A mechanical proof of Knuth-Bendix critical pair
theorem (using ACL2) *

J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Martin
{jruiz, jalonso,mjoseh,fjesus}@cica.es

Departamento de Ciencias de la Computacién e Inteligencia Artificial.
Facultad de Informdtica y Estadistica, Universidad de Sevilla
Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

1 Introduction

In this paper, we describe a mechanical proof of Knuth-Bendix critical pair theorem,
carried out using the ACL2 theorem prover. ACL2 is both a logic and a mechanical
theorem proving system supporting it, which evolved from Nqthm. The ACL2 logic
is an existentially quantifier-free fragment of first-order logic with equality. ACL2 is
also a programming language, an applicative subset of Common Lisp.

This work is a part of a larger project attempting to formalize theories about
equational reasoning in the ACL2 logic, including abstract reduction relations, first-
order terms and term rewriting systems, as described in [11]. ACL2 is used here as a
metalanguage, in order to formalize properties of an object proof system (equational
logic) in it.

As far as we know, this is the first formal proof of Knuth-Bendix critical pair
theorem performed with a theorem prover. We think the results presented here are
important for two reasons: from a theoretical point of view, it is shown how a very weak
logic can be used to formalize and reason about non-trivial properties of equational
reasoning. From a practical point of view, this is a first step to obtain mechanically
verified decision procedures for some equational theories. As a by-product, “certified”
compliant Common Lisp code is obtained for some basic algorithms used in rewriting
theory (like subsumption, unification and computation of normal forms).

Due to the lack of space, we will skip details of the mechanical proofs. The complete
books are available on the web in http://www-cs.us.es/"jruiz/acl2-rewr/.

2 The ACL2 system

We briefly describe here the ACL2 theorem prover and its logic. The best intro-
duction to ACL2 is [5]. See also [6], for an overview of the system. To obtain more
background on ACL2, see the ACL2 user’s manual in [7]. A description of the main
proof techniques used in Nqthm, that are also used in ACL2, can be found in [3].
The ACL2 logic is a quantifier-free, first-order logic with equality, describing an
applicative subset of Common Lisp. The syntax of terms is that of Common Lisp
(we will assume the reader familiar with this language). The logic includes axioms
for propositional logic and for a number of Lisp functions and data types. Rules of
inference include those for propositional calculus, equality, and instantiation. By the
principle of definition, new function definitions (using defun) are admitted as axioms

* This work has been supported by DGES/MEC: Projects PB96-0098-C04-04 and PB96-1345

only if there exists an ordinal measure in which the arguments of each recursive
call decrease, ensuring in this way that no inconsistencies are introduced by new
definitions. The theory has a constructive definition of the ordinals up to £g, in terms
of lists and natural numbers, given by the predicate e0-ordinalp and the order
e0-ord-<. One important rule of inference is the principle of induction, that permits
proofs by induction on &g.

By the encapsulation mechanism (using the encapsulate command), the user
can introduce new function symbols by axioms constraining them to have certain
properties (to ensure consistency, a witness local function having the same properties
has to be exhibited). Inside an encapsulate, properties stated with defthm need
to be proved for the local witnesses, and outside, those theorems work as assumed
axioms. The functions partially defined with encapsulate can be seen as second order
variables, representing functions with those properties. A derived rule of inference,
functional instantiation, allows some kind of second-order reasoning: theorems about
constrained functions can be instantiated with function symbols known to have the
same properties.

The ACL2 theorem prover is inspired by Nqthm, but has been considerably im-
proved. The main proof techniques used by the prover are simplification and induction.
Simplification is a process combining term rewriting with some decision procedures
(linear arithmetic, type set reasoner, etc.). The command defthm starts a proof at-
tempt, and, if it succeeds, the theorem is stored as a rule. The theorem prover is
automatic in the sense that once defthm is invoked, the user can no longer interact
with the system. However, in a sense, the prover is interactive: the system’s behaviour
is influenced by the database of stored rules. In a typical user interaction, one guides
the prover to a preconceived proof, by adding lemmas and definitions to be used in
subsequent proofs.

3 Formalization of the critical pair theorem in ACL2

In this section we explain how we formalized the statement of the critical pair theorem
in the ACL2 logic. The reader is assumed familiar with term rewriting systems (TRS)
theory. A good introduction to that field can be found in [1] (notations and definitions
used here are borrowed from that book). The critical pair theorem is stated as follows:

Theorem (Knuth and Bendix [8]): Let R a term rewriting system such that —p
is terminating. Then — g has the Church-Rosser property iff for every critical pair
(s,t) of R the normal forms of s and t are equal.

This theorem is a basic result in order to mechanize equational deduction and to
develop completion algorithms to obtain decision procedures for equational theories
(see [1] for details). In the sequel, we describe the formalization of this theorem in the
ACL2 logic. One of the implications of the theorem is easy to prove: since Church-
Rosser reductions provide unique normal forms for equivalent elements, critical pairs
of a Church-Rosser TRS have common normal forms. Although we also proved this
result in ACL2, we will focus in this paper on the reverse implication, which is the
hard part of the theorem.

3.1 Equational theories

Since rewriting is a reduction relation defined on first-order terms, we need to reason
about them in ACL2. We represent first-order terms in prefix notation using lists.

For example, the term f(x, g(y), h(z)) is represented as > (£ x (g y) (h x)). Every
consp object can be seen as a term with its car as its top function symbol and its
cdr as the list of its arguments. Variables are represented by atom objects. In order
to make easy variable renamings, we consider an exception to this rule: consp ob-
jects with the symbol var in its car are also considered as variables (for example,
>(var x 1)). The function variable-p recognizes variables. Substitutions are rep-
resented as association lists and equations and rules as dotted pairs of terms. The
function instance implements the application of a substitution to a term. A number
of functions acting on first-order terms were defined and theorems about them were
proved. Especially important in this context are the functions dealing with the tree
structure of terms: positionp tests if a sequence of integers is a position of a term,
occurrence returns the subtree at a given position and replace-term performs a
replacement of a subterm at a given position (see [1] for details).

Given a set of equations E, in order to formalize the relation &g in ACL2, we
first concentrate on the one-step reduction relation noted as —g. Our first attempt
was to formalize the relation — g as a binary boolean function defined on first-order
terms. Nevertheless, if t{ — g t2, more important than the relation between t1 and
to is the fact that t5 can be obtained by applying a transformation (or operator) to
t1. Thus — g can be seen as a binary function that given a term and an equational
operator, returns another term, performing a one-step reduction. Equational operators
are represented by structures with three fields containing the rewriting rule (equation)
to apply, the position of the subterm to be rewritten and the matching substitution:

(defstructure eq-operator rule pos matching)

Of course, not every equational operator can be applied to every term: the left
hand side (1hs) of the rule has to subsume the occurrence at the given position. The
function eq-legal tests if a given operator can be applied to a term:

(defun eq-legal (term op E)
(let ((pos (pos op)) (rule (rule op)) (sigma (matching op)))
(and (eq-operator-p op) (member rule E) (positionp pos term)
(equal (instance (lhs rule) sigma) (occurrence term pos)))))

The function eq-reduce-one-step applies an equational operator (which must
be legal) to a term (replacing the indicated subterm by the corresponding instance of
the right hand side (rhs) of the equation):

(defun eq-reduce-one-step (term op)
(replace-term
term (pos op) (instance (rhs (rule op)) (matching op))))

These two functions allow us to define the relation s <>z t. Due to the con-
structive nature of the ACL2 logic, we have to include an argument with a sequence
of steps s = tg ©p t1 &g tao... &p t, = t. In figure 1, we define the function
(eq-equiv-p t1 t2 p E). This function returns t if p is a proof justifying that
t1 &5 to and nil otherwise. A proof ! is a sequence of legal proof steps and each
proof step is a structure r-step with four fields: elt1, elt2 (the terms connected),
direct (the direction of the step) and operator. A proof step is legal (as defined by
eq-proof-step-p) if one of its elements is obtained applying the (legal) operator

! Do not confuse with proofs done using the ACL2 system.

to the other. Two proofs justifying the same equivalence will be said to be equiva-
lent. Note that the function eq-equiv-p implements a proof checker for equational
theories, since E |= s =t iff s &g t, thus formalizing equational deduction in ACL2.

(defstructure r-step direct operator eltl elt2)

(defun eq-proof-step-p (s E)
(let ((t1 (eltl s)) (t2 (elt2 s)) (op (operator s)) (dt (direct s)))
(and (r-step-p s)
(implies dt (and (eq-legal t1 op E)
(equal (eq-reduce-one-step tl op) t2)))
(implies (not dt) (and (eq-legal t2 op E)
(equal (eq-reduce-one-step t2 op) t1))))))

(defun eq-equiv-p (t1 t2 p E)
(if (endp p) (equal t1 t2)
(and (eq-proof-step-p (car p) E) (equal tl1 (eltl (car p)))
(eq-equiv-p (elt2 (car p)) t2 (cdr p) E))))

Fig. 1. Definition of proofs and equational theories

Church-Rosser property and local confluence can be redefined with respect to
the form of a proof . For that purpose, we define (omitted here) functions to recog-
nize proofs with particular shapes (valleys and local peaks): local-peak-p recognizes
proofs of the form s +p u —p t and steps-valley recognizes proofs of the form
S j;E u gLE t.

Term rewriting systems, as defined in [1], are a special case of sets of equations:
the left hand side of the equations cannot be variables and must contain the variables
of the right-hand side. We define the function rewrite-system (omitted here) to
implement this concept. Nevertheless, the formalization given in this subsection does
not assume the set of equational axioms to be term rewriting systems.

3.2 Termination and reduction orderings

In order to formalize termination properties of term rewriting systems we rely on the
concept of reduction orderings, i.e., well-founded orderings being stable (closed under
instantiation) and compatible (closed under replacement of subterms). We used the
following characterization: a term rewriting systems R terminates iff there exists a
reduction order > that satisfies [> r for all [— r € R.

A restricted notion of well-foundedness is built into ACL2, based on the following
meta-theorem: a relation on a set A is well-founded iff there exists a measure func-
tion F' : A — Ord such that x < y = F(z) < F(y), where Ord is the class of all
ordinals (axiom of choice needed). In ACL2, once a relation is proved to satisfy these
requirements, it can be used in the admissibility test for recursive functions. Since
only ordinals up to ¢¢ are formalized in the ACL2 logic, a limitation is imposed in the
maximal order type of well-founded relations that can be represented. Consequently,
our formalization suffers from the same restriction. Nevertheless, no particular prop-
erties of g9 are used in our proofs, except well-foundedness, so we think the same
formal proofs could be carried out if higher ordinals were involved.

In figure 2, the encapsulate mechanism is used to (partially) define a function
red<, assumed to be a reduction order (dots are used to omit technical details,
as in the rest of the paper). The function (noetherian-red< TRS) is defined to
test if red< justifies termination of TRS. Note that an ordinal measure fn-red< is
used to justify well-foundedness of red<. This property is stored by the system as
a :well-founded-relation rule, which allows to use it in the admissibility test for
recursive functions. In our case, a function that computes normal forms with respect
to a terminating TRS will be admitted using that rule (section 4). Well-foundedness
of red< will be also crucial to instantiate Newman’s lemma.

(encapsulate
((red< (t1 t2) booleanp) (fn-red< (term) e0O-ordinalp))

(defthm red<-well-founded-relation
(and (e0-ordinalp (fn-red< t1))
(implies (red< tl1 t2) (e0-ord-< (fn-red< tl1) (fn-red< t2))))
:rule-classes :well-founded-relation)

(defthm red<-stable
(implies (red< t1 t2) (red< (instance t1 sigma) (instance t2 sigma))))

(defthm red<-compatible
(implies (and (positionp pos term) (red< tl t2))
(red< (replace-term term pos t1) (replace-term term pos t2))))

(defthm red<-transitive
(implies (and (red< x y) (red< y z)) (red< x z))))

(defun noetherian-red< (TRS)
(if (endp TRS) t
(let ((rule (car TRS)))

(and (red< (rhs rule) (lhs rule)) (noetherian-red< (cdr TRS)))))

Fig. 2. A reduction order

3.3 The critical pair theorem

Using encapsulate we (partially) define a term rewriting systems (RC) assuming
to have the properties in the hypothesis of the critical pair theorem: (RC) is termi-
nating (justified by red<) and every critical pair obtained from rules in (RC) have
a common normal form. See figure 3. In this formalization, the concepts of normal
forms and critical pairs are implemented by the functions RC-normal-form and cp-r,
respectively.

The function RC-normal-form is defined to compute normal forms with respect
to the term rewriting system (RC). It iteratively applies the function r-reduce until
a normal form is found. The function (r-reduce term TRS), whose definition we
omit here, performs one step of rewriting, whenever it is possible. It traverses term
to find a subterm subsumed by the left-hand side of a rule in TRS. When such a
subterm is found, it is replaced by the corresponding instance of the right-hand side
of the rule. If it is not found, then r-reduce returns nil (and therefore term is in

normal form). Those properties of r-reduce were mechanically verified. Note that
a verified subsumption algorithm is needed for that purpose. An additional theorem
about r-reduce was also needed, in order to prove termination of RC-normal-form:
if (r-reduce term (RC)) does not return nil, it returns a term less than term with
respect to the well founded relation red< (see section 4).

It is worth pointing that we can not define in the ACL2 logic a function like
(normal-form term R), computing the normal form of a term term with respect to
a TRS R, since termination is not assured in general. Instead, we assume (RC) to be
terminating and we define normal form calculation with respect to (RC).

The function (cp-r 11 rl pos 12 r2) computes the critical pair (if it exists)
determined by the rules 11—r1 and 12—r2 at position pos of 11. Before computing
the critical pair, the rules are renamed to get their variables standardized apart. To
reason properly about this function we needed to develop some results about variable
renamings. And, more important, a verified unification algorithm was required.

(encapsulate
((RC () terminating-rewrite-system-with-common-n-f-critical-pairs))

(defthm RC-rewrite-system (rewrite-system (RC)))
(defthm RC-noetherian-red< (noetherian-red< (RC)))

(defun RC-normal-form (term)
(declare (xargs :measure term :well-founded-relation red<))
(let ((red (r-reduce term (RC))))
(if red (RC-normal-form (unpack red)) term)))

(defthm RC-common-n-f-critical-pairs
(implies (and (member (make-rule 11 r1) (RC)) (member (make-rule 12 r2) (RC))
(positionp pos 11) (not (variable-p (occurrence 11 pos))))
(let ((cp-r (cp-r 11 rl pos 12 r2)))
(implies cp-r
(equal (RC-normal-form (lhs cp-r))
(RC-normal-form (rhs cp-r))))))))

Fig. 3. A terminating TRS with common normal form critical pairs

Having assumed the properties of figures 2 and 3, in order to prove Knuth-Bendix
critical pair theorem we have to show that (RC) is a term rewriting system with the
Church-Rosser property: in the terminology of proofs, this means that for every proof
in (RC) there exists an equivalent valley proof. Due to the absence of existential quan-
tification in the ACL2 logic, we have to define a function RC-transform-eq-proof and
prove that, given a proof p justifying ¢; < (Rc) t2, then (RC-transform-eq-proof p)
returns an equivalent valley proof. This is the main theorem we proved:

(defthm kb-critical-pair-theorem
(implies (eq-equiv-p t1 t2 p (RC))
(and (eq-equiv-p tl1 t2 (RC-transform-eq-proof p) (RC))
(steps-valley (RC-transform-eq-proof p)))))

The definition of RC-transform-eq-proof is omitted here due to the lack of
space (see the web page for details). It has an important component: a function

RC-transform-eq-peak transforming every equational local peak proof to an equiv-
alent valley proof, thus showing local confluence of (RC) (see section 4). The function
RC-transform-eq-proof is defined to apply iteratively RC-transform-eq-peak un-
til the proof obtained has no local peaks (i.e., it is a valley proof). Showing that
this definition of RC-transform-eq-proof terminates is difficult. Note that once the
definition is admitted, this can be seen almost as a proof of Newman’s lemma:
terminating and locally confluent reduction relations have the Church-Rosser prop-
erty. In fact, we used a previously developed ACL2 library of results about abstract
reductions relations including Newman’s lemma, applied here as a particular case.

4 Some comments about the proof

First-order terms: Previous to the work presented here, we developed a library of
definitions and theorems (books in ACL2 terminology) about first-order terms. These
books were translated from a previous formalization done using Nqthm, where the
lattice-theoretic properties of terms were proved (see [10] for details).

Since ACL2 mechanizes a logic of total functions, our functions acting on first-
order terms are extended in a “natural” way to deal also with Lisp objects not repre-
senting terms, although they are not in the intended domain of the functions. This is
not a problem: every function defined returns well-formed terms when its arguments
are well-formed terms. Furthermore, the guard verification mechanism of ACL2 can
be used to ensure that every execution in Common Lisp of the functions verified does
not evaluate on arguments outside the intended domain (see [5] for details).

Most of the functions are defined, using mutual recursion, for terms and for lists
of terms at the same time. This kind of definitions suggest to the prover an induc-
tion scheme very similar to induction on the structure of terms, which, in most of
cases, turns out to be the right induction scheme. This good behaviour of the sys-
tem’s heuristics when choosing induction schemes for a conjecture is crucial in the
automation of our proofs.

Abstract reductions and Newman’s lemma: An abstract reduction [1] is simply a
binary relation, and equational reductions are a particular case of abstract reductions.
As part of our project to formalize properties of equational reasoning, we developed
books proving results about abstract reduction relations. Concepts like Church-Rosser
property, local confluence or noetherianity were defined in an abstract framework.

One of the main theorems in this library is Newman’s lemma. We use this result in
our proof of the critical pair theorem. This previous work about abstract reductions
appears in [11], where we describe the formalization of abstract reduction relations
in the ACL2 logic, a proof of Newman’s lemma (among other results) and how the
encapsulate mechanism is used to export these results from the abstract case to the
equational case. See also the web page.

Reducibility and one-step rewriting: To instantiate our results from the abstract
case to the equational case, we need to define a function eq-reducible such that
(eq-reducible term R) returns a legal equational operator, whenever it exists, and
nil otherwise [11]. We omit the definition of eq-reducible here, but these are the
theorems we proved stating its main property:

(defthm eq-reducible-implies-legal
(implies (eq-reducible term R)
(eq-legal term (eq-reducible term R) R)))

(defthm not-eq-reducible-nothing-legal
(implies (not (eq-reducible term R))
(not (eq-legal term op R)))

Having defined eq-reducible and eq-reduce-one-step, this provides a way to
perform one step of rewriting, whenever it is possible: given a term and a TRS,
apply egq-reducible to obtain an equational operator and, if non-nil, apply this
operator to the term using eq-reduce-one-step. If the TRS is terminating, then
this method can be applied iteratively until a normal form is obtained. Indeed, this
is the definition of normal form we used for reasoning. However, this definition is
only useful for theoretical purposes: obviously, the normal form calculation can be
optimized in several ways. For example, a function computing normal forms neither
need to build an equational operator in every rewriting step nor traversing the terms
twice, searching a legal equational operator, and then applying the reduction step.

We defined a more efficient (although not optimal) version of one-step rewriting,
named r-reduce, as we said in subsection 3.3. The main point here is that we used
the more theoretical version to reason about normal form calculation, which turned
out to be simpler. Later on, we proved equivalence with the improved version, and
then we stated the final version of the theorem with it.

Reduction orderings: Once red< has been assumed to be a reduction ordering and
function noetherian-red< has been defined (figure 2), we proved that the reduction
relation —p is terminating, whenever R is a TRS such that (noetherian-red< R):

(defthm R-noetherian-if-subsetp-of-red<
(implies (and (noetherian-red< R) (eq-legal term op R))
(red< (eq-reduce-one-step term op) term)))

This lemma is essential to prove termination of the function RC-normal-form
defined in figure 3. The proof is almost automatic, using stability and compatibility
of red<. The lemma is also needed to export Newman’s lemma to the equational case.

Although the (partial) definition of the reduction ordering red< given in figure 2
works well from a theoretical point of view, we think that the main drawback in
this formalization of reduction orderings is that it can be difficult to prove that a
particular ordering (for example, a path ordering or a Knuth-Bendix ordering [1]) is
a reduction ordering, since an ordinal measure fn-red< has to be given explicitly.
Future work will be done in this direction.

Local confluence: Having the properties about subsumption and unification ver-
ified and Newman’s lemma as a result in libraries previously developed, the main
proof effort was done to prove local confluence of the term rewriting system (RC).
As outlined in subsection 3.3, in order to prove local confluence is enough to de-
fine a function RC-transform-eq-peak acting on proofs, and prove that it obtain an
equivalent valley proof for every equational local peak proof.

As a basis for our formal proof of local confluence of (RC), we follow Huet’s proof
given in [4]. The proof is obtained as a typical (but very long) interaction with the
ACL2 theorem prover: the user guides the prover by adding lemmas and definitions
used later as rewriting rules. Most of lemmas are proved using only simplification and
induction.

An important feature of our formalization is to consider the object proofs (equa-
tional proofs) as elements that can be transformed to obtain new proofs. Following
Bachmair [2], we can define an “algebra” of equational proofs, a set of operations act-
ing on proofs: concatenation of proofs, reverse proofs, instantiation of the elements
involved in a proof and inclusion of the elements of a proof as subterms of a common
term (inclusion in a context). The empty proof nil can be seen as a proof constant.
Each of these operations corresponds with one of the properties needed to show that
eq-equiv-p is a congruence. See [11] for a description of this issue.

This “algebra” of equational proofs allows us to control the complexity of our
ACL2 proofs: for example, one first deals with the case in which one of the two
rewritings in the equational local peak is performed at the top the term; later on, this
result can be translated to a more general case by inclusion in a context.

As in [4], the proof is mainly structured to deal with three cases, according to the
relatives positions of the subterms where the two rewriting steps (in a local peak)
may occur:

— Disjoint rewriting. This is the easiest case to prove, although an induction hint
has to be given to the prover in order to reason properly about replacement in
disjoint positions of a term.

— Non-critical overlap. The main proof effort was done to handle non-critical (or
variable) overlaps. It is interesting to point that in most of textbooks and surveys
this case is proved pictorially. Nevertheless, in our mechanical proof turned out to
be the most difficult part. For example, proving Proposition 3.6 of [4] was hard.
It was even needed to design an induction scheme not discovered by the heuristics
of the prover.

— Critical overlap: The critical overlap case was easier to prove than the previous
case, but we must not forget that this case relies heavily on previously verified
properties of a unification algorithm.

About the proof effort: It is difficult to give a measure of our proof effort, since
different collections of books were used, and not every of them were developed exclu-
sively for the work presented here. We think that our formalization of the critical pair
theorem is a good example of integration of different theories: books about lists, arith-
metic, first-order terms, abstract reductions, equational theories and term rewriting
were developed separately and combined together to prove the theorem. Although
books about first-order terms [10] and abstract reductions [11] are important contri-
butions to prove the critical pair theorem, we concentrate here on that part of the
work mainly devoted to the proof of the theorem.

The proof described here has been structured in four books, chronologically de-
veloped in the following order (every book needs results from its predecessor):

1. Definition and main properties of the equational theory given by a set of equational
axioms: equational-theories.lisp (this book also contains some results not
needed for the proof of the critical pair).

2. Definitions and basic properties of term rewriting systems: rewriting.lisp. The
notions of reducibility, reduction orderings and one-step rewriting are formalized
in this book.

3. The proof of the critical pair lemma: critical-pairs.lisp. Local confluence of
every TRS with joinable critical pair is proved.

4. The proof of Knuth-Bendix critical pair theorem: knuth-bendix.lisp. This fi-
nal part of the development uses Newman’s lemma by functional instantiation,
besides the theorems in the previous book, to obtain the theorem as stated in
subsection 3.3.

Book Lines|Definitions| Theorems|Hints
equational-theories| 543 11 29 8
rewriting 720 13 38 9
critical-pairs 2129 43 112 26
knuth-bendix 614 23 24 10
Total [4006] 90 203 | 53]

Fig. 4. Quantitative information on the proof

Figure 4 gives some quantitative information on the proof. The first column con-
tains the name of the book. The next three columns show the number of lines, the
number of definitions and the number of theorems in each book. These numbers can
give an idea of the granularity of our proof. We should say that these sizes can be
reduced, but sometimes we preferred to split definitions and theorems for the sake
of clarity. We also included a fifth column with the number of theorems that needed
hints from the user: the rest of the theorems were proved automatically by the sys-
tem. Together with the number of theorems, this can give an idea of the degree of
automation of the proofs. Most of the hints given are for disabling or enabling rules
or for using instances of previous theorems.

It is clear from the table that the main proof effort was done to prove local con-
fluence of (RC) (the book critical-pair.lisp). This is, up to now, even the largest
book we developed in our current project (for example, definition and verification of
unification needed 8 definitions and 96 theorems, and the proof of Newman’s lemma
needed 22 definitions and 73 theorems).

5 Conclusions and further work

We have presented a formalization and a mechanical proof of the Knuth-Bendix crit-
ical pair theorem, developed in the ACL2 system. This is an example (one more)
of how a restricted logic like the ACL2 logic (a quantifier-free first-order logic with
equality) can be used to formalize and prove non-trivial theorems. Related work had
been done by Shankar [12], where the Boyer-More logic is used as a metalanguage
to formalize Gbédel’s incompleteness theorem and Church-Rosser theorem for lambda-
calculus, and Nqthm is used to prove those results. To our knowledge, no other formal
proof of Knuth-Bendix critical pair theorem had been performed by a theorem prover.

Although a fully verified equational theorem prover is currently beyond our pos-
sibilities, this can be seen as an approach to “certify” some of its components. For

example, the guard verification mechanism in ACL2, can be used to obtain verified
compliant Common Lisp code for some basic procedures in term rewriting: subsump-
tion, unification, normal form computation and critical pairs. A recent work using
ACL2 [9], opens another possible application: ACL2 functions can be combined with
non-ACL2 programs to check properties of their outputs.

Since equational theories described by a terminating and Church-Rosser TRS are
decidable, this work opens a possibility to obtain mechanically verified decision pro-
cedures (executable in Common Lisp) for some equational theories. An open problem
is to prove termination (in the ACL2 logic) of concrete TRSs. Work has to be done to
formalize in ACL2 well-known termination term orderings (RPO, KBO, etc.). Maybe
some problems will arise due to the restricted notion of well-foundedness (ordinal
types below ¢g) supported by ACL2.

Our goal in the long term is to obtain a certified completion procedure written in
Common Lisp. Although for the moment this may be far from the current status of
our development, we think the work presented here is a good starting point.

References

BAADER, F., AND Nipkow, T. Term rewriting and all that. Cambridge University Press, 1998.

BAcCHMAIR, L. Canonical equational proofs. Birkhduser, 1991.

BOYER, R., AND MOORE, J S. A Computational Logic Handbook, 2nd ed. Academic Press, 1998.

HueT, G. Confluent reductions: Abstract properties and applications to term rewriting systems.

Journal of the ACM (1980).

5. KAUFMANN, M., MaANoLIOS, P., AND MOORE, J S. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

6. KAUFMANN, M., AND MOORE, J S. An industrial strength theorem prover for a logic based on
Common Lisp. IEEE Transactions on Software Engineering 23, 4 (1997), 203-213.

7. KAUFMANN, M., AND MOORE, J S. http://www.cs.utexas.edu/users/moore/acl2/acl2-doc.html.
ACL2 Version 2.4, 1999.

8. KNuTH, D., AND BENDIX, P. Simple word problems in universal algebras. In Computational
problems in abstract algebras, J Leech, Ed. Pergamon Press, 1970, pp. 263-297.

9. McCuUNE, W., AND SHUMSKY, O. Ivy: A preprocessor and proof checker for first-order logic. In
Computer-Aided Reasoning: ACL2 Case Studies, M. Kaufmann, P. Manolios, and J S. Moore,
Eds. Kluwer Academic Publishers, 2000, ch. 16.

10. Ruiz-REINA, J.-L., Aronso, J.-A., HIDALGO, M.-J., AND MARTIN, F.-J. Mechanical verifica-
tion of a rule based unification algorithm in the Boyer-Moore theorem prover. In AGP’99 Joint
Conference on Declarative Programming (1999), pp. 289-304.

11. Ruiz-REINA, J.-L., Aronso, J.-A., HIDALGO, M.-J., AND MARTIN, F.-J. Formalizing rewriting
in the ACL2 theorem prover. To be presented at AISC’2000 (Fifth International Conference
Artificial Intelligence and Symbolic Computation), 2000.

12. SHANKAR, N. Metamathematics, Machines, and Godel’s Proof. Cambridge University Press,

1994.

-

