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Abstract— In environments with complex cognitive
structure (as the Semantic Web or sophisticated
spatial databases for Geographical Information Sys-
tems), classical methods for detecting anomalies
In this paper the use of an
automated theorem prover to detect anomalies in
knowledge bases within a complex ontology is pro-
posed. The authors argue that it will need to inte-
grate such systems in some intelligent agents. The
loss of real-time execution -in some cases- is dis-

can be inadequate.

cussed with examples.

1 Introduction

In the Knowledge Engineering Field, the verification of
knowledge bases occupies a significant position. The
verification task is a complex and, in general, unsoiva-
ble problem. The advent of environments with com-
plex cognitive structure (as the Semantic Web) must
to induce to a revision of some of the classical solving
methods, mainly the agent-oriented ones. Many of
them are designed for time constrained environments,
A new aim in the Al field will be the re-balancing of
reactive and proactive attitudes in the design of sys-
tems known as intelligent agents. Both problems {veri-
fication of knowledge bases and the balance remarked
above) are combined in the task of the verification, by
intelligent agents, of Web metadata. Some problems
will demand more quality of information losing pure
reactive answers. The deliberative agents (agents with
logic-based behaviour, produced by a deductive pro-
cess) will be free of tight real-time constraints in tasks
as the verification of formal ontologies, information re-
trieval in a structured form (in a logical theory form),
semantic web mining, etc. A key environment is the
Semantic Web, which changes the notion of perception
(or message): the agent will receive from its environ-
ment more compler stimuli [1). This issue becomes
more important when the number of (heterogeneous)
interacting systems increases {as well the number of
different ontologies}.
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We propose a methodology in order to verify Know-
ledge Databases with the assistance of an automated
theorem prover (a.t.p.). We believe that this metho-
dology must be a first step in the design of intelligent
cleaning agents for the Semantic Web.

Let us a few remarks about the organization of the
paper. In next section a brief description of the no-
tion of intelligent agent is given, as well as a discussion
about the problem of the real-time requirement for de-
liberative agents. Our main purpose is to present a me-
thodology to verify Knowledge databases with complex
domain knowledge (section 4). Finally, the methodo-
logy is illustrated with a case study (section 5).

2 Intelligent Agents

There are many definitions of intelligent agent, but
there exists a consensus in which are the essential re-
quirements in order to consider a system as intelligent
agent:

1. Reactivity: it is able to respond effectively to the
perceptions received from its environment.

2. Pro-activeness: it is able to exhibit a behaviour
driven to reach its objectives.

3. Sociability: it is able to communicate with other
agents (in order to cooperate, to ask for informa-
tion, etc.).

From the basis proposed in the above minimal defini-
tion many agent architectures emerge, and there exists
an established ground theory to work with them [2]. A
general and complete architecture for an agent is illus-
trated in the fig. 1 from [3].

We are interested here in cognitive agents: agents
for which the knowledge processing — by deductive
methods — is the heart of the behaviour. The cogni-
tive processing is implemented in very different archi-
tectures, from implementations of logical theories of
action and change up to sophisticated applications of
logic programming. There are also many architectures
with successful applications [4], some of them are based
in philosophical theories of practical reasoning, as the
Belief-Desire-Intention model.
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Figure 1: A general architecture of agent

2.1 Real-time processing versus com-
plex reasoning

The dilemma that entitles the subsection is essentially
the same that of reactivity versus proactivity attitudes
in the design of the agent. How can we escape from the
real-time constraints paradigm (when it is necessary)?
We are interested in three proposals:

¢ Tc think the balance between Symbolic represen-
tation and effective processing: there exists an
almost complete classification of the complexity
of many languages extending the classical Horn
Logic (from Logic Programming paradigm), thus
we can decide to extend the richness of the Know-
ledge Representation, even to extend the analysis
to other more specific representations.

e Several automated theorem provers can be specia-
lized as useful extensions of Logic Programming,
and they can be the natural candidates for the
thinking component of the agent.

¢ Tt can be advisable, in many cases, to substitute
the real-time constraints by other notions of effec-
tiveness,

All these aspects are relevant for the possible embed-
ding of an automated theorem prover in a cognitive
agent.

3 Embedding deductive atti-

tudes in the agent

The ability of complex reasoning is possible if the agent
has a powerful rational component. Some of the ac-
tions/messages produced by the agent will be conse-
quence of a deductive process. Thus a natural option
can be to integrate an a.t.p. as rational component.
But a strict estimation of the interest of the stream
data from the deductive component to the knowledge
base {referee layer), or to the environment (supervisor
layer) is needed. The reason is that an a.t.p can pro-
duce an overspill of new knowledge, not all of it inter-
esting for the problem. Referee and supervisor layers
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Figure 2: Cleaning service process

are not a completely new idea in automated deduction
[5], but in our case the referee is reduced to setting dif-
ferent, flags with which the agent decides the interest of
blocks of information, as well as the time complexity
(steps of deduction) that the component will work on
data. In general, the ratio of useless results is 1000:1
[5], thus, the referee component must be strict in order
to accept new knowledge.

The main problem of the integration of an a.t.p. in
the agent is that the behaviour of the deductive com-
ponent is underspecified, because it is autonomous in
the data processing. Thus we face a coarse specified
system. Moreover, we can not constraint the behaviour
of the components by real-time requirements and the
symbolic representation is not limited to a concrete
sublanguage of the full first order logic.

4 Towards Cleaning services in
the Semantic Web

The Semantic Web is a Web of data that can be pro-
cessed directly or indirectly by machines. Briefly, the
architecture of Semantic Web is decomposed in seve-
ral layers: the ground layers concern to the symbolic
level of data and metadata and they are the eXtensible
Markup Language XML and the Resource Data Frame-
work RDF; the RDF language provides an uniform
data model for representing metadata and it makes
easy the processing of data by machines [6]; the Onto-
logy layer prevents ambiguous meanings of words; at
the top, logic layer is able to reasoning with the data
and the Web Trust prevents inconsistency.

4.1 Description of the problem

The cleaning service concerns the optimization of on-
tologycal representation and detection of inconsisten-
cies {not only in the knowledge domain, as in {7]), by
comparing results derived by the agent with the own
ontology or the domain knowledge, etc. (see fig. 2).
The problem is that reasoning with inconsistency in
structured text will be needed. As we will remark in
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Figure 3: Scheme of cleaning process using an a.t.p.

the next section, this type of reasoning can be inter-
preted in the theorem prover. Due to the hardness of
the verification of complex Knowledge Bases, this in-
terpretation will be possible if the agent has delayed
response behaviour,

The main drawback for the integration of an a.t.p.
in the agent, the loss of real-time requirements, does
not matter for this problem. We want a system which
works as a night cleaning service (as a personal assis-
tant): the system debugs the metadata included in the
Semantic Web by the user, using the idle-time of the
computer.

4.2 Anomalies in the database

The agent will find four main types of errors or anoma-
lies (presented as arguments):

(A1): The contradictions of the base due to the
bad implementation of data (for example, lack of
data.

(A2): The anomalies due to the inconsisiency of
the model: the theorem prover derives from the
database the existence of elements which have not
a name (possibly because they have not yet been
introduced by the user). This anomaly can also be
due to the Skolemn’s noise, produced when we work
with the domain closure axioms but the domain
knowledge is not clausal. Thus, it is also possible
that the agent can not obtain any answer to the
requirements of another agent.

(A3): Disjunctive answers (a logical deficiency).
(A4): Inconsistency in Knowledge Domain.

The anomalies comes from several reasons, for ex-
ample:

» The set of data is inconsistent with the Domain
Knowledge due to formal inconsistencies produced
by incorrect data.

s The database is never completed, that is, the user
will keep on introducing data.

Technically, the absence of certain facts about a pre-
dicate implies deduction with the Knowledge Domain,
and — due to above reasons — no-desired answers can
be obtained.

4.3 Methodology

The methodology is shown in fig. 3. The cleaning cy-
cle combines SQL (Structured Query Language) ques-
tions with others which can be asked by other agents,
or by the user in order to complete the knowledge with
other facts not explicit in the database (for example,
facts about predicates not explicit yet in the data in-
troduced by the user(s)). The step (4) is invoked when

an anomaly of the Knowledge Domain is found.

5 A case study

We report an experiment made with the cleaning ser-
vice, working on a database within a complex onto-
logy. The example concerns the debugging of a Spatial
Database, that we may suppose written in a structured
text form. The structured text is a general and simple
form of knowledge representation that should be easy
to view as a subset of XML, for example.

Concretely, we will work with a database on the re-
lationships between three types of regions: counties,
districts, and available maps on Andalucfa, a Spanish
autonomous region (see fig. 4).

The ontology we use comes from a formalization of
the relationships between regular regions of the space,
the RCC theory [8]). Thus the knowledge domain is
computationally complex. Several problems on spatial
configurations via Constraint Satisfaction Problems —
in the relational sublanguage of RCC — are extensively
studied in Artificial Intelligence [9], as well as in the
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Figure 4: Partial view of the autonomous region
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Figure 5: Some facts of the spatial database from fig.4

field of Geographic Information Systems [10]. How-
ever, the full theory is computationally unacceptable.

The system works on a data base built in base of
the relationships of connection (Connect), nonempty-
intersection {common subregion, Overlaps), and part-
of (Part-of) (see fig. 5).

Therefore a lot of hidden information exists, a lot of
knowledge with respect to other topological relations
between regions, not explicit in the database, that the
a.t.p. might to derive (and, eventually, to add to the
database). The universe is formed by 260 regions, ap-
proximately, for which we have a data base with 34000
facts (included first-order formalization of databases,
but the number can be reduced using some features of
the theorem prover). This base has been made for a
human, and possibly, it contains errors.

The complexity of the formal models of this type of
reasoning makes necessary to work with inconsistent
knowledge; therefore it is necessary to use a method
of reasoning with inconsistencies, and we have selected
the ergumentative reasoning for working with them.
We should define the arguments considering the auto-
mated theorem prover OTTER [11] as deductive com-
ponent. An argument is a pair (®, @) such that & is
a subset of database and ® F . An O-argument (ar-
gument for OTTER) (®,a) is an argument such that
a is provable from & by OTTER. Selecting different
types of arguments it is posible to derive useful know-
ledge from inconsistent databases [12]. Using the an-
swer literal $Answer of OTTER we can determine the
argument in each experiment (see fig. 6).

Tt is not our aim to find only inconsistencies in the
domain knowledge (A4). In [7] the authors show an ap-

plication of an automated theorem prover (the SNARK
system) to provide a declarative semantics for lan-
guages for the Semantic Web, by translating first the
forms from the semantic markup languages to the first-
order logic. The translation allows them to apply the
theorem prover to find inconsistencies. Our problem
is not exactly the same. We assume that the domain
knowledge {the RCC theory and eventually the com-
position table for the eight relations) is consistent, and
that it is highly possible that RCC jointly with the
database becomes inconsistent. However, the step (4)
was invoked in one of the experiments, since the theo-
rem prover found an error in the composition table for
the RCC-calculus showed in [8].

6 Experiments

It has been used a computer with two Pentium III (800
Mhz) processors and 256 Mb RAM. The machine runs
with Red Hat Linux operating system 7.0. The pro-
cessed database has 40242 clauses, and it is processed
in 6.5 seconds).

It is not our aim to use the theorem prover as a
database programming language. The idea is to ask to
the system complex questions which are unsolvable by
constraint satisfaction algorithms or simple SQL com-
mands. The questions are driven to obtain knowledge
on spatial relationships not explicit in the database (as
Proper-part or boolean combination of complex spa-
tial relations). Some of the questions require an exces-
sive CPU time. Surprisingly, the time cost is justified:
the theorem prover thought all the time on the database
and it found many errors of the type (Al), errors which
are not acceptable. The number of useless results of
type (A2) obtained can be significatively reduced by
a spatial interpretation of some skolem functions from
the clausal form of domain knowledge.

We select the predicates Part-of, Proper-part,
Externally-connect as targets of the study, in each
step 3. Several results are in the fig. 7. (R1) shows the
first correct answer to the question, (R2) shows the re-
sults 5 seconds later, (R3) shows the first useless result
and (R4) shows the first error found (of the database
or the Knowledge domain) if one has been found.

Other interesting consequence of the experiment
is that the search of non-acceptable inconsistencies
(A1} produces, in some cases, inconsistent argument
schemes: schemes that, by binding of the variables,
produces many inconsistencies from the first one
founded. This behaviour can be interpreted as a learn-
ing process because the system generates a general in-
consistent argument to locate lacks or concrete errors
in the database. This phenomenon leads us to a fact
experimentally checked: when the first one is found,
the next ones are quickly found.

It is also interesting to remark that among the fea-
tures of the system, we can use an option which allows
us to find many proofs of the same answer (that is,
many arguments). Thus, we can locate several anoma-
lies in the database only with an incorrect answer.

1809



Length of proof is 4.

5 [ -P(x,y) IP{y,x) |PP(x,¥).
8 [0 -P(z,y)] -P(y,x) IEQ(x,y).
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Figure 6:

[] x=x.

[hyper,63371,446] P(ANDEVALO_ORIENTAL,HUELVA).

Level of proof is 4.

[hyper,69229,5,unit_del,63366] P (HUELVA,ANDEVALO_DRIENTAL)
I $Ans (ANDEVALO_ORIENTAL) .
[hyper,77764,8,69229,f1ip.2] $Ans{ANDEVALO_ORIENTAL)
|EQ(HUELVA,ANDEVALO_DRIENTAL) .
[para_from,83179.1.1,8946.1.1] ANDEVALO_ORIENTAL!=ANDEVALO_ORIENTAL
|$Ans (ANDEVALO _ORIENTAL) .
[binary,89721.1,63371.1] $Ans (ANDEVALO_ODRIENTAL).

An example of result for Proper-part(x,HUELVA) -> $Ans(x).

$Ans (ANDEVALO DRIENTAL) form the O-argument.

Part-of (x,Jaen) -> $Ans(x)

The first six clauses and

[Step (1)]
[ Exp. | CPU time (sec.) | generated clauses | results | (A1) | (A2) | (A3) | (Ad) |
[ (R1) | 53.79 175 1 0 0 0 0
(R2) | 59 6,661 25 4 102 |0 0
(R3) | 584 1,098 2 2 1 0 0
Overlaps (SIERRANORTE,x) A Overlaps(Cordoba,x) -> $Ans{(x) [Step (2)]
[Txp. CPU time (sec.) | generated clauses | results | (A1) [ (A2) [ (A3) | (Ad)]
(R1) | 592.55 32,473 1 22 0 0 0
(R2) [ 597 32,517 5 52 |0 |0 |0
(R3) | 54.19 182 0 0 1 0 0
Proper-part (x, Huelva) -> $Ans(x) [Step (2)]

[ Exp. | CPU time (sec.)

generated clauses | results | (A1)

{A2) ] (A3) | (A4) |

(R1) [ 2395.31 195,222 1 113 [0 0 0 ]
(R2) | 2400 301,797 8 113 [0 |0 |0
(R3) | 2514.46 287,088 14 117 | 0 1 0
(R4) | 54.15 286 0 1 0 0 0
Externally-connect (x, Sevilla) -> $Ans(x) [Step (3)]
Exp. | CPU time (sec.) | generated clauses [ results | (Al) [ (A2) | (A3) | (A4) ]
(R1) | 2360 188.1650 1 113 |0 |0 0
(R2) | 2366 196,575 12 113 |0 0 0
(R3) | 53,33 181 0 1 ) 1 0
{R4) | 3845 11,673,078 25 113 | O 6 72

Figure 7: Some results of the cleaning cycle
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7 Final remarks

A methodology for the cleaning of complex knowledge
databases, aided by an automated theorem prover, is
given. The cleaning cycle allows to detect anomalies of
the data with the knowledge domain, as wel] as in the
self domain. The next challenge is to develop an agent
based in this cycle. Previously we must select strict
flags to handle big sets of useless data. We believe
that the cleaning agent can be a promising application
of the field of automated deduction toc make consistent
the data in environments such as the Semantic Web.
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