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tIn this paper we present a formalization of matrix arithmeti
 in A
l2 adequate for automati
veri�
ation, with a high degree of automation, of the fundamental properties of matri
esthat stru
ture them as a ring. Without loss of generality, we restri
t our attention here tosquare matri
es whose dimension is a power of two. The matrix set of elements used in
ludesarbitrary pre
ision 
omplex rational numbers. We also dis
uss how the nature of the indu
tions
hemes involved makes it di�
ult for an automati
 theorem prover to �nd them.1 Introdu
tionIn this paper we present a formalization of matrix arithmeti
. We restri
t our attention here tosquare matri
es over an element �eld whose dimension is a power of two sin
e this allows us touse a re
ursive representation for them and it 
an be done without loss of generality.On the other hand, this 
hoi
e is justi�ed by the fa
t that this representation is in the heartof some important algorithms, like the Strassen-Pan-Coppersmith-Winograd family of sub-
ubi
matrix multipli
ation algorithms [12, 11, 5℄.The formalism used to reason about matrix arithmeti
 is that of A
l2 [7, 8℄. From a logi
 view-point, A
l2 is an untyped quanti�er-free �rst-order logi
 of total re
ursive fun
tions with equality.It only 
ontains two extension prin
iples. These extension prin
iples allow the introdu
tion of newfun
tion symbols and axioms to the logi
 while preserving its 
onsisten
y.The main aim of this work is to provide A
l2 with a reusable book of basi
 matrix operationsand theorems about them. These operations are not mere operational abstra
tions. They arewritten in an appli
ative subset of Common Lisp and, therefore, exe
utable.We present a formalization that is shown to be adequate for automati
 veri�
ation, with a highdegree of automation, of the fundamental properties of matri
es that stru
ture them as a ring.The main di�
ulty that has been over
ome here is the development of appropriate indu
tions
hemes and the 
ompleting of some A
l2 properties of number arithmeti
. It is worthwhile tonote that the nature of the indu
tion s
hemes involved makes it di�
ult for an automati
 theoremprover to �nd them.Sin
e A
l2 is a rule-driven theorem prover, theorems are operationally interpreted as rewriterules. Therefore, some supplementary theorems that are useful as rewriting rules have also beenidenti�ed and proved in addition to the basi
 properties.Finally, we dis
uss the development e�ort and the degree of automation a
hieved and alsoanalyze some possible extensions of this work, in
luding a brief overview of the problems involved�Fa
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in the generalization of the element �eld to obtain matrix rings over di�erent algebrai
 stru
turesand possible ways to over
ome them.2 An Overview of A
l2A
l2 (A Computational Logi
 for Appli
ative Common Lisp) is the su

essor of Nqthm [1, 3℄,the Boyer-Moore theorem prover. A 
on
ise des
ription of A
l2 
an be found in [6℄. In fa
t, it isne
essary to approa
h A
l2 from three di�erent perspe
tives to fully understand it.1. From a logi
 point of view.2. From the perspe
tive of programming languages.3. From the standpoint of automati
 reasoning systems.2.1 A
l2 is a Computational Logi
A
l2 is a �rst-order quanti�er-free logi
 with equality. Its syntax is that of the Lisp programminglanguage. This means that a term in the logi
 is a 
onstant, a variable symbol or the appli
ationof a n-ary fun
tion symbol (or a �-expression) to n terms. Formally speaking, predi
ate symbolsin A
l2 do not exist, though Boolean fun
tions play this role.In A
l2, the set of axioms in
lude those of propositional logi
 with equality and some basi
axioms that are needed to work with the usual data types: numbers (integers, rationals and
omplex rationals)1, 
hara
ters, strings, symbols and lists.On the other hand, inferen
e rules are the same that in propositional 
al
ulus with equality,adding variable instantiation, indu
tion and fun
tional instantiation. The indu
tion rule redu
estheorem proofs to �nite sets of 
ases by a powerful form of mathemati
al indu
tion on "0-ordinals.We 
an repla
e fun
tion symbols in a theorem with other fun
tion symbols by using the fun
tionalinstantiation rule.The logi
 also in
ludes two extension prin
iples : the de�nitional prin
iple and the en
apsula-tion prin
iple. The former is essential be
ause it permits the introdu
tion of new fun
tion symbolswith an axiomati
 de�nition; to preserve 
onsisten
y, the system only admits a fun
tion underthis prin
iple if its termination 
an be guaranteed under 
ertain 
onditions.2 The latter permitsthe introdu
tion of new fun
tion symbols 
onstrained by axioms; to preserve 
onsisten
e, A
l2requires �witnesses� of the existen
e of these fun
tions to be exposed. Fun
tional instantiation isan inferen
e rule derived from this extension prin
iple.The la
k of quanti�
ation renders A
l2 a 
onstru
tive logi
. Instead of stating the fa
t that a
ertain obje
t exists, a fun
tion 
omputing an obje
t with the desired properties must be shown.Another remarkable point is the la
k of types3 and of partial fun
tions. Fun
tions admitted underthe de�nitional prin
iple must be total re
ursive fun
tions (however, see [9℄.)2.2 A
l2 is an Appli
ative Programming LanguageEvery A
l2 fun
tion admitted under the de�nitional prin
iple is a Lisp fun
tion. The re
ipro
aldoes not hold be
ause the exe
ution of a fun
tion must only depend on their arguments if we wantto reason about it in A
l2. On the other hand, fun
tions written in 
onventional programminglanguages (Lisp not being an ex
eption) are not guaranteed to terminate.Thus, we 
an think of A
l2 as an appli
ative programming language, that is, a language inwhi
h the result of the appli
ation of a fun
tion is uniquely determined by its arguments. Morepre
isely, A
l2 
an be regarded as a side-e�e
t free subset of Common Lisp.1Re
ently, an extension to A
l2 has been developed to 
ope with real number formalization problems.2This guarantees the existen
e of one, and only one, mathemati
al fun
tion holding the de�nitional axiom.3However, a primitive type inferen
e system is build into A
l2. The user 
an help the system to infer types bysupplying type pres
ription rules. Types are just used to simplify formulas.2



2.3 A
l2 is an Automati
 Reasoning SystemWhen you supply a potential theorem to A
l2, or when you extend the logi
 by using one of theextension prin
iples, it is ne
essary to 
he
k that several 
onditions hold. Then, A
l2 behaves asa theorem prover.A
l2 uses several proof te
hniques when trying to prove a theorem. Ea
h proof te
hnique 
anbe viewed as a �pro
ess� re
eiving a formula as its input and produ
ing a set of formulas as itsoutput. The input formula is a theorem if ea
h of the output formulas is a theorem.Of 
ourse, a parti
ular pro
ess may not apply to a formula. In this 
ase, the output set of thepro
ess only 
onsists of that parti
ular formula. On the other hand, if a pro
ess proves that agiven formula is a theorem then it returns an empty set.When the user inputs a 
onje
ture into the system, the formula be
omes the proof goal and itgoes sequentially through every pro
ess until one of them applies or some termination 
onditionsare met. When a pro
ess is applied, it produ
es a set of subgoals that repla
es the original goal.This pro
edure is then iterated while there are subgoals pending to be proved.The simpli�
ation pro
ess in
ludes de
ision pro
edures for propositional logi
, equality, andlinear arithmeti
. It also deals with term rewriting and metafun
tions [2℄. This is the only pro
essthat may return an empty set of formulas, thus proving that its input formula is a theorem. Theterm rewriting system plays a fundamental role: axioms, de�nitions and theorems are stored andused as rewrite rules.The destru
tor elimination pro
ess allows to repla
e variables a�e
ted by destru
tor operationswith a term 
onsisting of a 
onstru
tor operation and fresh variables. Thus, this eliminatesdestru
tor operations to obtain simpler formulas.The three following pro
esses have a strong heuristi
 
omponent. The 
rossed fertilizationpro
ess de
ides when to use and dis
ard equality hypothesis. The generalization pro
ess de
ideswhen to repla
e non-variable terms with fresh variables. The irrelevan
e elimination pro
ess triesto dis
ard those hypothesis not a�e
ting the validity of the 
onje
ture. All of them are �dangerous�pro
esses, in the sense that a more general 
onje
ture is obtained when dis
arding an hypothesisor generalizing a term. The generalized 
onje
ture may well not be a theorem even if the original
onje
ture is a theorem. Its main aim is to prepare the formula for a later indu
tion sin
e, in orderto prove a formula by indu
tion, it is not unusual that a generalization of it may be needed.The last pro
ess is indu
tion. It tries to �nd a suitable indu
tion s
heme to prove the 
onje
ture.Conje
ture terms may suggest several indu
tion s
hemes, but system heuristi
s sele
t a uniques
heme (perhaps, after merging some of them). If this pro
ess does not �nd a suitable indu
tions
heme, it fails, and A
l2 reports that the 
onje
ture has not been proved.3 Matrix RepresentationThe underlying representation of matri
es is based on the notion of weak matrix. We use re
ordstru
tures for this purpose, whi
h 
ome from Common Lisp and have been formalized in A
l2by Bro
k [4℄. This provides us with a weak re
ognizer predi
ate that we strengthen to develop are
ognizer for properly formed matri
es.The set of elements used to de�ne matri
es is re
ognized by an A
l2 predi
ate that in
ludesarbitrary pre
ision 
omplex rational numbers. Sin
e A
l2 is an untyped programming language,this implies that integers and rationals may well repla
e 
omplex rationals, without needing asingle 
hange.3.1 Weak matri
esA stru
ture is just a 
onvenient way to group and a

ess related data. The defstru
ture fa
ilityis a general purpose tool for 
reating and reasoning about stru
ture spe
i�
ations.Our notion of weak matrix is 
aptured by an A
l2 stru
ture. A weak matrix is just a 
olle
-tion of four obje
ts or slots 
alled �submatri
es�. We say that this notion is �weak� be
ause norestri
tions are imposed on the types of the elements that 
an be stored in ea
h submatrix.3



The following invo
ation of defstru
ture de�nes a 
onstru
tor operation, matrix, and fourdestru
tor operations or readers, sub-11, sub-12, sub-21 and sub-22. It also 
reates an extensivetheory for automated reasoning about spe
i�
ations de�ned in terms of this stru
ture.(defstru
ture matrixsub-11sub-12sub-21sub-22(:options(:
on
-name nil)(:representation :tree)(:weak-predi
ate weak-matrixp)(:do-not :tag :read-write :write-write)))))By default, stru
tures are represented as true lists tagged with the stru
ture name. The option(:representation :tree) for
es a balan
ed 
ons tree representation of stru
ture terms. This allows�(logm) a

ess time, where m is the number of slots. The option (:do-not :tag) eliminates thename tag from stru
ture terms. The predi
ate weak-matrixp will re
ognize terms 
onstru
ted withmatrix.3.2 Matri
esA 
onsequen
e of the weakness of the previous de�nition is the la
k of a uniform representationeven if we restri
t ourselves to use only weak matri
es and numbers in every slot.We formalize true matri
es by de�ning a re
ognizer fun
tion for square matri
es whose dimen-sion is a power of two. At �rst sight, this may be seen as a restri
tion, but an arbitrary matrix
an always be �
ompleted�, at most doubling its size, so that its dimension is a power of two. Thisis a 
ommon 
hoi
e for several of the most e�
ient algorithms for dense matrix arithmeti
 known.Therefore, we represent a matrix with dimension n = 2k as a weak matrix of matri
es withdimension n = 2k�1 if n 6= 1, otherwise as a number. As a 
onsequen
e of the tree stru
ture ofweak matrix terms, this de�nition implies that our matri
es have a 
omplete tetrary tree stru
tureof matrix operations. The following Boolean fun
tion re
ognizes su
h a matrix.(defun matrixp (a k)(if (zp k)(a
l2-numberp a)(let ((k-1 (- k 1)))(and (weak-matrixp a)(matrixp (sub-11 a) k-1)(matrixp (sub-12 a) k-1)(matrixp (sub-21 a) k-1)(matrixp (sub-22 a) k-1)))))This re
ognizer fun
tion is admitted by A
l2 without any user assistan
e. It is a remarkablefa
t that its admissibility proof 
an be shortened by spe
ifying the following measure hint:(de
lare (xargs :measure (a
l2-
ount k)))However, this impa
ts other subsequent proofs by 
hanging their indu
tion s
hemes. Thiswould 
ompel us to supply unne
essary indu
tion hints.We 
an also prove the following theorems without any e�ort. They state that the submatri
es ofa true matrix whose dimension is greater than one are also true matri
es (with half the dimension).These theorems are stored as type pres
ription rules.(defthm matrixp-sub-11(implies (and (matrixp a k) (not (zp k)))4



(matrixp (sub-11 a) (- k 1))):rule-
lasses :type-pres
ription)(defthm matrixp-sub-12(implies (and (matrixp a k) (not (zp k)))(matrixp (sub-12 a) (- k 1))):rule-
lasses :type-pres
ription)(defthm matrixp-sub-21(implies (and (matrixp a k) (not (zp k)))(matrixp (sub-21 a) (- k 1))):rule-
lasses :type-pres
ription)(defthm matrixp-sub-22(implies (and (matrixp a k) (not (zp k)))(matrixp (sub-22 a) (- k 1))):rule-
lasses :type-pres
ription)4 Ring Stru
tureHaving sele
ted a representation for matri
es, we should show now that it is suitable for devisingthe usual operations and proving their properties.The symbols +m, -m, *m will stand for matrix addition, negation and multipli
ation operations.On the other hand, null and identity will represent the null and identity matri
es, respe
tively.In order to prevent name 
on�i
ts4, matrix operations and properties are supposed to be de�nedin a new pa
kage, MATRIX.4.1 OperationsThe re
ursive representation 
hosen produ
es elegant re
ursive formulations of 
ommon matrixoperations. To begin with, the addition of two matri
es is a

omplished by re
ursively addingtheir submatri
es pairwise.(defun +m (a b k)(if (zp k)(+ a b)(let ((k-1 (- k 1)))(matrix (+m (sub-11 a) (sub-11 b) k-1)(+m (sub-12 a) (sub-12 b) k-1)(+m (sub-21 a) (sub-21 b) k-1)(+m (sub-22 a) (sub-22 b) k-1)))))A
l2 admits this fun
tion and also proves that it is a 
losed operation. Although it is notne
essary to supply the indu
tion s
heme, it shortens the proof.(defthm matrixp-+m(implies (and (matrixp a k) (matrixp b k))(matrixp (+m a b k) k)):rule-
lasses :type-pres
ription:hints (("Goal" :indu
t (+m a b k))))The de�nition and admission of matrix negation are straightforward. So is the proof of its
losure property.4A
l2 de�nes null and identity with a di�erent meaning.5



(defun -m (a k)(if (zp k)(- a)(let ((k-1 (- k 1)))(matrix (-m (sub-11 a) k-1) (-m (sub-12 a) k-1)(-m (sub-21 a) k-1) (-m (sub-22 a) k-1)))))(defthm matrixp--m(matrixp (-m a k) k):rule-
lasses :type-pres
ription)Following this, we 
an de�ne matrix multipli
ation in a way that resembles the 
lassi
 de�nitionof multipli
ation of two 2�2matri
es. The fa
t that this is also a 
losed operation is easily stated.(defun *m (a b k)(if (zp k)(* a b)(let ((k-1 (- k 1))(a11 (sub-11 a)) (a12 (sub-12 a))(a21 (sub-21 a)) (a22 (sub-22 a))(b11 (sub-11 b)) (b12 (sub-12 b))(b21 (sub-21 b)) (b22 (sub-22 b)))(matrix (+m (*m a11 b11 k-1) (*m a12 b21 k-1) k-1)(+m (*m a11 b12 k-1) (*m a12 b22 k-1) k-1)(+m (*m a21 b11 k-1) (*m a22 b21 k-1) k-1)(+m (*m a21 b12 k-1) (*m a22 b22 k-1) k-1)))))(defthm matrixp-*m(implies (and (matrixp a k) (matrixp b k))(matrixp (*m a b k) k)):rule-
lasses :type-pres
ription)The null matrix of a given dimension is 
omputed from four null submatri
es.(defun null (k)(if (zp k)0(let ((null (null (- k 1))))(matrix null null null null))))(defthm matrixp-null(matrixp (null k) k):rule-
lasses :type-pres
ription)The identity matrix is 
omputed from two identity submatri
es and two null submatri
es.(defun identity (k)(if (zp k)1(let ((null (null (- k 1)))(identity (identity (- k 1))))(matrix identity null null identity))))(defthm matrixp-identity(matrixp (identity k) k):rule-
lasses :type-pres
ription)
6



4.2 PropertiesHaving found a proper representation for our notion of matrix and its basi
 operations, it is timeto formally prove that it satis�es the properties that everyone expe
ts from matri
es.Some of these properties require indu
tion hints. The most 
omplex of them are de�nedseparately as fun
tions representing indu
tion s
hemes and they are dis
ussed in 6.4.2.1 Ring propertiesAsso
iativity of matrix addition requires an indu
tion s
heme. On the other hand, 
ommutativityof matrix addition 
an be stated without any user guidan
e.(defthm asso
iativity-of-+m(equal (+m (+m a b k) 
 k) (+m a (+m b 
 k) k)):hints (("Goal" :indu
t (s
heme-1 a b 
 k))))(defthm 
ommutativity-of-+m(equal (+m a b k) (+m b a k)))The null matrix is an identity element of matrix addition. The order in whi
h the theoremsare proved allows the se
ond theorem to be redu
ed to the �rst one, by using the 
ommutativitytheorem previously proved.(defthm null-identity-of-+m-2(implies (matrixp a k)(equal (+m a (null k) k) a)):hints (("Goal" :indu
t (+m a _ k))))(defthm null-identity-of-+m-1(implies (matrixp a k)(equal (+m (null k) a k) a)))The hypothesis (matrixp a) is required in both theorems. However, it is not ne
essary to supplythe indu
tion s
heme, though it shortens the proof. The s
heme suggested by :indu
t (+m a _ k)is based on +m, but it does not take into a

ount the se
ond argument (_ does not appear as avariable in the theorem body).We 
an also automati
ally prove that matrix negation is an inverse of matrix addition.(defthm -m-inverse-of-+m-2(equal (+m a (-m a k) k) (null k)))(defthm -m-inverse-of-+m-1(equal (+m (-m a k) a k) (null k)))The order in whi
h the theorems are proved allows the se
ond theorem to be redu
ed to the�rst one, by using the 
ommutativity theorem previously proved.Distributivity of matrix multipli
ation over matrix addition is proved by using two separateindu
tion s
hemes. Sin
e matrix multipli
ation is not 
ommutative, we 
an not redu
e one of thetheorems to the other.(defthm distributivity-of-*m-over-+m-1(equal (*m a (+m b 
 k) k)(+m (*m a b k) (*m a 
 k) k)):hints (("Goal" :indu
t (s
heme-2 a b 
 k))))(defthm distributivity-of-*m-over-+m-2(equal (*m (+m a b k) 
 k)(+m (*m a 
 k) (*m b 
 k) k)):hints (("Goal" :indu
t (s
heme-3 a b 
 k))))7



The proof of the asso
iativity of matrix multipli
ation uses a 
omplex indu
tion s
heme. Italso requires several of the previous theorems (notably, the distributivity of the multipli
ation overthe addition) and a pair of te
hni
al lemmas.(defthm asso
iativity-of-*m(equal (*m (*m a b k) 
 k) (*m a (*m b 
 k) k)):hints (("Goal":indu
t (s
heme-4 a b 
 k):in-theory (disable 
ommutativity-of-*asso
iativity-of-+m
ommutativity-of-+m)))))Finally, we must prove that the identity matrix is an identity element of the matrix mul-tipli
ation operation. The te
hni
al lemma arithmeti
-1 a
ts as a 
onvenient repla
ement foruni
ity-of-0 and uni
ity-of-1 axioms in these proofs.(lo
al(defthm arithmeti
-1(implies (a
l2-numberp x)(and (equal (+ 0 x) x)(equal (* 1 x) x)(equal (* 0 x) 0)))))(defthm identity-identity-of-*m-1(implies (matrixp a k)(equal (*m (identity k) a k) a)):hints (("Goal":indu
t (+m a _ k):in-theory (disable uni
ity-of-0 uni
ity-of-1))))(defthm identity-identity-of-*m-2(implies (matrixp a k)(equal (*m a (identity k) k) a)):hints (("Goal":indu
t (+m a _ k):in-theory (disable uni
ity-of-0 uni
ity-of-1))))The hypothesis (matrixp a k) is also ne
essary here. However, it is not ne
essary to supplythe indu
tion s
hemes, though they shorten the proofs.4.2.2 Additional propertiesAn elemental property that we 
an prove automati
ally states that matrix negation of a nullmatrix is also a null matrix.(defthm -m-null-is-null(equal (-m (null k) k) (null k)))The following theorems are interesting. They prove that the null matrix is a 
an
ellativeelement of matrix multipli
ation.(defthm null-
an
ellative-of-*m-1(equal (*m (null k) a k) (null k)):hints (("Goal" :indu
t (+m a _ k))))(defthm null-
an
ellative-of-*m-2(equal (*m a (null k) k) (null k)):hints (("Goal" :indu
t (+m a _ k))))As in many other theorems, the indu
tion s
hemes are not required. However, they slightlyshorten the proofs, though, in this parti
ular 
ase, the indu
tion s
heme sele
ted by A
l2 is very
lose to our indu
tion hint. 8



5 Useful Rewrite RulesIn addition to the usual interpretation of theorems, ea
h theorem 
an be understood as a (possibly
onditional) rewrite rule5. This dual 
hara
ter leads to an operational view of theorems as rules.Sometimes, it is useful to prove a theorem just due to its adequa
y as a rewrite rule. For example,the following theorem shows that matrix negation is idempotent:(defthm idempoten
y-of--m(implies (matrixp a k)(equal (-m (-m a k) k) a)):hints (("Goal" :indu
t (-m a k))))But, in fa
t, the theorem is stored as a (left to right) rewrite rule on
e it has been proved.This allows the prover to eliminate 
onse
utive appli
ations of the negation operator during thedevelopment of a proof on matri
es. In this 
ase, the hypothesis is stri
tly ne
essary, that is, thisis a 
onditional rewrite rule. However, it is not ne
essary to supply the indu
tion s
heme, thoughit shortens the proof.The distributivity of matrix negation over matrix addition is a fa
t that the prover stateswithout problems. As a rewrite rule, this allows pushing the negation operator into the additionoperator.(defthm distributivity-of--m-over-+m(equal (-m (+m a b k) k)(+m (-m a k) (-m b k) k)))Another interesting rewrite rule introdu
e matrix negation inside matrix multipli
ation. Ate
hni
al lemma is required to prove the asso
iated theorem. This lemma uses an instan
e ofthe distributivity of the multipli
ation over the addition of numbers6 and the linear arithmeti
de
ision pro
edure.(defthm arithmeti
-2(equal (- (* x y)) (* x (- y))):hints (("Goal":use (:instan
e distributivity (z (- y))))))(defthm introdu
e--m-inside-*m(equal (-m (*m a b k) k)(*m a (-m b k) k)))Finally, the following rule prevents top-most o

urren
es of negation operators in the �rstparameter of a multipli
ation operator during a proof. It shifts-right matrix negation insidematrix multipli
ation. Similarly to the previous rule, it uses a simple arithmeti
 property thatrequires some tri
kery to be proved. The indu
tion hint is ne
essary to 
omplete the proof.(defthm arithmeti
-3(equal (* (- x) y) (* x (- y))):hints (("Goal":use((:instan
e distributivity (z (- y)))(:instan
e distributivity (x y) (y x) (z (- x)))))))(defthm shift--m-inside-*m(equal (*m (-m a k) b k)(*m a (-m b k) k)):hints (("Goal" :indu
t (*m a b k))))5In fa
t, a theorem may generate several rewrite rules.6A
l2 in
ludes the following distributivity axiom: (equal (* x (+ y z)) (+ (* x y) (* x z))).9



The 
ombination of these rewrite rules is useful in a 
ertain sense: it allows a kind of �normal-ization� of the negation operator o

urren
es in a matrix expression. For example, let us 
onsiderthree matri
es a, b y 
 and the matrix expression (-m (+m a (*m (-m b k) 
 k) k) k):(-m (+m a (*m (-m b k) 
 k) k) k)redu
es by shift--m-inside-*m to:(-m (+m a (*m b (-m 
 k) k) k) k)redu
es by distributivity-of--m-over-+m to:(+m (-m a k) (-m (*m b (-m 
 k) k) k) k)redu
es by introdu
e--m-inside-*m to:(+m (-m a k) (*m b (-m (-m 
 k) k) k) k)redu
es by idempoten
y-of--m to:(+m (-m a k) (*m b 
 k) k)Therefore, the term rewriting system has been able to redu
e (-m (+m a (*m (-m b k) 
 k) k) k)to (+m (-m a k) (*m b 
 k) k) by pushing the negation operation deep inside its argument.6 Indu
tion S
hemesOne of the highlights of A
l2 is its ability to guess suitable indu
tion s
hemes during the devel-opment of a proof. Surprisingly, we have found that some of the matrix ring properties presentedresist A
l2 heuristi
 e�orts. For example, let us 
onsider the following indu
tion s
heme:(defun s
heme-1 (a b 
 k)(if (zp k)(+ a b 
)(+ (s
heme-1 (sub-11 a) (sub-11 b) (sub-11 
) (- k 1))(s
heme-1 (sub-12 a) (sub-12 b) (sub-12 
) (- k 1))(s
heme-1 (sub-21 a) (sub-21 b) (sub-21 
) (- k 1))(s
heme-1 (sub-22 a) (sub-22 b) (sub-22 
) (- k 1)))))This s
heme is used as an indu
tion hint to prove asso
iativity-of-+m. The hint suggeststhat the indu
tive proof may 
onsist of a base 
ase and an indu
tive step with four indu
tionhypothesis. It 
an be interpreted in the following way:�Given a property stated on three matri
es, we must prove it for matri
es havingdimension n = 20 and, in order to prove the property for matri
es whose dimension isn = 2k, where k 6= 0, we may use the fa
t that the property holds for 
ertain tripletsof submatri
es with dimension n2 = 2k�1.�As we 
an see here, this is a sort of multiple stru
tural indu
tion on the arguments. The base
ase is just a property on numbers sin
e we re
ognize 1 � 1 matri
es using a
l2-numberp. Butthe point is that we need to spe
ify whi
h parti
ular triplets of submatri
es are involved in theindu
tive step.It is worthwhile to note that A
l2 guarantees the 
orre
tion of this indu
tion s
heme sin
ethe fun
tion s
heme-1 has to be admitted under the de�nitional prin
iple before it 
an be used asa hint. This implies the existen
e of a stri
tly de
reasing measure in the well-founded domain of"0-ordinals.A similar problem appears when proving distributivity-of-*m-over-+m-1. In this 
ase, theindu
tion s
heme is more 
omplex: 10



(defun s
heme-2 (a b 
 k)(if (zp k)(+ a b 
)(+ (s
heme-2 (sub-11 a) (sub-11 b) (sub-11 
) (- k 1))(s
heme-2 (sub-12 a) (sub-21 b) (sub-21 
) (- k 1))(s
heme-2 (sub-11 a) (sub-12 b) (sub-12 
) (- k 1))(s
heme-2 (sub-12 a) (sub-22 b) (sub-22 
) (- k 1))(s
heme-2 (sub-21 a) (sub-11 b) (sub-11 
) (- k 1))(s
heme-2 (sub-22 a) (sub-21 b) (sub-21 
) (- k 1))(s
heme-2 (sub-21 a) (sub-12 b) (sub-12 
) (- k 1))(s
heme-2 (sub-22 a) (sub-22 b) (sub-22 
) (- k 1)))))Noti
e that the number of indu
tion hypothesis has in
reased to 8. A similar s
heme (s
heme-3)is used to prove distributivity-of-*m-over-+m-2. The proof of asso
iativity-of-*m is the most
omplex obtained proof: it requires a s
heme (s
heme-4) with 16 indu
tion hypothesis. For thesake of brevity, we omit these two s
hemes.In fa
t, we 
an generalize all these indu
tion s
hemes to obtain a single indu
tion s
heme thatis valid to prove all these properties. Nevertheless, this is a rather 
omplex s
heme7 
onsisting of26 indu
tion hypothesis.7 Con
lusions and Further WorkThere are many appli
ations of matrix and polynomial arithmeti
 ranging from DSP to 
omputergraphi
s and CAD. Therefore, it is important that basi
 libraries of algorithms and theorems onthese stru
tures are available. In this sense, our work is 
omplementary to [10℄, where a formaliza-tion of basi
 polynomial arithmeti
 is presented. Both works in
lude arithmeti
 operations, ringproperties and some useful operational rules.We think that the representation issues are the key to obtain 
lear statements of the propertiesto be proved. The formalization that we have shown is suitable for operating with dense matri
esand the degree of automation a
hieved is a

eptable. We had to devise several indu
tion s
hemes,but eventually we realized that four of them 
ould be merged into one s
heme. Some te
hni
allemmas on basi
 arithmeti
 properties of numbers were also required during the proofs.Although it is di�
ult to give a pre
ise measure of the development e�ort, we estimate it in0.5 man-month. This is still far away from typi
al programming e�orts for similar proje
ts. Byusing formal 
erti�
ation, we 
an assure 
orre
tness in ex
hange for this e�ort. This is 
learly abene�t when developing algorithms for 
riti
al systems.All the events (fun
tions and theorems) have been 
olle
ted in an A
l2 book to in
rease theirreusability. Nevertheless, we are working in abstra
ting the set of elements to obtain matri
es overarbitrary (non-
ommutative) rings. This 
an be a
hieved by using the en
apsulation prin
iple to
onstrain element operations to the desired properties. Later, fun
tional instantiation 
an beused to obtain 
on
rete implementations. However, there is a potential problem: on
e the setof elements has been abstra
ted, we 
an not use the linear arithmeti
 de
ision pro
edure in ourproofs any more. Thus, linear arithmeti
 must be repla
ed with ad ho
 properties.This work does not in
lude guard veri�
ation, though it is an interesting extension. A
l2'ssupport for guards allows us to indi
ate fun
tion pre
onditions and verify that the 
orrespondingCommon Lisp 
ode 
an be exe
uted with the same results on any platform.It is also ne
essary in many appli
ations to in
lude e�
ient algorithms in order to manipulatehigh dimension matri
es. Fast multipli
ation and exponentiation algorithms are our two maingoals. �Divide and 
onquer� provides the ne
essary algorithmi
 te
hniques.A well-known fast exponentiation algorithm 
an be obtained by binary redu
tion. On the otherhand, Strassen-Pan-Coppersmith-Winograd family of sub-
ubi
 matrix multipli
ation algorithmsin
ludes the asymptoti
ally most e�
ient multipli
ation algorithms known. It is true that even7We have noti
ed a 
onsiderable in
rease of the proof time.11



the original Strassen's algorithm is of limited pra
ti
al interest due to an important in
rease ofhidden 
onstants. Nevertheless, its me
hani
al veri�
ation is a 
hallenging problem.A
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