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Abstract. In this paper we present the formalization of a decision pro-
cedure for Propositional Logic based on polynomial normalization. This
formalization is suitable for its automatic veri�cation in an applicative
logic like Acl2. This application of polynomials has been developed by
reusing a previous work on polynomial rings [19], showing that a proper
formalization leads to a high level of reusability. Two checkers are de-
�ned: the �rst for contradiction formulas and the second for tautology
formulas. The main theorems state that both checkers are sound and
complete. Moreover, functions for generating models and counterexam-
ples of formulas are provided. This facility plays also an important role
in the main proofs. Finally, it is shown that this allows for a highly
automated proof development.

1 Introduction

In this paper we present the main results obtained through the development of an
automated proof of the correctness of a polynomial-based decision procedure for
Propositional Logic in Acl2 [14,15,16]. Acl2 1 is the successor of Nqthm [3,5],
the Boyer-Moore theorem prover. A concise description of Acl2 can be found
in [14]. In order to understand Acl2, it is necessary to consider it under three
di�erent perspectives:

1. From a logic viewpoint, Acl2 is a untyped quanti�er-free �rst-order logic of
total recursive functions with equality. However, its encapsulation principle
allows for some kind of higher-order reasoning.

2. From a programming language viewpoint, Acl2 is an applicative program-
ming language in which the result of the application of a function is uniquely
determined by its arguments. Every Acl2 function admitted under the def-
initional principle is a Lisp function, so you can obtain both veri�ed and
executable software.

1 A Computational Logic for Applicative Common Lisp.

R.J. Boulton and P.B. Jackson (Eds.): TPHOLs 2001, LNCS 2152, pp. 297�312, 2001.
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3. From a reasoning system viewpoint, Acl2 is an automated reasoning system
and it behaves as a heuristic theorem prover.

Representation issues play a major role in this work. We have represented
Propositional Logic formulas in terms of just one Boolean function symbol: the
three-place conditional construct present in most programming languages. This
is discussed in Sect. 2.1. De�nitions related with Boolean polynomials are pre-
sented in Sect. 2.2.

Surprisingly, polynomial-based theorem proving has a long history. According
to H. Zhang [28], Boole himself [2] was the �rst to use Boolean polynomials to
represent logical formulas and Herbrand described a polynomial-based decision
procedure in his thesis. Later, in 1936, M. Stone [23] stated the strong relation
existing between Boolean algebras and Boolean rings. Analogous results had
been discovered, independently, in 1927 by I. I. Zhegalkin [29].

This relation is at the basis of the modern �algebraic methods� of logical
deduction. The algebraic approach began with the development by J. Hsiang
of a canonical term-rewriting system for Boolean algebras with applications to
�rst-order theorem proving [11,12]. Concurrently, D. Kapur and P. Narendran
used Gröbner bases and Buchberger's algorithm for the same purpose [17].2 This
last method has been extended to many-valued propositional logics [7,26] and it
has been recently applied to knowledge based systems veri�cation [18].

Several decision procedures for propositional logic that produce a veri�able
proof log have been implemented. For example, [9,10] report the development of
BDDs and Stªmarck's algorithm as HOL derived rules. On the other hand, actual
formal veri�cations of decision procedures are less common. The classical work
from [3] contains a veri�ed decision procedure in Nqthm using IF-expressions. A
similar procedure has been extracted from a Coq proof in [22]. Another decision
procedure obtained via proof extraction in Nuprl is described in [6]. However,
none of them is based on polynomial normalization.

We have not considered the possibility of integrating the decision procedure
into the theorem prover via re�ection, though this is feasible in Acl2 thanks
to its metatheoretical extensibility capabilities [4]. A re�ected decision proce-
dure has been developed in [1] with Nuprl. See also [8] for a critical survey of
re�ection in theorem proving from a theoretical and practical viewpoint.

Section 2.3 presents a translation algorithm from formulas into polynomials.
Once that suitable evaluation functions have been de�ned, this translation is
shown to be interpretation-preserving. In Sect. 3, we review Hsiang's canonical
term-rewriting system (TRS) for Boolean algebras. A normalization algorithm
that is not based in term-rewriting is also presented. In Sect. 4, we prove the
correctness of the decision procedure for Propositional Logic. As the involved
algorithms are written in an applicative subset of Common Lisp, they are in-
trinsically executable. Some examples of execution are shown in Sect. 5.

Finally, we will discuss the degree of automation achieved and we will also
analyze some possible extensions of this work.

2 See also [13,28,27].
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2 IF-Formulas and Boolean Polynomials

In [20] an Acl2 formalization of IF-Formulas and Boolean polynomials is pro-
posed. Next, the notion of Stone polynomial of an IF-formula is easily de�ned.
We review here the main results obtained with some improvements.

As the conditional construct IF is functionally complete, we can regard our
Propositional Logic formulas as IF-formulas without loss of generality. In fact,
the Nqthm Boyer-Moore logic and its descendant Acl2 de�ne the usual propo-
sitional connectives after axiomatizing IF. IF-formulas are also related with the
OBDD algorithm as can be seen in [21]. A BDD manager has been recently
formalized in Acl2 [24].

2.1 IF-Formulas

The underlying representation of IF-formulas is based on the notion of IF-cons.
IF-conses are weaker than IF-formulas in the sense that they may not repre-
sent well-formed formulas. We use record structures to represent IF-conses. This
provides us with a weak recognizer predicate that we strengthen to develop a
recognizer for well-formed formulas.

Boolean constants, nil and t, are recognized by the Acl2 booleanp predi-
cate. The set of propositional variables could be then represented by the set of
atoms not including the Boolean constants. However, if we represent variables
using natural numbers then it is easier to share the same notion of variable in
formulas and polynomials. Thus, we de�ne our variable recognizer, variablep,
to recognize just natural numbers.

Our notion of IF-cons is captured by an Acl2 structure. An IF-cons is just
a collection of three objects (the test, and the then and else branches). The
predicate if-consp will recognize terms constructed with if-cons, while the
functions test, then and else act as destructors. Well-formed IF-formulas can
be recognized by the following total recursive Acl2 predicate:

(defun formulap (f)

(or (booleanp f) (variablep f)

(and (if-consp f)

(formulap (test f))

(formulap (then f))

(formulap (else f)))))

An assignment of values to variables can be represented as a list of Booleans.3

Thus, the value of a variable with respect to an assignment is given by the
element which occupies its corresponding position.

(defun truth-value (v a)

(nth v a))

3 Remember each Boolean variable is represented as a natural number.
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The value of a formula under an assignment is de�ned recursively by the
following function. To make the valuation function total, we assign an arbitrary
meaning to non-formulas.

(defun value (f a)

(cond ((booleanp f) f)

((variablep f) (truth-value f a))

((if-consp f)

(if (value (test f) a)

(value (then f) a)

(value (else f) a)))

(t nil))) ; for completeness

The following theorem states a simple but important property. It says that
the value of a formula under an assignment is true if and only if the value of the
negation of that formula under the same assignment is false. Why this property
is important will become clear in Sect. 4.

(defthm duality

(implies (and (formulap f) (assignmentp a))

(iff (equal (value f a) t)

(equal (value (if-cons f nil t) a) nil))))

2.2 Boolean Polynomials

In order to represent polynomials with Boolean coe�cients, we can use the
Boolean ring given by 〈{0, 1},⊕,∧, 0, 1〉 where ⊕ is the logical exclusive dis-
junction (exclusive-or), ∧ is the logical conjunction and 0 and 1 are regarded as
truth-values (false and true). In the following de�nitions, let B = {0, 1} and ¬,
∨ stand for logical negation and logical disjunction, respectively.

Although it su�ces with a polynomial Boolean ring for our current purposes,
where monomials do not need coe�cients, we have implemented monomials with
coe�cients and terms to reuse part of a previous work on polynomial rings [19].

De�nition 1. A Boolean term on a �nite set V = {v1, . . . , vn} of Boolean vari-

ables with an ordering relation <V = {(vi, vj) : 1 ≤ i < j ≤ n} is a �nite product

of the form:
n∧

i=1

(vi ∨ ¬ai) ∀i ai ∈ B . (1)

We obtain a quite simple representation of a Boolean term on a given set of
variables by using the Boolean sequence 〈a1, . . . , an〉, namely, vi appears in the
term if and only if ai = 1. The main results that we have proved in Acl2 on our
Boolean term formalization may be summed up in the following points:

1. Boolean terms form a commutative monoid with respect to a suitable mul-
tiplication operation.

2. Lexicographical ordering on terms is well-founded.



A Certi�ed Polynomial-Based Decision Procedure for Propositional Logic 301

As we usually work with Boolean terms de�ned on the same set of vari-
ables, their sequences will have the same length. In this case they are said to be
compatible.

De�nition 2. We de�ne the multiplication of two compatible terms as the fol-

lowing operation:

n∧
i=1

(vi ∨ ¬ai) ·
n∧

i=1

(vi ∨ ¬bi) =
n∧

i=1

(vi ∨ ¬(ai ∨ bi)) . (2)

Having chosen the set of variables, it su�ces to �or� their sequences element
by element to compute the multiplication of two compatible terms. A proof
of terms having a commutative monoid structure with respect to the previous
operation is easily obtained.

To order terms it is only necessary to take into account their associated
sequences. The obvious choice is to set up a lexicographical ordering among
them. In the case of compatible terms, this de�nition is straightforward, since
the sequences involved have the same length.

De�nition 3. The lexicographical ordering on compatible Boolean terms is de-

�ned as the following relation:

〈a1, . . . , an〉 < 〈b1, . . . , bn〉 ≡ ∃i (¬ai ∧ bi ∧ ∀j < i aj = bj) . (3)

De�nition 4. A Boolean monomial on V is the product of a Boolean coe�cient

and a Boolean term.

c ∧
n∧

i=1

(vi ∨ ¬ai) c ∈ B ∀i ai ∈ B . (4)

In the same way as happened to terms, it is suitable to de�ne a compatibility
relation on monomials. We say that two monomials are compatible when their
underlying terms are compatible.

A multiplication operation is de�ned and then it is proved that monomials
have a monoid commutative structure with respect to it.

Due to technical reasons it is convenient to extend compatibility of monomials
to polynomials. To achieve this we �rst say that a polynomial is uniform if all of
its monomials are compatible each other. Henceforth, we will assume uniformity.

De�nition 5. A Boolean polynomial on V is a �nite sum of monomials.

m⊕
i=1


ci ∧

n∧
j=1

(vj ∨ ¬aij)


 ∀i, j ci, aij ∈ B . (5)

Now, the de�nition of compatibility between polynomials arises in a natural
way. Two polynomials are compatible if their monomials are compatible too.

Finally, we have proved that Boolean polynomials have a ring structure. To
achieve this, only coe�cients and terms had to be changed from the formalization
described in [19]. These changes are reported in [20].



302 Inmaculada Medina-Bulo et al.

2.3 Interpretation Preserving Translation

Next, we use the relation between Boolean rings and Boolean algebras to derive
the translation algorithm. Let us consider a Boolean algebra and the following
three place Boolean function if , de�ned on it:

∀a, b, c ∈ B if (a, b, c) = (a ∧ b) ∨ (¬a ∧ c) . (6)

We can build an associated if function in the corresponding Boolean ring:

if (a, b, c) = a · b · (a + 1) · c + a · b + (a + 1) · c = a · b + a · c + c .

The following Acl2 functions use this to compute the polynomial associ-
ated to a formula (Stone polynomial). The function variable->polynomial

transforms a propositional variable into a suitable polynomial. The underlying
polynomial Boolean ring is represented by 〈polynomialp, +, *, null, identity〉.
The argument of the function identity is a technical detail that guarantees the
uniformity of the resulting polynomial.

(defun stone (f)

(stone-aux f (max-variable f)))

(defun stone-aux (f n)

(cond ((booleanp f) (if f (identity (LISP::+ n 1)) (null)))

((variablep f) (variable->polynomial f n))

((if-consp f)

(let ((s-test (stone-aux (test f) n))

(s-then (stone-aux (then f) n))

(s-else (stone-aux (else f) n)))

(+ (* s-test (+ s-then s-else)) s-else)))

(t (null)))) ; for completeness

Then, a function, ev, to evaluate a polynomial with respect to an assignment
is de�ned. Finally, it is proved that the translation of formulas into polynomials
preserves the interpretation:

(defthm interpretation-preserving-translation

(implies (and (formulap f) (assignmentp a))

(iff (value f a) (ev (stone f) a))))

The hard part of the work is dealing with the theorems about the evaluation
function and polynomial operations.

3 Normalization

In this section, we review the Hsiang's Canonical TRS and develop a straight-
forward normalization procedure for Boolean polynomials. Unlike disjunctive
and conjunctive normal forms, polynomial normalization allows us to associate
a unique polynomial to each Propositional Logic Formula.
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3.1 Hsiang's Canonical TRS for Boolean Algebras

A Boolean ring with identity 〈B, +, ·, 0, 1〉 is a ring that is idempotent with
respect to ·. It is a known fact that every Boolean ring is nilpotent with respect to
+ and commutative. Hsiang [11,12] derives his canonical term-rewriting system
for Boolean algebras by �rst generating a canonical system for Boolean rings.
Firstly, he considers the Boolean ring axioms:4

A1. a + (b + c) = (a + b) + c (associativity of +).

A2. a + b = b + a (commutativity of +).

A3. a + 0 = a (right identity of +).

A4. a + (−a) = 0 (right inverse of +).

A5. (a · b) · c = a · (b · c) (associativity of ·).
A6. a · (b + c) = a · b + a · c (distributivity of · over +).

A7. a · 1 = a (right identity of ·).
A8. a · a = a (idempotency of ·).
T1. a + a = 0 (nilpotency of +).

T2. a · b = b · a (commutativity of ·).
By executing the AC-completion procedure on these rules, he obtains the

BR canonical TRS for Boolean rings. Then, BR can be completed5 by adding
rules for transforming the usual Boolean algebraic operations into Boolean ring
operations, obtaining the BA canonical TRS for Boolean algebras.

BR: BA:

a + 0 −→ a,

a · (b + c) −→ a · b + a · c,
a · 0 −→ 0,

a · 1 −→ a,

a · a −→ a,

a + a −→ 0,

−a −→ a .

a ∨ b −→ a · b + a + b,

a ∧ b −→ a · b,
¬a −→ a + 1,

a =⇒ b −→ a · b + a + 1,

a ⇐⇒ b −→ a · b · 1,

a + 0 −→ a,

a · (b + c) −→ a · b + a · c,
a · 0 −→ 0,

a · 1 −→ a,

a · a −→ a,

a + a −→ 0 .

4 Note that, T1 and T2 are not axioms, but theorems that are added so that the
AC-uni�cation algorithm can be used.

5 The −a −→ a rule is discarded since the inverse of + has no signi�cant meaning in
Boolean algebras.
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Therefore, the irreducible form of any Boolean algebra term is the normal
expression de�ned by the BA TRS above, and it is unique (since BA is a canonical
TRS). This implies that a formula from Propositional Logic is a tautology if and
only if its irreducible expression is 1, and it is a contradiction if and only if its
irreducible expression is 0.

3.2 A Straightforward Normalization Algorithm

An algorithm can be developed to avoid the overhead associated to Hsiang's
TRS. Instead of rewriting modulo BA, formulas are translated to polynomials
and then polynomial normalization is used. Once we have de�ned an order on
terms, we can say that a polynomial is in normal form if and only if their
monomials are strictly ordered by the decreasing term order and none of them is
null. This de�nition implies the absence of identical monomials in a normalized
uniform polynomial. We divide the speci�cation of the normalization function
in two steps:

1. A function capable of adding a monomial to a polynomial. This must be a
normalization-preserving function.

2. A normalization function stable for normalized null polynomials that adds
the �rst monomial to the normalization of the remaining monomials by using
the previous function.

The normalization function is easy to de�ne: if the polynomial is null, it
is already in normal form, otherwise, it su�ces to normalize the rest of the
polynomial and then add the �rst monomial to the result.

(defun nf (p)

(cond ((or (not (polynomialp p)) (nullp p)) (null))

(t (+-monomial (first p) (nf (rest p))))))

In order to make +-monomial total we need to complete, taking the utmost
care, the values that it returns when it is not applied to a polynomial.

Next, we show the most important part of the de�nition of +-monomial
function. It takes a monomial m and a polynomial p as its arguments.

1. If m is null, p is returned.
2. If p is null, the polynomial composed of m is returned.
3. If m and the �rst monomial of p have the same term, both monomials are

added. If the result is null then the rest of p is returned, otherwise a poly-
nomial consisting of the resulting monomial and the rest of p is returned.

4. If m is greater than the �rst monomial of p, a polynomial consisting of m and
p is returned.

5. Otherwise, a polynomial consisting of the �rst monomial of p and the result
of recursively adding m to the rest of p is returned.

Important properties of the normalization function have been proved, such
as that it meets its speci�cation,
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(defun nfp (p)

(equal (nf p) p))

(defthm nfp-nf

(nfp (nf p)))

and that polynomial uniformity is preserved under normalization.

(defun uniformp (p)

(or (nullp p) (nullp (rest p))

(and (MON::compatiblep (first p) (first (rest p)))

(uniformp (rest p)))))

(defthm uniformp-nf

(implies (uniformp p)

(uniformp (nf p))))

One relevant result states that the normal form of a polynomial is strictly
decreasingly ordered with respect to the lexicographical order de�ned on terms.

(defthm orderedp-nf

(orderedp (nf p)))

In order to obtain this, we de�ne the function orderedp by using the lexico-
graphical order de�ned on terms.

(defun term-greater-than-leader (m p)

(or (nullp p) (TER::< (MON::term (first p)) (MON::term m))))

(defun orderedp (p)

(and (polynomialp p)

(or (nullp p)

(and (not (MON::nullp (first p)))

(term-greater-than-leader (first p) (rest p))

(orderedp (rest p))))))

4 A Decision Procedure

In this section, our main aim is to construct a polynomial-based procedure for
deciding whether a propositional logic formula is a tautology and prove its cor-
rectness.

A formula is a tautology if and only if the value of the formula under every
possible assignment of values to variables is true. So, the following �rst-order
formula states the correctness of a tautology-checker:

∀f [(tautology-checker f) ⇐⇒ ∀a (value f a) = t] (7)

However, it is not possible to write directly this theorem in Acl2, due to the
lack of quanti�ers. For example, the following �theorem� does not capture our
idea:
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(defthm flawed-tautology-checker-correctness

(iff (tautology-checker f) (equal (value f a) t)))

The problem is that its �rst-order interpretation is the following:

∀f, a [(tautology-checker f) ⇐⇒ (value f a) = t] (8)

which is rather di�erent from (7).
A possible solution to this problem in Acl2 is to use defun-sk to introduce

an intermediate function whose body has an outermost quanti�er. Internally,
defun-sk uses defchoosewhich is implemented by using the encapsulation prin-
ciple.

An equivalent approach is to divide the proof in two parts: soundness and
completeness. This is the approach used in [3].

∀f, a [(tautology-checker f) =⇒ (value f a) = t] (sound)

∀f [¬(tautology-checker f) =⇒ ∃a (value f a) = nil] (complete)

The existential quanti�er in the second formula can be relieved by substitut-
ing a proper function for a. This enforces the constructive character of the Acl2
logic: an explicit function providing a counterexample for a non-tautological for-
mula is constructed in order to prove that the tautology-checker is complete.

On the other hand, it is a bit easier to formalize a contradiction-checker than
a tautology-checker when using the polynomial-based approach. Thus, we begin
by de�ning a contradiction-checker. Soundness and completeness for this kind of
checker are de�ned analogously to the tautological case.

4.1 Contradiction-Checker

The contradiction-checker proceeds by transforming a formula into a polynomial,
then computing its normal form and, �nally, checking if the resulting normal form
is the null polynomial.

So, we are trying to prove that a formula is a contradiction if the polyno-
mial in normal form associated to the formula is the null polynomial. First, we
introduce the function contradiction-checker.

(defun contradiction-checker (f)

(equal (nf (stone f)) (null)))

Second, we prove that the contradiction-checker is sound.

(defthm contradiction-checker-is-sound

(implies (and (formulap f) (assignmentp a) (contradiction-checker f))

(equal (value f a) nil)))

The proof outline is as follows:

1. The translation from formulas to polynomials is interpretation-preserving
allowing us to transform (value f a) into (ev (stone f) a).
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2. The evaluation of a polynomial is stable under normalization, so we can
replace (ev (stone f) a) by (ev (nf (stone f)) a).

3. The term (nf (stone f)) is known to be the null polynomial by the hypoth-
esis (contradiction-checker f). But the evaluation of the null polynomial
is nil under every possible assignment.

Therefore, we only need to show that the evaluation of a polynomial is equal
to the evaluation of its normal form.6

(defthm ev-nf

(implies (and (polynomialp p) (assignmentp a))

(equal (ev p a) (ev (nf p) a))))

In order to prove completeness, we have to compute an explicit model for
the formula in case of the formula not being a contradiction. We construct the
model from the associated polynomial because it is simpler to �nd than from
the formula itself.

In fact, it su�ces to take an assignment such that the least term of the
normalized polynomial evaluates to true. It is clear that each of the greater
terms must be false, because the least term lacks (at least) a variable appearing
in the remaining terms.

As we use the same representation for terms and assignments, this observa-
tion is supported by the following theorem. Therefore, the value of the formula
is true with respect to the assignment given by the least term of its associated
normalized polynomial.

(defthm ev-term-<

(implies (and (TER::termp t1) (TER::termp t2)

(TER::compatiblep t1 t2) (TER::< t2 t1))

(equal (ev-term t1 t2) nil)))

Next, we de�ne the function that computes such a term. Recall that nor-
malized polynomials remain ordered with respect to the lexicographical order
de�ned on terms. The null polynomial is a special case: it corresponds to a
contradiction, which has no models.

(defun least-term (p)

(cond ((nullp p) (TER::null 0)) ; for completeness

((nullp (rest p)) (MON::term (first p)))

(t (least-term (rest p)))))

(defun model (f)

(least-term (nf (stone f))))

Then, it is proved that the contradiction-checker is complete.

6 In fact, the de�nition of this theorem is completed with syntactic restrictions to
prevent the in�nite application of its associated rewrite rule.
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(defthm contradiction-checker-is-complete

(implies (and (formulap f) (not (contradiction-checker f)))

(equal (value f (model f)) t)))

The proof outline is as follows:

1. Let m be (model f).
2. The translation from formulas to polynomials is interpretation-preserving

allowing us to transform (value f m) into (ev (stone f) m).
3. The evaluation of a polynomial is stable under normalization, so we can

replace (ev (stone f) m) by (ev (nf (stone f)) m).
4. But the evaluation of (nf (stone f)) is t under m, by induction on the

structure of (nf (stone f)), which is known to be an ordered polynomial.

Some lemmas are needed for the last step. The main lemma asserts that
whenever least-term is applied to a non-null ordered uniform polynomial, it
computes an assignment that makes its evaluation t.

(defthm ev-least-term

(implies (and (polynomialp p) (uniformp p) (orderedp p)

(not (equal p (null))))

(equal (ev p (least-term p)) t)))

4.2 Tautology-Checker

Once we have certi�ed the contradiction-checker, the de�nition and certi�cation
of a tautology-checker is considerably easier. We proceed by constructing the
IF-formula corresponding to the negation of the input formula, then it is only
necessary to check whether the resulting IF-formula is a contradiction.

(defun tautology-checker (f)

(equal (nf (stone (if-cons f nil t))) (null)))

Let us consider the duality property stated in Sect. 2.1. This important
result reduces the problem of determining whether a formula is a tautology
to the dual problem of determining whether the negation of this formula is a
contradiction. Using this result, we can easily show that the tautology-checker
is sound.

(defthm tautology-checker-is-sound

(implies (and (formulap f) (assignmentp a) (tautology-checker f))

(equal (value f a) t)))

But counterexamples of a formula are just models of its negation. Therefore,
we can state the completeness of the tautology-checker in the following way:

(defun counterexample (f)

(model (if-cons f nil t)))

(defthm tautology-checker-is-complete

(implies (and (formulap f) (not (tautology-checker f)))

(equal (value f (counterexample f)) nil)))
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Consequently, the proof of this theorem is simply reduced to the completeness
of the contradiction-checker, which we have proven before.

5 Execution Examples

For the sake of simplicity, we are assuming in this section the following macro
de�nitions. In order to prevent name con�icts, we do this in a new package, EX.

(defmacro not (a) `(if-cons ,a nil t))

(defmacro and (a b) `(if-cons ,a (if-cons ,b t nil) nil))

(defmacro or (a b) `(if-cons ,a t (if-cons ,b t nil)))

(defmacro imp (a b) `(if-cons ,a (if-cons ,b t nil) t))

(defmacro iff (a b) `(if-cons ,a (if-cons ,b t nil) (if-cons ,b nil t)))

This is just a bit of syntactic sugar to avoid cumbersome IF-notation when
writing formulas from Classical Propositional Logic. In fact, these macros are
proved to do the correct thing, though we omit the details here. Basically, the
proof consist of stating that the interpretation of the formula built by each macro
agree with its corresponding truth-table.

Next, we are going to enumerate some formulas as we discuss their characters
by means of the execution of the corresponding functions in an Acl2 session.
Let us recall that �false� and �true� are represented by 0 and 1, but they are
implemented with nil and t. Variables are represented by natural numbers so
that, for example, we can think of p0, p1 and p2 as 0, 1 and 2, respectively.

Although we have not discussed it, we have speci�ed and veri�ed suitable
guards for every presented function. Thanks to guard veri�cation we can be sure
that execution will not abort7 if functions are applied to data in their intended
(guarded) domain.

� The formula ¬((p0 =⇒ p1) ⇐⇒ (¬p1 =⇒ ¬p0)) is a contradiction.

EX !> (contradiction-checker (not (iff (imp 0 1) (imp (not 1) (not 0)))))

T

� The formula ¬(p0 =⇒ p1) ∨ (p1 =⇒ p0) is not a tautology (p0 = 0,
p1 = 1 is a counterexample), nor a contradiction (p0 = p1 = 0 is a model). Its
corresponding Boolean polynomial in normal form is (p0 ∧ p1) ⊕ p1 ⊕ 1.

EX !> (tautology-checker (or (not (imp 0 1)) (imp 1 0)))

NIL

EX !> (counterexample (or (not (imp 0 1)) (imp 1 0)))

(NIL T)

EX !> (contradiction-checker (or (not (imp 0 1)) (imp 1 0)))

NIL

EX !> (model (or (not (imp 0 1)) (imp 1 0)))

(NIL NIL)

EX !> (nf (stone (or (not (imp 0 1)) (imp 1 0))))

((T (T T)) (T (NIL T)) (T (NIL NIL)))

7 As long as there are enough resources to do the computation.
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� The formula ((p0∨p1) =⇒ (p0∨p2)) ⇐⇒ (p0∨(p1 =⇒ p2)) is a tautology.

EX !> (tautology-checker (iff (imp (or 0 1) (or 0 2)) (or 0 (imp 1 2))))

T

� The formula (p0 ∨ (p1 ∧ p2)) ∧ ((p0 ∨ p1) ∧ (p0 ∨ p2)) is not a tautology
(p0 = p1 = p2 = 0 is a counterexample), nor a contradiction (p0 = 0, p1 =
p2 = 1 is a model). Its corresponding Boolean polynomial in normal form is
(p0 ∧ p1 ∧ p2) ⊕ p0 ⊕ (p1 ∧ p2).

EX !> (tautology-checker (and (or 0 (and 1 2)) (and (or 0 1) (or 0 2))))

NIL

EX !> (counterexample (and (or 0 (and 1 2)) (and (or 0 1) (or 0 2))))

(NIL NIL NIL)

EX !> (contradiction-checker (and (or 0 (and 1 2)) (and (or 0 1) (or 0 2))))

NIL

EX !> (model (and (or 0 (and 1 2)) (and (or 0 1) (or 0 2))))

(NIL T T)

EX !> (nf (stone (and (or 0 (and 1 2)) (and (or 0 1) (or 0 2)))))

((T (T T T)) (T (T NIL NIL)) (T (NIL T T)))

� The formula ((p0 ⇐⇒ p1) ⇐⇒ p2) ⇐⇒ (p0 ⇐⇒ (p1 ⇐⇒ p2)) is a
tautology.

EX !> (tautology-checker (iff (iff (iff 0 1) 2) (iff 0 (iff 1 2))))

T

6 Conclusions and Further Work

A decision procedure for Propositional Logic in Acl2 has been presented. This
includes a contradiction-checker and a tautology-checker together with their
proofs of soundness and completeness. Functions for �nding counterexamples
and models for formulas are also provided. They are useful not only to compute
but also to prove the main theorems stating the correctness of the checkers.
These results are by no means trivial and we think that this work is testimonial
to the high level of automation that can be reached in Acl2 when a proper
formalization is used.

All the functions and theorems presented here have been collected in Acl2

books to increase their reusability. Moreover, we have speci�ed and veri�ed suit-
able guards for every presented function. So, we can be sure that execution will
not abort if functions are applied to data in their intended (guarded) domain.

This decision procedure is based in Boolean polynomial normalization, but
instead of applying Hsiang's canonical term-rewriting system for Boolean al-
gebras, a straightforward normalization algorithm is used. This application of
polynomials has been developed by reusing a previous work on polynomial rings
[19]. The formalization presented there is modi�ed to accommodate polynomi-
als with rational coe�cients to Boolean polynomials. These modi�cations are
presented in [20].
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Previously, formulas are translated into polynomials by using the relation
between Boolean algebras and Boolean rings. This translation is interpretation-
preserving with respect to a suitable valuation function for formulas and a suit-
able evaluation function for polynomials. This and other properties were formal-
ized in [20].

The whole formalization consists of (roughly) 40 pages of Acl2 source code.
23 pages are devoted to the formalization of Boolean polynomials and 17 to the
formalization of the decision procedures. The automation degree that we have
obtained is high, though some technical lemmas and hints were required.

As polynomial formalization has been the most time-consuming task, some of
our future work will be devoted to the study of better formalization techniques
for generic polynomials.

One important method of logical deduction is the �algebraic method� which
also uses the idea of translating formulas into polynomials. This technique trans-
forms the logical problem into an algebraic problem, polynomial ideal member-
ship, what reduces the problem to the computation of Gröbner bases.

The �rst step to achieve this would consist of certifying Buchberger's al-
gorithm for Gröbner bases computation in Acl2. A work from L. Théry [25],
achieves this goal in Coq. Nevertheless, Acl2 and Coq logics di�er in many
aspects. Automated certi�cation of Buchberger's algorithm in Acl2 remains a
challenging project.

The reduction relation de�ned for Buchberger's algorithm is a subset of the
ordering on polynomials. Once we have stated an ordering between terms, it can
be extended to polynomials. Therefore, de�ning a term order is required prior
to the de�nition of the concepts associated with Buchberger's algorithm and,
particularly, to its termination. We have already formalized a suitable lexico-
graphical order on terms and proved its well-foundedness in Acl2.
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