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tionIn this paper, we des
ribe a me
hani
al proof of Knuth-Bendix 
riti
al pair theorem,
arried out using the ACL2 theorem prover. ACL2 is both a logi
 and a me
hani
altheorem proving system supporting it, whi
h evolved from Nqthm. The ACL2 logi
is an existentially quanti�er-free fragment of �rst-order logi
 with equality. ACL2 isalso a programming language, an appli
ative subset of Common Lisp.This work is a part of a larger proje
t attempting to formalize theories aboutequational reasoning in the ACL2 logi
, in
luding abstra
t redu
tion relations, �rst-order terms and term rewriting systems, as des
ribed in [11℄. ACL2 is used here as ametalanguage, in order to formalize properties of an obje
t proof system (equationallogi
) in it.As far as we know, this is the �rst formal proof of Knuth-Bendix 
riti
al pairtheorem performed with a theorem prover. We think the results presented here areimportant for two reasons: from a theoreti
al point of view, it is shown how a very weaklogi
 
an be used to formalize and reason about non-trivial properties of equationalreasoning. From a pra
ti
al point of view, this is a �rst step to obtain me
hani
allyveri�ed de
ision pro
edures for some equational theories. As a by-produ
t, \
erti�ed"
ompliant Common Lisp 
ode is obtained for some basi
 algorithms used in rewritingtheory (like subsumption, uni�
ation and 
omputation of normal forms).Due to the la
k of spa
e, we will skip details of the me
hani
al proofs. The 
ompletebooks are available on the web in http://www-
s.us.es/~jruiz/a
l2-rewr/.2 The ACL2 systemWe brie
y des
ribe here the ACL2 theorem prover and its logi
. The best intro-du
tion to ACL2 is [5℄. See also [6℄, for an overview of the system. To obtain moreba
kground on ACL2, see the ACL2 user's manual in [7℄. A des
ription of the mainproof te
hniques used in Nqthm, that are also used in ACL2, 
an be found in [3℄.The ACL2 logi
 is a quanti�er-free, �rst-order logi
 with equality, des
ribing anappli
ative subset of Common Lisp. The syntax of terms is that of Common Lisp(we will assume the reader familiar with this language). The logi
 in
ludes axiomsfor propositional logi
 and for a number of Lisp fun
tions and data types. Rules ofinferen
e in
lude those for propositional 
al
ulus, equality, and instantiation. By theprin
iple of de�nition, new fun
tion de�nitions (using defun) are admitted as axioms? This work has been supported by DGES/MEC: Proje
ts PB96-0098-C04-04 and PB96-1345



only if there exists an ordinal measure in whi
h the arguments of ea
h re
ursive
all de
rease, ensuring in this way that no in
onsisten
ies are introdu
ed by newde�nitions. The theory has a 
onstru
tive de�nition of the ordinals up to "0, in termsof lists and natural numbers, given by the predi
ate e0-ordinalp and the ordere0-ord-<. One important rule of inferen
e is the prin
iple of indu
tion, that permitsproofs by indu
tion on "0.By the en
apsulation me
hanism (using the en
apsulate 
ommand), the user
an introdu
e new fun
tion symbols by axioms 
onstraining them to have 
ertainproperties (to ensure 
onsisten
y, a witness lo
al fun
tion having the same propertieshas to be exhibited). Inside an en
apsulate, properties stated with defthm needto be proved for the lo
al witnesses, and outside, those theorems work as assumedaxioms. The fun
tions partially de�ned with en
apsulate 
an be seen as se
ond ordervariables, representing fun
tions with those properties. A derived rule of inferen
e,fun
tional instantiation, allows some kind of se
ond-order reasoning: theorems about
onstrained fun
tions 
an be instantiated with fun
tion symbols known to have thesame properties.The ACL2 theorem prover is inspired by Nqthm, but has been 
onsiderably im-proved. The main proof te
hniques used by the prover are simpli�
ation and indu
tion.Simpli�
ation is a pro
ess 
ombining term rewriting with some de
ision pro
edures(linear arithmeti
, type set reasoner, et
.). The 
ommand defthm starts a proof at-tempt, and, if it su

eeds, the theorem is stored as a rule. The theorem prover isautomati
 in the sense that on
e defthm is invoked, the user 
an no longer intera
twith the system. However, in a sense, the prover is intera
tive: the system's behaviouris in
uen
ed by the database of stored rules. In a typi
al user intera
tion, one guidesthe prover to a pre
on
eived proof, by adding lemmas and de�nitions to be used insubsequent proofs.3 Formalization of the 
riti
al pair theorem in ACL2In this se
tion we explain how we formalized the statement of the 
riti
al pair theoremin the ACL2 logi
. The reader is assumed familiar with term rewriting systems (TRS)theory. A good introdu
tion to that �eld 
an be found in [1℄ (notations and de�nitionsused here are borrowed from that book). The 
riti
al pair theorem is stated as follows:Theorem (Knuth and Bendix [8℄): Let R a term rewriting system su
h that !Ris terminating. Then !R has the Chur
h-Rosser property i� for every 
riti
al pair(s; t) of R the normal forms of s and t are equal.This theorem is a basi
 result in order to me
hanize equational dedu
tion and todevelop 
ompletion algorithms to obtain de
ision pro
edures for equational theories(see [1℄ for details). In the sequel, we des
ribe the formalization of this theorem in theACL2 logi
. One of the impli
ations of the theorem is easy to prove: sin
e Chur
h-Rosser redu
tions provide unique normal forms for equivalent elements, 
riti
al pairsof a Chur
h-Rosser TRS have 
ommon normal forms. Although we also proved thisresult in ACL2, we will fo
us in this paper on the reverse impli
ation, whi
h is thehard part of the theorem.3.1 Equational theoriesSin
e rewriting is a redu
tion relation de�ned on �rst-order terms, we need to reasonabout them in ACL2. We represent �rst-order terms in pre�x notation using lists.



For example, the term f(x; g(y); h(x)) is represented as '(f x (g y) (h x)). Every
onsp obje
t 
an be seen as a term with its 
ar as its top fun
tion symbol and its
dr as the list of its arguments. Variables are represented by atom obje
ts. In orderto make easy variable renamings, we 
onsider an ex
eption to this rule: 
onsp ob-je
ts with the symbol var in its 
ar are also 
onsidered as variables (for example,'(var x 1)). The fun
tion variable-p re
ognizes variables. Substitutions are rep-resented as asso
iation lists and equations and rules as dotted pairs of terms. Thefun
tion instan
e implements the appli
ation of a substitution to a term. A numberof fun
tions a
ting on �rst-order terms were de�ned and theorems about them wereproved. Espe
ially important in this 
ontext are the fun
tions dealing with the treestru
ture of terms: positionp tests if a sequen
e of integers is a position of a term,o

urren
e returns the subtree at a given position and repla
e-term performs arepla
ement of a subterm at a given position (see [1℄ for details).Given a set of equations E, in order to formalize the relation �$E in ACL2, we�rst 
on
entrate on the one-step redu
tion relation noted as !E . Our �rst attemptwas to formalize the relation !E as a binary boolean fun
tion de�ned on �rst-orderterms. Nevertheless, if t1 !E t2, more important than the relation between t1 andt2 is the fa
t that t2 
an be obtained by applying a transformation (or operator) tot1. Thus !E 
an be seen as a binary fun
tion that given a term and an equationaloperator, returns another term, performing a one-step redu
tion. Equational operatorsare represented by stru
tures with three �elds 
ontaining the rewriting rule (equation)to apply, the position of the subterm to be rewritten and the mat
hing substitution:(defstru
ture eq-operator rule pos mat
hing)Of 
ourse, not every equational operator 
an be applied to every term: the lefthand side (lhs) of the rule has to subsume the o

urren
e at the given position. Thefun
tion eq-legal tests if a given operator 
an be applied to a term:(defun eq-legal (term op E)(let ((pos (pos op)) (rule (rule op)) (sigma (mat
hing op)))(and (eq-operator-p op) (member rule E) (positionp pos term)(equal (instan
e (lhs rule) sigma) (o

urren
e term pos)))))The fun
tion eq-redu
e-one-step applies an equational operator (whi
h mustbe legal) to a term (repla
ing the indi
ated subterm by the 
orresponding instan
e ofthe right hand side (rhs) of the equation):(defun eq-redu
e-one-step (term op)(repla
e-termterm (pos op) (instan
e (rhs (rule op)) (mat
hing op))))These two fun
tions allow us to de�ne the relation s �$E t. Due to the 
on-stru
tive nature of the ACL2 logi
, we have to in
lude an argument with a sequen
eof steps s = t0 $E t1 $E t2 : : : $E tn = t. In �gure 1, we de�ne the fun
tion(eq-equiv-p t1 t2 p E). This fun
tion returns t if p is a proof justifying thatt1 �$E t2 and nil otherwise. A proof 1 is a sequen
e of legal proof steps and ea
hproof step is a stru
ture r-step with four �elds: elt1, elt2 (the terms 
onne
ted),dire
t (the dire
tion of the step) and operator. A proof step is legal (as de�ned byeq-proof-step-p) if one of its elements is obtained applying the (legal) operator1 Do not 
onfuse with proofs done using the ACL2 system.



to the other. Two proofs justifying the same equivalen
e will be said to be equiva-lent. Note that the fun
tion eq-equiv-p implements a proof 
he
ker for equationaltheories, sin
e E j= s = t i� s �$E t, thus formalizing equational dedu
tion in ACL2.(defstru
ture r-step dire
t operator elt1 elt2)(defun eq-proof-step-p (s E)(let ((t1 (elt1 s)) (t2 (elt2 s)) (op (operator s)) (dt (dire
t s)))(and (r-step-p s)(implies dt (and (eq-legal t1 op E)(equal (eq-redu
e-one-step t1 op) t2)))(implies (not dt) (and (eq-legal t2 op E)(equal (eq-redu
e-one-step t2 op) t1))))))(defun eq-equiv-p (t1 t2 p E)(if (endp p) (equal t1 t2)(and (eq-proof-step-p (
ar p) E) (equal t1 (elt1 (
ar p)))(eq-equiv-p (elt2 (
ar p)) t2 (
dr p) E))))Fig. 1. De�nition of proofs and equational theoriesChur
h-Rosser property and lo
al 
on
uen
e 
an be rede�ned with respe
t tothe form of a proof . For that purpose, we de�ne (omitted here) fun
tions to re
og-nize proofs with parti
ular shapes (valleys and lo
al peaks): lo
al-peak-p re
ognizesproofs of the form s  E u !E t and steps-valley re
ognizes proofs of the forms �!E u � E t.Term rewriting systems, as de�ned in [1℄, are a spe
ial 
ase of sets of equations:the left hand side of the equations 
annot be variables and must 
ontain the variablesof the right-hand side. We de�ne the fun
tion rewrite-system (omitted here) toimplement this 
on
ept. Nevertheless, the formalization given in this subse
tion doesnot assume the set of equational axioms to be term rewriting systems.3.2 Termination and redu
tion orderingsIn order to formalize termination properties of term rewriting systems we rely on the
on
ept of redu
tion orderings, i.e., well-founded orderings being stable (
losed underinstantiation) and 
ompatible (
losed under repla
ement of subterms). We used thefollowing 
hara
terization: a term rewriting systems R terminates i� there exists aredu
tion order � that satis�es l � r for all l! r 2 R.A restri
ted notion of well-foundedness is built into ACL2, based on the followingmeta-theorem: a relation on a set A is well-founded i� there exists a measure fun
-tion F : A ! Ord su
h that x < y ) F (x) < F (y), where Ord is the 
lass of allordinals (axiom of 
hoi
e needed). In ACL2, on
e a relation is proved to satisfy theserequirements, it 
an be used in the admissibility test for re
ursive fun
tions. Sin
eonly ordinals up to "0 are formalized in the ACL2 logi
, a limitation is imposed in themaximal order type of well-founded relations that 
an be represented. Consequently,our formalization su�ers from the same restri
tion. Nevertheless, no parti
ular prop-erties of "0 are used in our proofs, ex
ept well-foundedness, so we think the sameformal proofs 
ould be 
arried out if higher ordinals were involved.



In �gure 2, the en
apsulate me
hanism is used to (partially) de�ne a fun
tionred<, assumed to be a redu
tion order (dots are used to omit te
hni
al details,as in the rest of the paper). The fun
tion (noetherian-red< TRS) is de�ned totest if red< justi�es termination of TRS. Note that an ordinal measure fn-red< isused to justify well-foundedness of red<. This property is stored by the system asa :well-founded-relation rule, whi
h allows to use it in the admissibility test forre
ursive fun
tions. In our 
ase, a fun
tion that 
omputes normal forms with respe
tto a terminating TRS will be admitted using that rule (se
tion 4). Well-foundednessof red< will be also 
ru
ial to instantiate Newman's lemma.(en
apsulate((red< (t1 t2) booleanp) (fn-red< (term) e0-ordinalp))....(defthm red<-well-founded-relation(and (e0-ordinalp (fn-red< t1))(implies (red< t1 t2) (e0-ord-< (fn-red< t1) (fn-red< t2)))):rule-
lasses :well-founded-relation)(defthm red<-stable(implies (red< t1 t2) (red< (instan
e t1 sigma) (instan
e t2 sigma))))(defthm red<-
ompatible(implies (and (positionp pos term) (red< t1 t2))(red< (repla
e-term term pos t1) (repla
e-term term pos t2))))(defthm red<-transitive(implies (and (red< x y) (red< y z)) (red< x z))));;; --------(defun noetherian-red< (TRS)(if (endp TRS) t(let ((rule (
ar TRS)))(and (red< (rhs rule) (lhs rule)) (noetherian-red< (
dr TRS)))))Fig. 2. A redu
tion order3.3 The 
riti
al pair theoremUsing en
apsulate we (partially) de�ne a term rewriting systems (RC) assumingto have the properties in the hypothesis of the 
riti
al pair theorem: (RC) is termi-nating (justi�ed by red<) and every 
riti
al pair obtained from rules in (RC) havea 
ommon normal form. See �gure 3. In this formalization, the 
on
epts of normalforms and 
riti
al pairs are implemented by the fun
tions RC-normal-form and 
p-r,respe
tively.The fun
tion RC-normal-form is de�ned to 
ompute normal forms with respe
tto the term rewriting system (RC). It iteratively applies the fun
tion r-redu
e untila normal form is found. The fun
tion (r-redu
e term TRS), whose de�nition weomit here, performs one step of rewriting, whenever it is possible. It traverses termto �nd a subterm subsumed by the left-hand side of a rule in TRS. When su
h asubterm is found, it is repla
ed by the 
orresponding instan
e of the right-hand sideof the rule. If it is not found, then r-redu
e returns nil (and therefore term is in



normal form). Those properties of r-redu
e were me
hani
ally veri�ed. Note thata veri�ed subsumption algorithm is needed for that purpose. An additional theoremabout r-redu
e was also needed, in order to prove termination of RC-normal-form:if (r-redu
e term (RC)) does not return nil, it returns a term less than term withrespe
t to the well founded relation red< (see se
tion 4).It is worth pointing that we 
an not de�ne in the ACL2 logi
 a fun
tion like(normal-form term R), 
omputing the normal form of a term term with respe
t toa TRS R, sin
e termination is not assured in general. Instead, we assume (RC) to beterminating and we de�ne normal form 
al
ulation with respe
t to (RC).The fun
tion (
p-r l1 r1 pos l2 r2) 
omputes the 
riti
al pair (if it exists)determined by the rules l1!r1 and l2!r2 at position pos of l1. Before 
omputingthe 
riti
al pair, the rules are renamed to get their variables standardized apart. Toreason properly about this fun
tion we needed to develop some results about variablerenamings. And, more important, a veri�ed uni�
ation algorithm was required.(en
apsulate((RC () terminating-rewrite-system-with-
ommon-n-f-
riti
al-pairs))...(defthm RC-rewrite-system (rewrite-system (RC)))(defthm RC-noetherian-red< (noetherian-red< (RC)))(defun RC-normal-form (term)(de
lare (xargs :measure term :well-founded-relation red<))(let ((red (r-redu
e term (RC))))(if red (RC-normal-form (unpa
k red)) term)))(defthm RC-
ommon-n-f-
riti
al-pairs(implies (and (member (make-rule l1 r1) (RC)) (member (make-rule l2 r2)(RC))(positionp pos l1) (not (variable-p (o

urren
e l1 pos))))(let ((
p-r (
p-r l1 r1 pos l2 r2)))(implies 
p-r(equal (RC-normal-form (lhs 
p-r))(RC-normal-form (rhs 
p-r))))))))Fig. 3. A terminating TRS with 
ommon normal form 
riti
al pairsHaving assumed the properties of �gures 2 and 3, in order to prove Knuth-Bendix
riti
al pair theorem we have to show that (RC) is a term rewriting system with theChur
h-Rosser property: in the terminology of proofs, this means that for every proofin (RC) there exists an equivalent valley proof. Due to the absen
e of existential quan-ti�
ation in the ACL2 logi
, we have to de�ne a fun
tion RC-transform-eq-proof andprove that, given a proof p justifying t1 �$(RC) t2, then (RC-transform-eq-proof p)returns an equivalent valley proof. This is the main theorem we proved:(defthm kb-
riti
al-pair-theorem(implies (eq-equiv-p t1 t2 p (RC))(and (eq-equiv-p t1 t2 (RC-transform-eq-proof p) (RC))(steps-valley (RC-transform-eq-proof p)))))The de�nition of RC-transform-eq-proof is omitted here due to the la
k ofspa
e (see the web page for details). It has an important 
omponent: a fun
tion



RC-transform-eq-peak transforming every equational lo
al peak proof to an equiv-alent valley proof, thus showing lo
al 
on
uen
e of (RC) (see se
tion 4). The fun
tionRC-transform-eq-proof is de�ned to apply iteratively RC-transform-eq-peak un-til the proof obtained has no lo
al peaks (i.e., it is a valley proof). Showing thatthis de�nition of RC-transform-eq-proof terminates is diÆ
ult. Note that on
e thede�nition is admitted, this 
an be seen almost as a proof of Newman's lemma:terminating and lo
ally 
on
uent redu
tion relations have the Chur
h-Rosser prop-erty. In fa
t, we used a previously developed ACL2 library of results about abstra
tredu
tions relations in
luding Newman's lemma, applied here as a parti
ular 
ase.4 Some 
omments about the proofFirst-order terms: Previous to the work presented here, we developed a library ofde�nitions and theorems (books in ACL2 terminology) about �rst-order terms. Thesebooks were translated from a previous formalization done using Nqthm, where thelatti
e-theoreti
 properties of terms were proved (see [10℄ for details).Sin
e ACL2 me
hanizes a logi
 of total fun
tions, our fun
tions a
ting on �rst-order terms are extended in a \natural" way to deal also with Lisp obje
ts not repre-senting terms, although they are not in the intended domain of the fun
tions. This isnot a problem: every fun
tion de�ned returns well-formed terms when its argumentsare well-formed terms. Furthermore, the guard veri�
ation me
hanism of ACL2 
anbe used to ensure that every exe
ution in Common Lisp of the fun
tions veri�ed doesnot evaluate on arguments outside the intended domain (see [5℄ for details).Most of the fun
tions are de�ned, using mutual re
ursion, for terms and for listsof terms at the same time. This kind of de�nitions suggest to the prover an indu
-tion s
heme very similar to indu
tion on the stru
ture of terms, whi
h, in most of
ases, turns out to be the right indu
tion s
heme. This good behaviour of the sys-tem's heuristi
s when 
hoosing indu
tion s
hemes for a 
onje
ture is 
ru
ial in theautomation of our proofs.Abstra
t redu
tions and Newman's lemma: An abstra
t redu
tion [1℄ is simply abinary relation, and equational redu
tions are a parti
ular 
ase of abstra
t redu
tions.As part of our proje
t to formalize properties of equational reasoning, we developedbooks proving results about abstra
t redu
tion relations. Con
epts like Chur
h-Rosserproperty, lo
al 
on
uen
e or noetherianity were de�ned in an abstra
t framework.One of the main theorems in this library is Newman's lemma. We use this result inour proof of the 
riti
al pair theorem. This previous work about abstra
t redu
tionsappears in [11℄, where we des
ribe the formalization of abstra
t redu
tion relationsin the ACL2 logi
, a proof of Newman's lemma (among other results) and how theen
apsulate me
hanism is used to export these results from the abstra
t 
ase to theequational 
ase. See also the web page.Redu
ibility and one-step rewriting: To instantiate our results from the abstra
t
ase to the equational 
ase, we need to de�ne a fun
tion eq-redu
ible su
h that(eq-redu
ible term R) returns a legal equational operator, whenever it exists, andnil otherwise [11℄. We omit the de�nition of eq-redu
ible here, but these are thetheorems we proved stating its main property:



(defthm eq-redu
ible-implies-legal(implies (eq-redu
ible term R)(eq-legal term (eq-redu
ible term R) R)))(defthm not-eq-redu
ible-nothing-legal(implies (not (eq-redu
ible term R))(not (eq-legal term op R)))Having de�ned eq-redu
ible and eq-redu
e-one-step, this provides a way toperform one step of rewriting, whenever it is possible: given a term and a TRS,apply eq-redu
ible to obtain an equational operator and, if non-nil, apply thisoperator to the term using eq-redu
e-one-step. If the TRS is terminating, thenthis method 
an be applied iteratively until a normal form is obtained. Indeed, thisis the de�nition of normal form we used for reasoning. However, this de�nition isonly useful for theoreti
al purposes: obviously, the normal form 
al
ulation 
an beoptimized in several ways. For example, a fun
tion 
omputing normal forms neitherneed to build an equational operator in every rewriting step nor traversing the termstwi
e, sear
hing a legal equational operator, and then applying the redu
tion step.We de�ned a more eÆ
ient (although not optimal) version of one-step rewriting,named r-redu
e, as we said in subse
tion 3.3. The main point here is that we usedthe more theoreti
al version to reason about normal form 
al
ulation, whi
h turnedout to be simpler. Later on, we proved equivalen
e with the improved version, andthen we stated the �nal version of the theorem with it.Redu
tion orderings: On
e red< has been assumed to be a redu
tion ordering andfun
tion noetherian-red< has been de�ned (�gure 2), we proved that the redu
tionrelation !R is terminating, whenever R is a TRS su
h that (noetherian-red< R):(defthm R-noetherian-if-subsetp-of-red<(implies (and (noetherian-red< R) (eq-legal term op R))(red< (eq-redu
e-one-step term op) term)))This lemma is essential to prove termination of the fun
tion RC-normal-formde�ned in �gure 3. The proof is almost automati
, using stability and 
ompatibilityof red<. The lemma is also needed to export Newman's lemma to the equational 
ase.Although the (partial) de�nition of the redu
tion ordering red< given in �gure 2works well from a theoreti
al point of view, we think that the main drawba
k inthis formalization of redu
tion orderings is that it 
an be diÆ
ult to prove that aparti
ular ordering (for example, a path ordering or a Knuth-Bendix ordering [1℄) isa redu
tion ordering, sin
e an ordinal measure fn-red< has to be given expli
itly.Future work will be done in this dire
tion.Lo
al 
on
uen
e: Having the properties about subsumption and uni�
ation ver-i�ed and Newman's lemma as a result in libraries previously developed, the mainproof e�ort was done to prove lo
al 
on
uen
e of the term rewriting system (RC).As outlined in subse
tion 3.3, in order to prove lo
al 
on
uen
e is enough to de-�ne a fun
tion RC-transform-eq-peak a
ting on proofs, and prove that it obtain anequivalent valley proof for every equational lo
al peak proof.



As a basis for our formal proof of lo
al 
on
uen
e of (RC), we follow Huet's proofgiven in [4℄. The proof is obtained as a typi
al (but very long) intera
tion with theACL2 theorem prover: the user guides the prover by adding lemmas and de�nitionsused later as rewriting rules. Most of lemmas are proved using only simpli�
ation andindu
tion.An important feature of our formalization is to 
onsider the obje
t proofs (equa-tional proofs) as elements that 
an be transformed to obtain new proofs. FollowingBa
hmair [2℄, we 
an de�ne an \algebra" of equational proofs, a set of operations a
t-ing on proofs: 
on
atenation of proofs, reverse proofs, instantiation of the elementsinvolved in a proof and in
lusion of the elements of a proof as subterms of a 
ommonterm (in
lusion in a 
ontext). The empty proof nil 
an be seen as a proof 
onstant.Ea
h of these operations 
orresponds with one of the properties needed to show thateq-equiv-p is a 
ongruen
e. See [11℄ for a des
ription of this issue.This \algebra" of equational proofs allows us to 
ontrol the 
omplexity of ourACL2 proofs: for example, one �rst deals with the 
ase in whi
h one of the tworewritings in the equational lo
al peak is performed at the top the term; later on, thisresult 
an be translated to a more general 
ase by in
lusion in a 
ontext.As in [4℄, the proof is mainly stru
tured to deal with three 
ases, a

ording to therelatives positions of the subterms where the two rewriting steps (in a lo
al peak)may o

ur:{ Disjoint rewriting. This is the easiest 
ase to prove, although an indu
tion hinthas to be given to the prover in order to reason properly about repla
ement indisjoint positions of a term.{ Non-
riti
al overlap. The main proof e�ort was done to handle non-
riti
al (orvariable) overlaps. It is interesting to point that in most of textbooks and surveysthis 
ase is proved pi
torially. Nevertheless, in our me
hani
al proof turned out tobe the most diÆ
ult part. For example, proving Proposition 3.6 of [4℄ was hard.It was even needed to design an indu
tion s
heme not dis
overed by the heuristi
sof the prover.{ Criti
al overlap: The 
riti
al overlap 
ase was easier to prove than the previous
ase, but we must not forget that this 
ase relies heavily on previously veri�edproperties of a uni�
ation algorithm.About the proof e�ort: It is diÆ
ult to give a measure of our proof e�ort, sin
edi�erent 
olle
tions of books were used, and not every of them were developed ex
lu-sively for the work presented here. We think that our formalization of the 
riti
al pairtheorem is a good example of integration of di�erent theories: books about lists, arith-meti
, �rst-order terms, abstra
t redu
tions, equational theories and term rewritingwere developed separately and 
ombined together to prove the theorem. Althoughbooks about �rst-order terms [10℄ and abstra
t redu
tions [11℄ are important 
ontri-butions to prove the 
riti
al pair theorem, we 
on
entrate here on that part of thework mainly devoted to the proof of the theorem.The proof des
ribed here has been stru
tured in four books, 
hronologi
ally de-veloped in the following order (every book needs results from its prede
essor):1. De�nition and main properties of the equational theory given by a set of equationalaxioms: equational-theories.lisp (this book also 
ontains some results notneeded for the proof of the 
riti
al pair).



2. De�nitions and basi
 properties of term rewriting systems: rewriting.lisp. Thenotions of redu
ibility, redu
tion orderings and one-step rewriting are formalizedin this book.3. The proof of the 
riti
al pair lemma: 
riti
al-pairs.lisp. Lo
al 
on
uen
e ofevery TRS with joinable 
riti
al pair is proved.4. The proof of Knuth-Bendix 
riti
al pair theorem: knuth-bendix.lisp. This �-nal part of the development uses Newman's lemma by fun
tional instantiation,besides the theorems in the previous book, to obtain the theorem as stated insubse
tion 3.3.Book Lines De�nitions Theorems Hintsequational-theories 543 11 29 8rewriting 720 13 38 9
riti
al-pairs 2129 43 112 26knuth-bendix 614 23 24 10Total 4006 90 203 53Fig. 4. Quantitative information on the proofFigure 4 gives some quantitative information on the proof. The �rst 
olumn 
on-tains the name of the book. The next three 
olumns show the number of lines, thenumber of de�nitions and the number of theorems in ea
h book. These numbers 
angive an idea of the granularity of our proof. We should say that these sizes 
an beredu
ed, but sometimes we preferred to split de�nitions and theorems for the sakeof 
larity. We also in
luded a �fth 
olumn with the number of theorems that neededhints from the user: the rest of the theorems were proved automati
ally by the sys-tem. Together with the number of theorems, this 
an give an idea of the degree ofautomation of the proofs. Most of the hints given are for disabling or enabling rulesor for using instan
es of previous theorems.It is 
lear from the table that the main proof e�ort was done to prove lo
al 
on-
uen
e of (RC) (the book 
riti
al-pair.lisp). This is, up to now, even the largestbook we developed in our 
urrent proje
t (for example, de�nition and veri�
ation ofuni�
ation needed 8 de�nitions and 96 theorems, and the proof of Newman's lemmaneeded 22 de�nitions and 73 theorems).5 Con
lusions and further workWe have presented a formalization and a me
hani
al proof of the Knuth-Bendix 
rit-i
al pair theorem, developed in the ACL2 system. This is an example (one more)of how a restri
ted logi
 like the ACL2 logi
 (a quanti�er-free �rst-order logi
 withequality) 
an be used to formalize and prove non-trivial theorems. Related work hadbeen done by Shankar [12℄, where the Boyer-More logi
 is used as a metalanguageto formalize G�odel's in
ompleteness theorem and Chur
h-Rosser theorem for lambda-
al
ulus, and Nqthm is used to prove those results. To our knowledge, no other formalproof of Knuth-Bendix 
riti
al pair theorem had been performed by a theorem prover.Although a fully veri�ed equational theorem prover is 
urrently beyond our pos-sibilities, this 
an be seen as an approa
h to \
ertify" some of its 
omponents. For



example, the guard veri�
ation me
hanism in ACL2, 
an be used to obtain veri�ed
ompliant Common Lisp 
ode for some basi
 pro
edures in term rewriting: subsump-tion, uni�
ation, normal form 
omputation and 
riti
al pairs. A re
ent work usingACL2 [9℄, opens another possible appli
ation: ACL2 fun
tions 
an be 
ombined withnon-ACL2 programs to 
he
k properties of their outputs.Sin
e equational theories des
ribed by a terminating and Chur
h-Rosser TRS arede
idable, this work opens a possibility to obtain me
hani
ally veri�ed de
ision pro-
edures (exe
utable in Common Lisp) for some equational theories. An open problemis to prove termination (in the ACL2 logi
) of 
on
rete TRSs. Work has to be done toformalize in ACL2 well-known termination term orderings (RPO, KBO, et
.). Maybesome problems will arise due to the restri
ted notion of well-foundedness (ordinaltypes below "0) supported by ACL2.Our goal in the long term is to obtain a 
erti�ed 
ompletion pro
edure written inCommon Lisp. Although for the moment this may be far from the 
urrent status ofour development, we think the work presented here is a good starting point.Referen
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