluding every tehnial detail of the presented proofs.Instead, we refer the interested reader to the orresponding Al2 ode, available eletronially atwww-s.us.es/~imedina/polynomials.html.3 Polynomial RepresentationRepresentation of objets under study is a main onern for the suess of any erti�ation work.This is espeially important when dealing with polynomials, due to the great variety of represen-tations allowed and to the di�erenes between algorithms that operate them.The degree of di�ulty assoiated with the automati proof of a given property depends onthe representation hosen to a great extent. Let us desribe this in more detail by analyzing thetwo main representation shemes explored during the development of this work.3.1 Normalized Representation ProblemsInitially we hose a sparse normalized representation for polynomials [7, 9, 19℄, in whih a uniquerepresentation is assoiated with eah polynomial where neither null oe�ient nor idential termsmonomials appear.With this approah, also present in programming of symboli omputation systems, very e�-ient algorithms may be obtained [10, 19℄ operating on normalized objets to produe normalizedresults. To ahieve this, it is neessary to de�ne a total strit order on the terms building upmonomials, there being various possibilities on the subjet that have been widely ommented onby many authors.The main advantage of this method from the veri�ation point of view stems from the fatthat semanti equivalene beomes syntati equality, represented by Al2's equal.



It is not di�ult to formalize this representation so that it is admitted by the system. However,problems really appear when trying to prove suh elemental properties like assoiativity of addition.Problems rop up too early with this representation1.An exhaustive analysis of failed proofs shows how the most important drawbak to this rep-resentation is to ompliate exessively operation de�nitions2 ausing a deep impat on proofomplexity.Unfortunately, all this points to the existene of a trade-o� between algorithmi e�ieny andveri�ation simpliity. This leads us (at the moment) to use another representation, less e�ientfrom the algorithmi point of view, but whih makes it easier to verify the properties.Later, a ertain kind of �ompositional reasoning� ould be used, and we ould prove theequivalene of the algorithms used with more e�ient versions. In short, the problem is reduedto �nding an e�ient funtion for eah ine�ient funtion of our representation and to prove thatthey are equivalent. However, we do not treat this improvement in this work.3.2 Unnormalized RepresentationUsing an unnormalized representation presents some drawbaks suh as equality is semanti, thatis, it has to operate with the equivalene lasses indued by the normalization proess, and theprover does not manage it diretly3.Nevertheless, it also has many advantages, beause it spares the operations the need of workingwith normal forms and, therefore, their de�nitions beome greatly simpli�ed. Consequently, theautomati proof of their properties is also easier.When the omputation done by the algorithm is separated from the normalization proess,the problem of normalization is onentrated in just one loation: the equality prediate. Ofourse equality beomes ompliated, but to a lesser extent than operations with the normalizedrepresentation do.Therefore, the hosen alternative has been one that uses a sparse and unnormalized represen-tation. Note that a dense representation is not appropriate any more, beause it does not solveany of the posed problems and it is tremendously spae-ine�ient (espeially when the number ofvariables is high).To formalize the problem in Al2, a polynomial will be represented as a list of monomialsand a semanti equality prediate will be de�ned showing itself as an equivalene relation. Next,main polynomial operations will be de�ned and we will try to prove the existene of a ongruenebetween eah of these operations (for eah of its arguments) and the given equivalene relation.Finally, it will be proved that polynomials with these operations have a ring struture.Eah monomial will be represented as a pair (oe�ient and term) and a semanti equalityprediate will be de�ned. As we will see later on, terms will be represented by exponent lists, anda multipliation operation and a total ordering relation will be de�ned on them.4 TermsLet X = fx1; : : : ; xng be a �nite set of variables, with an ordering relation <X = f(xi; xj) : 1 �i < j � ng among its elements.1Conurrent with this work, the authors are developing a framework from whih they hope to make feasible thisrepresentation through an Al2's formalization of typed �nite sets by introduing anonial forms. It is interestingto remark that a reent report by J S. Moore on untyped �nite sets gives some analysis to this matter [13℄.2Eah operation has to deal with the normalization proess and, in partiular, with keeping the monomials ofthe resultant polynomial ordered.3This problem may be mitigated in Al2 by using ongruenes. Other systems, like Nqthm [4, 5℄ and Coq [8℄,do not o�er this possibility and it is neessary to reate ompatibility theorems between operations and equivalenerelations to get something similar (see how this problem in�uened on [18℄).



De�nition. A term on X is a �nite power produt of the form:xe11 : : : xenn = nYi=1xeii 8i ei 2 N;and we will denote it brie�y by Xhe1;:::;eni.As we an see later, the main results obtained from this formalization may be summed up inthe following points:1. Terms form a ommutative monoid with respet to the multipliation operation.2. Lexiographial ordering on terms is well-founded and admissible.A term on X may be represented in an easy way by a list of natural numbers. Its reognizeris given by the following prediate:(defmaro termp (a)`(natural-listp ,a))The funtion natural-listp, totally analogous to integer-listp, simply heks whether itsargument is a true list of elements satisfying the naturalp prediate.(defmaro naturalp (x)`(and (integerp ,x) (LISP::<= 0 ,x)))(defun natural-listp (l)(ond ((atom l)(equal l nil))(t(and (naturalp (first l))(natural-listp (rest l))))))We represent the null term with zero variables by a onstant while de�ning a reognizer fornull terms with an arbitrary number of variables.(defonst *null*nil)(defun nullp (a)(ond ((atom a)(equal a *null*))(t(and (equal (first a) 0) (nullp (rest a))))))Nevertheless, as we usually work with terms de�ned on the same set of variables, X , thesewill be represented by lists of equal length. Therefore, it is appropriate to de�ne a ompatibilityrelation on terms; thus, two terms are said to be ompatible if they have equal length.(defmaro ompatiblep (a b)`(equal (len ,a) (len ,b)))4.1 EqualityFrom the presented de�nitions it is lear that it is only neessary to de�ne a merely syntatiequality on terms. Nevertheless, for notational purposes, and to make future hanges easier, wede�ne the equality symbol4 as a synonym of equal.(defmaro = (a b)`(equal ,a ,b))4Reall that there is no on�it, beause the symbol = that we are de�ning belongs to the pakage TER. This isalso appliable to the symbols and pakages disussed in setion 2.



4.2 Commutative Monoid StrutureHaving hosen the set of variables, it su�es to add up their exponents variable by variable toompute the multipliation of two ompatible terms.Xha1;:::;ani �Xhb1;:::;bni = Xha1+b1;:::;an+bniThe following funtion does this task. Nevertheless, this is somewhat general beause therequirement for ompatibility inside the funtion would result in an unneessary ompliation.(defun * (a b)(delare (xargs :guard (and (termp a) (termp b))))(ond ((and (not (termp a)) (not (termp b)))*null*)((not (termp a))b)((not (termp b))a)((endp a)b)((endp b)a)(t(ons (LISP::+ (first a) (first b)) (* (rest a) (rest b))))))As shown, elements not being terms behave as if they orrespond to the null term. In the aseof inompatible terms, the one with less variables is ompleted; this is the same as assuming thatthe shorter list is �lled with zeros to its right.A proof of terms having ommutative monoid struture with respet to the previous operationis obtained by feeding the system with the following theorems. The generality of the funtion *allows them to be proved while weakening their natural hypothesis.(defthm *-identity-1(implies (and (nullp a) (termp b) (ompatiblep a b))(= (* a b) b)))(defthm *-identity-2(implies (and (termp a) (nullp b) (ompatiblep a b))(= (* a b) a)))(defthm ommutativity-of-*(= (* a b) (* b a)))(defthm assoiativity-of-*(= (* (* a b) ) (* a (* b ))))Note that it is only neessary to require term ompatibility in the two �rst theorems. Forexample, if we pay attention to the �rst one, we see that if a were not ompatible with b, but ithad more variables, then the syntati equality would not follow.4.3 Well-OrderingNext, we will show how to de�ne a total and strit order on terms. In addition, this order isproved to be well-founded and admissible.To order terms, one we have determined the set of variables, X , it is only neessary to takeinto aount exponent lists. The obvious hoie is to set up a lexiographial ordering among thesesequenes of natural numbers.



4.3.1 Lexiographial OrderingIn the ase of ompatible terms, the de�nition of lexiographial ordering is straightforward, sinethe natural number sequenes involved are of the same length.ha1; : : : ; ani < hb1; : : : ; bni � 9i (ai < bi ^ 8j < i aj = bj)The following boolean funtion de�nes the strit lexiographial order relation on terms in thisway, but similarly to what happens to *, it will be somewhat more general. Thus, if two terms arenot ompatible, the one with less variables will be taken as the least if, and only if, it is a pre�xof the other.(defun < (a b)(delare (xargs :guard (and (termp a) (termp b))))(ond ((or (endp a) (endp b))(not (endp b)))((equal (first a) (first b))(< (rest a) (rest b)))(t(LISP::< (first a) (first b)))))It is not di�ult to make evident that the de�ned relation satis�es the properties of a stritpartial ordering (irre�exivity and transitivity).(defthm irreflexivity-of-<(not (< a a)))(defthm transitivity-of-<(implies (and (< a b) (< b )) (< a )))It is also possible to prove trihotomy, though under somewhat stronger onditions.(defthm trihotomy-of-<(implies (and (termp a) (termp b))(or (< a b) (< b a) (= a b))):rule-lasses nil)However, this property is more useful when stated in the following way, for its orollary anthen be used as a rewrite rule.(defthm trihotomy-of-<(implies (and (termp a) (termp b))(or (< a b) (< b a) (= a b))):rule-lasses((:rewrite :orollary(implies (and (termp a) (termp b)(not (= a b)) (not (< a b)))(< b a)))))4.3.2 Term embedding in "0"0"0-ordinalsTo embed terms in "0-ordinals we will adopt the following riterion:Xhe1;:::;eni 7�! !!n+e1 + � � �+ !!+enThis embedding presents the advantage of providing a straightforward translation from theexponents list of the term, as it an be notied in the examples shown below. On the other hand,the obtained ordinal type makes this representation easy to handle.



x|{z}(1) 7�! !!+1| {z }((1 . 1) . 0)x8 � y0| {z }(8 0) 7�! !!2+8 + !!| {z }((2 . 8) (1 . 0) . 0)x4 � y3 � z5| {z }(4 3 5) 7�! !!3+4 + !!2+3 + !!+5| {z }((3 . 4) (2 . 3) (1 . 5) . 0)We proeed to embed terms in "0-ordinals by using the following funtion.(defun term->e0-ordinal (a)(delare (xargs :guard (termp a)))(ond ((endp a)0)(t(ons (ons (len a) (first a))(term->e0-ordinal (rest a))))))As we will see next, it is proved that term->e0-ordinal truly produes an "0-ordinal from aterm.4.3.3 Well-FoundednessTo state that a relation is well-founded in Al2, it is �rst neessary to make available a funtionto perform the embedding of the relation objets in "0-ordinals. However, it is very important toprove the orretness of the embedding funtion, whih is not always easy when its ordinal typeis high. In this ase, it is not a hard task after proving a tehnial lemma:(enapsulate ()(loal(defthm tehnial-lemma(implies (and (termp a)(e0-ordinalp (term->e0-ordinal (rest a))))(e0-ordinalp (term->e0-ordinal a))):otf-flg t))(defthm e0-ordinalp-term->e0-ordinal(implies (termp a)(e0-ordinalp (term->e0-ordinal a))):hints (("Goal":in-theory (disable e0-ordinalp term->e0-ordinal)))))One the orretion of the embedding funtion has been proved, it is enough to hek thatit preserves the order, that is to say, that the "0-ordinals orresponding to eah pair of relatedelements remain related.(defthm well-ordering-of-<(and (implies (termp a)(e0-ordinalp (term->e0-ordinal a)))(implies (and (termp a) (termp b)(< a b))(e0-ord-< (term->e0-ordinal a) (term->e0-ordinal b)))):rule-lasses :well-founded-relation)This proedure allows us in Al2 to add the rule lass :well-founded-relation to the well-foundedness theorem, thus marking the de�ned ordering relation (whih is Noetherian) to be used,when neessary, to prove the strit derease of a measure funtion in the domain of terms.



Unfortunately, when using the presented < funtion, this theorem annot be proved, for it isfalse. In fat, it su�es to onsider terms with a di�erent number of variables to understand theproblem; there are learly two symmetri ases, depending on whether the �rst has less variablesthan the seond or vie versa:x4y2z <X x6y47�! 7�!!!3+4 + !!2+2 + !!+1 �"0 !!2+6 + !!+4 x8 �X x3y27�! 7�!!!+8 <"0 !!2+3 + !!+2When terms are ompatible, the problem disappears. It ould be thought that the adequateompletion of the term with less variables ould avoid the problem. However, the solution is notas simple, beause when embedding a term nothing is known about whih other terms it ould beompared to. A feasible solution is to deal espeially with both ases:(defun < (a b)(delare (xargs :guard (and (termp a) (termp b))))(ond ((LISP::< (len a) (len b))t)((LISP::> (len a) (len b))nil)( : : :Now, we an prove that this relation is well-founded.4.3.4 AdmissibilityFinally, it is stated that the order is admissible on the set of ompatible terms. For that, theexistene of a �rst element is proved (in fat, it is proved that every null term ats as the �rstelement) and that it is ompatible with the operations, in this ase, just the multipliation.(defthm <-has-first(implies (and (termp a) (termp b)(ompatiblep a b)(nullp a) (not (nullp b)))(< a b)))(defthm <-ompatible-*-1(implies (and (termp a) (termp b) (termp )(ompatiblep a ) (ompatiblep b )(< a b))(< (* a ) (* b ))))(defthm <-ompatible-*-2(implies (and (termp a) (termp b) (termp )(ompatiblep a ) (ompatiblep b )(< a b))(< (*  a) (*  b))))To demand term ompatibility is essential, due to the hange made in the original de�nitionof the < funtion.5 MonomialsDe�nition. A monomial on X is a produt of the form  � Xhe1;:::;eni, where  is alled theoe�ient and ei are alled the exponents. The � operation is de�ned from the set of oe�ientsto the set of values that the elements in X an take.



Note that, for our purposes, it is not neessary to de�ne the set on whih the elements inX take their values; these elements may be regarded as formal symbols with an indeterminatemeaning. We will use the �eld Q for the oe�ients, although other algebrai systems ould havebeen used5.Clearly, to represent a monomial it su�es to use a list whose �rst element is its oe�ientand whose rest is the aompanying term.A very simple formalization in Al2 is got by using maros, beause, in fat, the oneptof monomial merely exists for notational easiness. The onstrutor and aessor operations arede�ned in the following way:(defmaro monomial ( e)`(ons , ,e))(defmaro oeffiient (a)`(first ,a))(defmaro term (a)`(rest ,a))It is also neessary to de�ne a reognizer that allows us to disern whih Al2 objets aremonomials and whih are not:(defmaro monomialp (a)`(and (onsp ,a)(rationalp (first ,a))(termp (rest ,a))))Multipliative identity monomial with null term is de�ned by a onstant. To de�ne a reognizerfor multipliative identity monomials it su�es to reate a maro that heks if the oe�ient is1 and the aompanying term is null.(defonst *one*(monomial 1 TER::*null*))(defmaro onep (a)`(and (equal (oeffiient ,a) 1)(TER::nullp (term ,a))))Also, it is handy to de�ne a onstant to represent the null monomial and a reognizer for nullmonomials. Any monomial whose oe�ient is null will be reognized as suh.(defonst *null*(monomial 0 TER::*null*))(defmaro nullp (a)`(equal (oeffiient ,a) 0))In the same way as with terms, it is suitable to de�ne a ompatibility relation on monomials.Two monomials are ompatible if, and only if, their underlying terms are ompatible. It is obviousthat the relation de�ned in this way is an equivalene.(defun ompatiblep (a b)(delare (xargs :guard (and (monomialp a) (monomialp b))))(TER::ompatiblep (term a) (term b)))(defequiv ompatiblep)5The book may be erti�ed without any problem after replaing rationalp with integerp, thus obtaining integeroe�ient polynomials, or with al2-numberp, in whih ase the oe�ients beome omplex rationals.



5.1 Monoid ommutative strutureTo ompute the multipliation of two monomials it su�es to multiply their oe�ients and theirterms.(defun * (a b)(delare (xargs :guard (and (monomialp a) (monomialp b))))(monomial (LISP::* (oeffiient a) (oeffiient b))(TER::* (term a) (term b))))Monomials inherit trivially a ommutative monoid struture from terms and from propertiesof the oe�ient �eld multipliation operation.(defthm *-identity-1(implies (and (onep a) (monomialp b) (ompatiblep a b))(= (* a b) b)))(defthm *-identity-2(implies (and (monomialp a) (onep b) (ompatiblep a b))(= (* a b) a)))(defthm assoiativity-of-*(= (* (* a b) ) (* a (* b ))):hints (("Goal":in-theory (disable ACL2::ommutativity-of-*))))(defthm ommutativity-of-*(= (* a b) (* b a)))The anellation properties of monomial multipliation are proved without any di�ulty.(defthm *-anellative-1(implies (and (nullp a) (ompatiblep a b))(nullp (* a b))))(defthm *-anellative-2(implies (and (nullp b) (ompatiblep a b))(nullp (* a b))))5.2 Semanti Equality and CongrueneTwo monomials are equal if they are both null, or if their oe�ients and terms are respetivelyequal. This relation is proved to be an equivalene and a ongruene with the multipliationoperation in both arguments.(defun = (a b)(delare (xargs :guard (and (monomialp a) (monomialp b))))(or (and (nullp a) (nullp b))(and (LISP::= (oeffiient a) (oeffiient b))(TER::= (term a) (term b)))))(defequiv =)(defong = = (* a b) 1)(defong = = (* a b) 2)



6 PolynomialsDe�nition. A polynomial on X is a �nite sum of monomials:1 �Xhe11;:::;e1ni + � � �+ m �Xhem1;:::;emni = mXi=1 i �Xhei1;:::;einiWe begin by de�ning the reognizer for polynomials. A polynomial is simply represented by alist of monomials. h(1; he11; : : : ; e1ni); : : : ; (m; hem1; : : : ; emni)i(defun monomial-listp (l)(ond ((atom l)(equal l nil))(t(and (monomialp (first l))(monomial-listp (rest l))))))(defmaro polynomialp (p)`(monomial-listp ,p))The null polynomial with no monomials is de�ned as a onstant and it is reognized by a marothat is adequate for its use in base ases of reursion.(defonst *null*nil)(defmaro nullp (p)`(endp ,p))The onstrutor simply adds a monomial to a polynomial, although this is de�ned in suh away that anomalous ases are dealt with in a reasonable way. This is essential to enable a laterde�nition of ongruenes with it.(defun polynomial (m p)(delare (xargs :guard (and (monomialp m) (polynomialp p))))(ond ((and (not (monomialp m)) (not (polynomialp p)))*null*)((not (monomialp m))p)((not (polynomialp p))(list m))(t(ons m p))))Compatibility of monomials must be extended to polynomials. To ahieve this we begin byde�ning the onept of uniform polynomial. A polynomial is said to be uniform if all of itsmonomials are ompatible with eah other.(defun uniformp (p)(delare (xargs :guard (polynomialp p)))(or (nullp p)(nullp (rest p))(and (MON::ompatiblep (first p) (first (rest p)))(uniformp (rest p)))))Another related onept is that of a omplete polynomial. A polynomial is omplete with nvariables, if all of its monomials have got terms with n variables.



(defun ompletep (p n)(delare (xargs :guard (and (polynomialp p) (naturalp n))))(or (nullp p)(and (equal (len (term (first p))) n)(ompletep (rest p) n))))As a onsequene of these de�nitions we onlude that a polynomial is uniform if, and only if,it is omplete.(defthm uniformp-iff-ompletep(iff (uniformp p) (ompletep p (len (term (first p))))):rule-lasses nil)Thus the de�nition of ompatibility between polynomials now arises in a natural way. Twopolynomials are ompatible if they are uniform and their two �rst monomials are ompatible too.(defmaro ompatiblep (p1 p2)`(and (uniformp ,p1) (uniformp ,p2)(MON::ompatiblep (first ,p1) (first ,p2))))Let us remark that the operations we will de�ne on polynomials will be generalized to properlyhandle any Al2 objet, even non-polynomials. A non-polynomial objet will be regarded asbeing a null polynomial, rendering the logi on polynomials total. Thanks to this, it is possibleto state most of ongruene theorems with operations, beause defong does not allow for anyrestritive hypothesis over the involved objets.It must not be forgotten that this in no way prevents the spei�ation of guards adequate tothe harater of eah funtion, beause these lak logial signi�ane. Thus, exeutable versionsof funtions may be more e�ient, for they are allowed to assume that they reeive polynomialobjets6.6.1 Semanti EqualityTo deide whether two polynomials are semantially equivalent, we must hek that both belongto the same lass of equivalene. This is done by omputing their normal forms (that is, theanonial representatives of their respetive equivalene lasses) and examining whether they aresyntatially equal. A uniform polynomial is said to be in normal form if it satis�es the followingonditions:1. Its monomials are stritly ordered by a dereasing term order.2. It ontains no null monomial.Note that the �rst ondition implies the non-existene of monomials with idential terms in anormalized uniform polynomial.Initially, a funtion apable of adding a monomial to a polynomial is de�ned. This funtionwill be suh that, if the polynomial is a normalized one, its result will also be a normalized one.For this funtion to be total we need to omplete, taking the utmost are, the values it must returnoutside the domain set by its guard.(defun +-monomial (m p)(delare (xargs :guard (and (monomialp m) (polynomialp p))))(ond ((and (not (monomialp m)) (not (polynomialp p)))*null*)((not (monomialp m))p)6In general, if an operation is exeuted outside its domain in a Common Lisp system without run-time guard-heking, its behavior is, in the best ase, system dependent.



((and (not (polynomialp p)) (MON::nullp m))*null*)((not (polynomialp p))(polynomial m *null*))((MON::nullp m)p)((nullp p)(polynomial m *null*))((TER::= (term m) (term (first p)))(let (( (LISP::+ (oeffiient m) (oeffiient (first p)))))(if (equal  0)(rest p)(polynomial (monomial  (term m)) (rest p)))))((TER::< (term (first p)) (term m))(polynomial m p))(t(polynomial (first p) (+-monomial m (rest p))))))From this funtion, the omputation of normal forms an be de�ned. If the polynomial is null,it is already in normal form; therefore it su�es to normalize the rest of the polynomial if it is nota null one and to add its �rst monomial to the result by using the previous funtion.(defun nf (p)(delare (xargs :guard (polynomialp p)))(ond ((or (not (polynomialp p)) (nullp p))*null*)(t(+-monomial (first p) (nf (rest p))))))Having done this, it is easy to prove that the equality relation de�ned on polynomials is anequivalene.(defun = (p1 p2)(delare (xargs :guard (and (polynomialp p1) (polynomialp p2))))(equal (nf p1) (nf p2)))(defequiv =)Other important properties have been proved, suh as that the normalization funtion devel-oped meets its spei�ation and that uniformity and ompleteness of a polynomial are preservedafter transforming it into a normal form. The reader is referred to the orresponding ode.6.2 Commutative Ring StrutureNext, operations allowing us to add, multiply and negate polynomials will be de�ned. To ensurethat these operations satisfy the fundamental properties everybody expets from them, with therepresentation hosen for polynomials, the existene of a ommutative ring struture must beproved.Therefore, it is neessary to hek that polynomials with addition and negation form an Abeliangroup, while forming a ommutative monoid with multipliation; besides that, multipliation mustdistribute over addition.6.2.1 Commutative Group with Addition and NegationTo add two polynomials it su�es to append their monomial lists. In fat, this is the easiest wayof de�ning this operation and it presents the advantage of simplifying the assoiative propertyproof a lot. If getting the redued result is what is desired, it is su�ient to ompute its normalform.



(defun + (p1 p2)(delare (xargs :guard (and (polynomialp p1) (polynomialp p2))))(ond ((and (not (polynomialp p1)) (not (polynomialp p2)))*null*)((not (polynomialp p1))p2)((not (polynomialp p2))p1)(t(append p1 p2))))To ompute the negative of a polynomial you only need to replae the oe�ient in eahmonomial with its negative.(defun - (p)(ond ((or (not (polynomialp p)) (nullp p))*null*)(t(polynomial (monomial (LISP::- (oeffiient (first p)))(term (first p)))(- (rest p))))))It is not hard to prove that this operation distributes over the addition of polynomials.(defthm --distributes-+(= (- (+ p1 p2)) (+ (- p1) (- p2))))The following theorems prove that polynomials with the aforesaid operations have a groupstruture.(defthm +-identity-1(= (+ p *null*) p))(defthm +-identity-2(= (+ *null* p) p))(defthm assoiativity-of-+(= (+ (+ p1 p2) p3) (+ p1 (+ p2 p3))))(defthm +--(= (+ p (- p)) *null*)))It is muh more omplex to prove group ommutativity than the other properties.(defthm ommutativity-of-+(= (+ p1 p2) (+ p2 p1)):hints (("Goal":in-theory (disable =))))6.2.2 Commutative Monoid with MultipliationThe multipliative identity polynomial in normal form is de�ned as a onstant. Elements in itsequivalene lass an be reognized by a simple maro.(defonst *one*(polynomial MON::*one* *null*))(defmaro onep (p)`(= ,p *one*))



Before de�ning the internal multipliation operation between polynomials it is feasible to de�nea helper funtion to represent the external multipliation between monomials and polynomials.The proedure onsists of replaing eah monomial from the original polynomial with its multi-pliation by the given monomial.(defun *-monomial (m p)(delare (xargs :guard (and (monomialp m) (polynomialp p))))(ond ((or (nullp p) (not (monomialp m)) (not (polynomialp p)))*null*)(t(polynomial (MON::* m (first p)) (*-monomial m (rest p))))))It is proved that this auxiliary operation has an identity and a anellative element and that itis distributive over the addition of monomial and polynomial, as well as over polynomial addition.Then, to ompute the multipliation of two polynomials it is enough to use the following de�nition:(defun * (p1 p2)(delare (xargs :guard (and (polynomialp p1) (polynomialp p2))))(ond ((or (nullp p1) (not (polynomialp p1)))*null*)(t(+ (*-monomial (first p1) p2) (* (rest p1) p2)))))The fat that polynomials with this multipliation operation have monoid struture is deduedfrom the following theorems.(defthm *-identity-1(= (* *one* p) p))(defthm *-identity-2(= (* p *one*) p))(defthm assoiativity-of-*(= (* p1 (* p2 p3)) (* (* p1 p2) p3)):hints (("Goal":in-theory (disable = +))))It is more omplex to prove monoid ommutativity. Its proof is an example of the usefulness ofongruenes de�ned between equality and the addition operation. The proof requires the de�nitionof a suitable indution sheme, a previously proved tehnial lemma, and several properties.(defthm ommutativity-of-*(= (* p1 p2) (* p2 p1)):hints (("Goal":indut (indution-sheme p1 p2):do-not '(eliminate-destrutors):in-theory (disable = + polynomial))))Properties stating the existene of anellative elements in both arguments do not present anydi�ulty for the prover.(defthm *-anellative-1(= (* *null* p) *null*))(defthm *-anellative-2(= (* p *null*) *null*))



6.2.3 Distributivity of Multipliation over AdditionFinally, we are apable to prove that polynomial multipliation is distributive over addition.(defthm *-distributes-+-1(= (* p1 (+ p2 p3)) (+ (* p1 p2) (* p1 p3))):hints (("Goal":in-theory (disable = +))))(defthm *-distributes-+-2(= (* (+ p1 p2) p3) (+ (* p1 p3) (* p2 p3))):hints (("Goal":in-theory (disable nf + *)))))6.3 CongruenesOne of the most interesting aspets of the formalization hosen here is that it allows the de�nition,in most ases, of ongruenes between the equivalene relation given by polynomial equality undernormal form and their operations. This feature notieably inreases hanes of reusing the bookas a tool for proving higher level properties.The �rst operation, with whih ongruenes an be set up, is the onstrutor of polynomialobjets. In this ase, two equivalene relations intervene: those de�ned on monomials and onpolynomials. Both ongruenes are stated without di�ulties.(defong MON::= = (polynomial m p) 1)(defong = = (polynomial m p) 2)A bit more omplex is the ongruene with negation, where a tehnial lemma is neessary toallow the normalization proess to be �pushed� into the operation.(enapsulate ()(loal(defthm tehnial-lemma(equal (nf (- p)) (- (nf p)))))(defong = = (- p) 1))The tehnique used is similar in the ase of the addition, with the exeption that the normal-ization proess annot be eliminated not even if it is also introdued into the argument. This leadsto the requirement of some little hints to arry out the proofs.(enapsulate ()(loal(defthm tehnial-lemma-1(= (+ p1 (nf p2)) (+ p1 p2))))(defong = = (+ p1 p2) 2:hints (("Goal":in-theory (disable tehnial-lemma-1):use ((:instane tehnial-lemma-1 (p2 ACL2::p2-equiv))tehnial-lemma-1))))(loal(defthm tehnial-lemma-2(= (+ (nf p1) p2) (+ p1 p2)):hints (("Goal":in-theory (disable =)))))



(defong = = (+ p1 p2) 1:hints (("Goal":in-theory (disable tehnial-lemma-2):use ((:instane tehnial-lemma-2 (p1 ACL2::p1-equiv))tehnial-lemma-2)))))Proving that the multipliation of monomial and polynomial is ongruent with respet to theequality in the �rst argument is diret.(defong MON::= = (*-monomial m p) 1)However, problems with .defong. rop up while trying to reate ongruenes in the seondargument of this operation. With the foregoing de�nitions it is neessary to keep the ompatibilityhypothesis, and this prevents :ongruene from being aepted as a legal rule lass, for it doesnot have the proper form. Moreover, the proof is notieably more elaborate.(defthm =-implies-=-*-monomial-2(implies (and (monomialp m) (polynomialp p1) (polynomialp p1-equiv)(MON::ompatiblep m (first p1)) (ompatiblep p1 p1-equiv)(= p1 p1-equiv))(= (*-monomial m p1) (*-monomial m p1-equiv))):hints (("Goal":ases ((MON::nullp m) (not (MON::nullp m))))("Subgoal 2":in-theory (disable =)))))Then, this defet is extended to the polynomial multipliation operation, beause this latteris derived from it. Proofs are still more intriate, and need several tehnial lemmas along withsome hints to be performed.(defthm =-implies-=-*-2(implies (and (polynomialp p1) (polynomialp p2) (polynomialp p2-equiv)(ompatiblep p1 p2) (ompatiblep p1 p2-equiv)(= p2 p2-equiv))(= (* p1 p2) (* p1 p2-equiv))):hints (("Goal":in-theory (disable nf-*-1):use (nf-*-1(:instane nf-*-1 (p2 p2-equiv))))))(defthm =-implies-=-*-1(implies (and (polynomialp p1) (polynomialp p1-equiv) (polynomialp p2)(ompatiblep p1 p2) (ompatiblep p1-equiv p2)(= p1 p1-equiv))(= (* p1 p2) (* p1-equiv p2))):hints (("Goal":in-theory (disable ommutativity-of-*):use (ommutativity-of-*(:instane ommutativity-of-* (p1 p1-equiv))(:instane =-implies-=-*-2 (p1 p2) (p2 p1) (p2-equiv p1-equiv))))))6.4 ExamplesAs an example of some of the elemental properties that an be automatially proved by using thebook on polynomials developed here, without the need of providing the prover with any hint, wepresent the following, that state how the polynomial semanti equality is preserved under severalonditions.



(defthm polynomial-first-null(implies (MON::nullp m)(= (polynomial m p) p)))(defthm +-polynomial(= (+ p1 (polynomial m p2)) (polynomial m (+ p1 p2))))(defthm polynomial-polynomial-monomial-=-term(implies (and (monomialp m1) (monomialp m2) (polynomialp p)(TER::= (term m1) (term m2)))(= (polynomial m1 (polynomial m2 p))(polynomial (monomial (LISP::+ (oeffiient m1) (oeffiient m2))(term m1))p))))7 Conlusions and Future WorkA formalization of multivariate polynomials rings with rational oe�ients in Al2 has beenpresented. This inludes a lexiographial ordering on terms along with its proofs of admissibilityand well-foundedness, besides a normalization funtion and an indued equivalene relation onwhih ongruenes suitable for attaking harder problems are stated.It must be noted that some of the obtained theorems have rather omplex proofs helped bytehnial lemmas and additional and by no means easy properties. Table 2 shows, for the sakeof omparison, the number of lines of ode in eah �le, those generated by the system during itserti�ation and the proportion of time measured7 with respet to the one in whih exeutiontakes less.File Lines of ode Lines of proof Prop. of timeterm.lisp 147 2019 9.8lexiographial-ordering.lisp 135 4996 43.0monomial.lisp 151 738 1.5polynomial.lisp 115 852 1.0normal-form.lisp 164 12970 169.0addition.lisp 94 1467 15.7negation.lisp 52 1454 15.5ongruenes-1.lisp 55 1160 28.3multipliation.lisp 213 12619 268.8ongruenes-2.lisp 170 3337 106.0Table 2: Certi�ation statistisThis work omes from an un�nished previous one [12℄, in whih the Boyer-Moore theoremprover, Nqthm, was used. It is interesting to note some of the advantages exposed by Al2 inomparison with Nqthm that in�uened our deision of translating the problem into the former(in spite of ertain initial retienes due to the disappearane of shells, for we used them profusely).The main inonveniene that ropped up when formalizing polynomials stemmed from the ho-sen oe�ient �eld. Nqthm ontains only natural numbers, so we had to formalize and implementa oe�ient �eld from srath.In short, sine Al2 already inorporates a proper formalization of Q, the prerequisite to oure�orts for yielding a suitable representation of polynomials has been satis�ed.7Version 2.4 of Al2 was used. Times are measured and divided by the smallest one to get a ratio more or lessindependent of the system in whih the erti�ation is done.



Problems derived from the absene of shells were solved by a more areful formalization andproper hoie of type presription rules.On the other hand, Nqthm's absene of ongruenes implied the ontinuous need for provingtrivial lemmas, whih, at �rst sight, had little or no relation to the theorems we really wanted toprove. In the subsequent development underAl2, ongruenes played their role, either shorteningthe length and time of several proofs, or eliminating unneessary hints whih redued their degreeof automation. The ommutativity of polynomial multipliation proof is a true example of this.Unfortunately, the introdution of the onept of term ompatibility, arising from the needof proving the well-foundedness of lexiographial ordering on terms, prevented us from entirelyahieving this goal by avoiding the elimination of ompatibility hypothesis in the ase of multipli-ation.A possible solution is to de�ne the operations so that they work the usual way only on ompati-ble polynomials, while assigning an arbitrary meaning in ases involving inompatible polynomials(in analogy to what now happens when dealing with non-polynomial objets). Another possibleavenue would be to �nd a suitable formalization of terms and of their embedding in "0-ordinalsthat would totally eliminate the need to bring up the onept of term ompatibility.It is worthwhile to note Al2's support for guards to indiate funtion preonditions and,espeially, its automati veri�ation that guarantees that the Common Lisp ode an be exeutede�iently, and with the same results, on any platform.Last but not least, we would like to remark that this work is related to others developedat Sevilla University Computational Logi Group on mehanized proving of several algorithmsand theorems from Rewrite Theory (see [1℄ for a preise and modern desription of this theory).Partiularly, algorithms for subsumption, uni�ation and anti-uni�ation have been erti�ed [15,16℄, and Knuth-Bendix ritial pair theorem has been mehanially proved [17℄.As a matter of fat, this is only part of a rather more ambitious ongoing projet, whose aimis to obtain an automati veri�ation of Buhberger's algorithm for Gröbner bases omputationin Al2. Works from [3, 18℄, ertainly omplementary, ahieve this goal in Coq. Nevertheless,Al2 and Coq logis di�er in many aspets and automation degree ahievable in Al2 is, at �rstsight, superior to Coq.The redution relation on polynomials de�ned for Buhberger's algorithm is a subset of the or-dering on polynomials indued by lexiographial ordering stated on terms. Consequently, de�ninga term order is only the �rst step in de�ning the onepts assoiated with Buhberger's algorithmand, partiularly, to its proof of termination.There are many appliations of Gröbner bases, but we are mainly onerned with one that isdiretly related to Propositional Logi. In Classial Propositional Logi, a polynomial is assoiatedwith eah formula by Stone isomorphism. Then, tautology and dedution problems an be solvedafter omputing a given Gröbner basis. This �algebrai method� has been extended to �niteMulti-Valued Propositional Logi [6, 20℄.Referenes[1℄ Baader, F. & Nipkow, T. Term Rewriting and All That. Cambridge University Press. 1998.[2℄ Ballarin, C. Computer Algebra and Theorem Proving. Tehnial Report, 473. University ofCambridge Computer Laboratory. 1999.iaks-www.ira.uka.de/iaks-almet/ballarin[3℄ Barja-Pérez, J. M. & Pérez-Vega, G. Demostraión en Implementaiones Conretas deAnillos de Polinomios. RSMAE. 1999.[4℄ Boyer, R. S. & Moore, J S. A Computational Logi. Aademi Press. 1978.[5℄ Boyer, R. S. &Moore, J S. A Computational Logi Handbook. Aademi Press. 2nd ed. 1998.
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