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MARTÍN–MATEOS ∗

TERMINATION IN ACL2 USING MULTISET
RELATIONS †

ABSTRACT: We present in this paper a case study of the use of the ACL2 system,
describing an ACL2 formalization of multiset relations, and showing how multisets can
be used to prove non-trivial termination properties. Every relation on a set A induces
a relation on finite multisets over A; it can be shown that the multiset relation induced
by a well-founded relation is also well-founded. We prove this property in the ACL2
logic, and use it by functional instantiation in order to provide well-founded relations for
the admissibility test of recursive functions. We also develope a macro defmul, to define
well-founded multiset relations in a convenient way. Finally, we present three examples
illustrating how multisets are used to prove non-trivial termination properties in ACL2:
a tail-recursive version of a general binary recursion scheme, a definition of McCarthy’s
91 function and a proof of Newman’s lemma for abstract reduction relations. These case
studies show how non-trivial mathematical results can be stated and proved in the ACL2
logic, in spite of its apparent lack of expressiveness.

1 INTRODUCTION

The ACL2 system [Kaufmann et al., 2000; Kaufmann and Moore, 2002]
consists of a programming language (an extension of an applicative subset of
Common Lisp), a logic describing the programming language and a theorem
prover supporting mechanized deduction in the logic. The ACL2 logic is a
quantifier-free, first-order logic with equality: its syntax is that of Common
Lisp and it includes axioms for propositional logic and for a number of Lisp
functions and data types; rules of inference include those for propositional
calculus, equality, instantiation and a principle of proof by induction.

ACL2 is usually applied for software or hardware verification [Kaufmann
and Moore, 2002]. In this paper, we present a case study showing that
also non-trivial mathematical theorems can be formalized and proved in a
system like ACL2, with such a restricted logic. In particular, we show how
theorems relying on non-trivial termination properties of recursive functions
can be formalized and proved in the system.

In ACL2, new function definitions are admitted as axioms only if there
exists a measure in which the arguments of each recursive call can be shown
to decrease in some well-founded sense. This is what we call the principle
of definition. This principle ensures that no inconsistencies are introduced
by new definitions, and also provides a basis to perform proofs by induc-
tion according to the recursive schemes of the functions that appear in a
conjecture.
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When submitting to ACL2 a terminating function with a simple recur-
sive scheme, the prover, using some heuristics, is usually able to prove its
termination. Nevertheless, if the termination is not trivial, the user often
has to explicitly provide a well-founded relation, a measure and some assis-
tance (in the form of lemmas) to get the termination proof. In this paper
we present a tool to obtain a class of well-founded relations that can be used
to prove non-trivial termination properties.

In [Dershowitz and Manna, 1979], it is proved that every well-founded
relation on a set A induces a well-founded relation on the set of finite mul-
tisets of elements taken from A. We have formalized this theorem using
ACL2, and stated it in an abstract way. This allows to instantiate the
theorem to prove well-foundedness of concrete multiset relations. Based
on this idea, we have developed a macro defmul in order to easily define
induced multiset relations. Besides defining the multiset relation induced
by a given relation, this macro automatically proves, by functional instan-
tiation, well-foundedness of the defined multiset relation, provided that the
original relation is well-founded. Such well-founded multiset relations can
then be used in the admissibility test for recursive functions, allowing the
user to provide a particular multiset measure in order to prove termination
of recursively defined functions.

This paper is structured as follows. The second section presents a brief
description of ACL2. The third section presents how we have formalized
and proved well-foundedness of multiset relations induced by well-founded
relations. The fourth section presents the macro defmul and it is shown how
it can be used to define multiset well-founded relations. In the fifth section,
three case studies of increasing complexity are presented, showing how mul-
tisets can be used to prove non-trivial termination properties. The first
one is the transformation of a binary recursion scheme into an equivalent
tail-recursive scheme. The second one shows admissibility of an iterative
version of McCarthy’s 91 function. The third one is a proof of Newman’s
lemma about abstract reduction relations: terminating and locally confluent
reduction relations are confluent. Finally, we draw some conclusions.

We will skip details of the mechanical proofs and omit some technical
questions such as the hints given to the theorem prover. The complete
development is available on the web at http://www.cs.us.es/~jruiz-
/acl2-mul/. This paper is a revised version of [Ruiz-Reina et al., 2000],
presented at the Second ACL2 Workshop.

2 AN INTRODUCTION TO THE ACL2 SYSTEM

ACL2 stands for A Computational Logic for an Applicative Common Lisp.
The system evolved from the Boyer-Moore theorem prover, also known as
Nqthm [Boyer and Moore, 1998]. Roughly speaking, ACL2 is a program-
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ming language, a logic and a theorem prover. As a programming language,
it is an extension of an applicative subset of Common Lisp [Steele, 1990]
(we will assume the reader familiar with this language). The ACL2 logic
describes the programming language, with a formal syntax, axioms, rules
of inference and a semantic model. ACL2 also provides a theorem prover
allowing mechanized reasoning in the logic. Thus, the system constitutes
an environment in which functions can be defined and executed, and their
properties can be formally specified and proved with the assistance of a
mechanical theorem prover.

Let us illustrate these features with an example. The following definition
introduces a function remove-one which eliminates the first occurrence of
an element x from a list l (whenever it exists):

(defun remove-one (x l)
(if (atom l)

l
(if (equal x (car l))

(cdr l)
(cons (car l) (remove-one x (cdr l))))))

Once defined, the function can be executed on some explicit values, as in
any Common Lisp. For example, the expression (remove-one 3 ’(5 3 7
3)) is evaluated to (5 7 3). But we can also state and prove formal prop-
erties about the function, using the ACL2 logic. From the logical point of
view, the above definition introduces an axiom in the ACL2 logic, equating
the term (remove-one x l) to the term given by the body of the defini-
tion. Using this axiom and the primitive axioms and rules of inference of
the ACL2 logic, it is possible, for example, to prove the following property
about remove-one:

(defthm remove-one-no-duplicatesp
(implies (no-duplicatesp l)

(no-duplicatesp (remove-one x l))))

Note that the same language is used for computing and proving. Here
the function no-duplicatesp (checking if its argument is a list without
repeated elements) is a primitive ACL2 function. The function implies is
the function corresponding to the propositional implication connective and
the variables x and l are implicitly universally quantified.

The above theorem can be proved by the theorem prover (although it
needs some assistance from the user) using mainly induction and rewriting.
The command defthm starts a proof attempt in the ACL2 theorem prover.
If successful, the theorem is stored as a rule (by default, a rewriting rule)
that can be used in subsequent proof attempts.
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In the following, we will briefly describe the ACL2 logic and its theorem
prover. To obtain more background on ACL2, see [Kaufmann et al., 2000]
or the user’s manual in [Kaufmann and Moore, 2002]. A description of the
main proof techniques used in Nqthm, also used in ACL2, can be found in
[Boyer and Moore, 1998].

2.1 The logic

The ACL2 logic is a quantifier-free, first-order logic with equality, describing
an applicative subset of Common Lisp functions acting on a set of objects
called the ACL2 universe. This universe is partitioned into five sets of ob-
jects: numbers, characters, strings, symbols and ordered pairs. Essentially,
these data types are the same than in Common Lisp and they are repre-
sented in the same way. There are two special symbols, t and nil, denoting
respectively “true” and “false” (although any object other than nil may
serve as an indicator of “true”).

The syntax of terms in the ACL2 logic is that of Common Lisp, and
therefore uses prefix notation. Roughly speaking, a term of the ACL2 logic
is a constant, a variable symbol or the application of function symbol of arity
n to n terms. The logic includes axioms describing the behavior of a subset
of applicative Common Lisp functions on the above five data types. For
example, there are axioms describing the functions cons, car and cdr (the
constructor, the left part and the right part of an ordered pair, respectively).

Rules of inference include those for propositional logic (with propositional
connectives if, and, or, not, implies and iff), equality (the predicate
equal) and instantiation of variables. The logic is quantifier-free and the
variables in a term are implicitly universally quantified. The logic also
provides a principle of proof by induction that allows to prove a conjecture
splitting it into cases and inductively assuming instances of the conjecture
that are smaller with respect to some well-founded measure.

In ACL2, the primitive notion of well-foundedness is given by a construc-
tive representation of the ordinals up to ε0, in terms of natural numbers
and ordered pairs. Natural numbers are represented by the corresponding
ACL2 numbers. Ordered pairs are used to represent non-natural ordinal
numbers: roughly speaking, the elements of the list representing an ACL2
ordinal are the ACL2 ordinals (in decreasing order) corresponding to the
non-zero powers of ω in its Cantor normal form, and the coefficients of the
Cantor normal form are represented by the number of repetitions of the
corresponding power of ω. The final cdr of the object is the “natural part”
of the ordinal. For example, ω is represented as (1 . 0), ω2 + ω · 3 + 7
as (2 1 1 1 . 7), ωω as ((1 . 0) . 0) and ωω + ω85 + ω3 · 2 + 5
as ((1 . 0) 85 3 3 . 5). The ACL2 primitive function e0-ordinalp
recognizes those ACL2 objects that represent ordinals, and the function
e0-ord-< defines the usual order between ordinals. This order is assumed
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to be well-founded on the set of ACL2 ordinals, and it is the only primitive
well-founded relation in the ACL2 logic. As we will see in subsection 3.2, it
is possible for the user to define other well-founded relations in ACL2.

By the principle of definition, new function definitions (using defun) are
admitted as axioms in the logic only if there exists a well-founded measure
in which the arguments of each recursive call (if any) decrease, thus proving
its termination. For example, the previous function remove-one is admitted
in the logic justified by a measure counting the number of “conses” of its
second argument.

In addition to the definition principle, the encapsulation principle (via
encapsulate) allows the user to introduce new function symbols by axioms
constraining them to have certain properties. To ensure consistency, local
witness functions having the same properties have to be exhibited. Within
the scope of an encapsulate, properties stated with defthm need to be
proved for the witnesses; outside, those theorems work as assumed axioms.
For example, the following definition introduces a new function symbol sel,
of one argument, and constrains sel to denote a function that selects an
element from every non-empty list:

(encapsulate
((sel *) => *)

(local (defun sel (l) (car l)))

(defthm sel-selects
(implies (not (atom l)) (member (sel l) l))))

The first part of every encapsulate describes the signature of the func-
tions introduced (in this case, the function sel with one argument). In this
example, the local witness is the function car, proved to verify the non-
local property sel-selects. Outside the scope of the encapsulate, this
non-local property is the only property assumed about the function sel.

The functions partially defined with encapsulate can be seen as second
order variables, representing functions with those properties. A derived
rule of inference, functional instantiation, allows some kind of second-order
reasoning: theorems about constrained functions can be instantiated with
function symbols if they are known to have the same properties (see [Kauf-
mann and Moore, 2001] for details).

2.2 The theorem prover

The ACL2 theorem prover is inspired by Nqthm, adapted to the ACL2
logic and considerably improved. The main proof techniques used by ACL2
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are simplification and induction1. Roughly speaking, when the prover tries
to prove a conjecture, it simplifies the formula. If it obtains t, then the
conjecture is proved. Otherwise, it guesses an (often suitable) induction
scheme, and recursively tries to prove the subgoals generated.

Simplification is a process combining term rewriting with some decision
procedures (linear arithmetic, type set reasoner, etc.). To rewrite a conjec-
ture, the system uses axioms, definitions and theorems previously proved
by the user, stored as rewrite rules. In addition to simplification, one of the
key points in the success of ACL2 and its predecessor is the use of sophis-
ticated heuristics for discovering an induction scheme suitable for a proof
by induction of a conjecture. This induction scheme is suggested by the
recursive functions occurring in the formula.

For example, in the proof attempt of the theorem remove-one-no-
-duplicatesp above, the system tries a proof by induction, since the con-
jecture cannot be simplified using the current definitions and rewrite rules.
The following induction scheme is automatically generated, where (p L X)
abbreviates the theorem to be proved:

(AND (IMPLIES (AND (NOT (ATOM L))
(NOT (EQUAL X (CAR L)))
(p (CDR L) X))

(p L X)) ; induction step
(IMPLIES (AND (NOT (ATOM L)) (EQUAL X (CAR L)))

(p L X)) ; base case
(IMPLIES (ATOM L) (p L X))) ; base case

This induction scheme is suggested by the recursive definition of the
function remove-one appearing in the conjecture. It consists of two base
cases and one induction step, where the induction hypothesis is (p (CDR
L) X), corresponding to the recursive call of remove-one.

Although this induction scheme is suitable for proving the theorem, ACL2
fails to prove it in its first attempt. Inspecting the output of the failed proof,
it turns out that the proof would succeed if the following lemma would have
been known by the system:

(defthm member-remove-one
(implies (not (member x l))

(not (member x (remove-one y l)))))

When submitted by the user, this lemma can be proved by the system
automatically. Once proved, the lemma is stored as a rewrite rule. In
subsequent proofs this rule will be used to rewrite instances of (member x

1Although there are other proof techniques like destructor elimination, generalization,
elimination of irrelevances or cross-fertilization.
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(remove-one y l)) to nil, whenever the corresponding instance of the hy-
pothesis in the rule, (not (member x l)), holds. With this rule, a second
proof attempt of the theorem remove-one-no-duplicatesp succeeds.

The theorem prover is automatic in the sense that once defthm is invoked,
the user can no longer interact with the system. However, in a deeper sense,
the system is interactive. As shown in the above example, very often non-
trivial proofs are not found by the system in a first attempt and then the
user has to guide the prover by adding lemmas and definitions, used in
subsequent proofs as rules2. Inspection of failed proofs is very useful to
find those lemmas needed to “program” the system in order to get the
mechanical proof of a non-trivial result (see [Kaufmann et al., 2000] for a
description of how to inspect failed proofs).

This kind of interaction with the system is called “The Method” by the
authors of the system. Thus, the role of the user is important: a typical
proof effort consists of formalizing the problem in the logic and helping the
prover to find a preconceived hand proof by means of a suitable set of rewrite
rules. The mechanical proofs of the results presented here were carried out
following “The Method”. As a result of this interaction, the user obtains a
file containing (mainly) definitions and theorems, called a book in the ACL2
terminology. A book can be certified (all its definitions are admissible and
its theorems are proved) and used by other books.

Finally, defthm is not the only command that calls the theorem prover.
When submitting a definition with defun, the prover tries to justify its
termination, by proving that some well-founded measure of the arguments
decreases in each recursive call. The prover has some heuristics to automat-
ically obtain an ordinal measure needed to justify the termination of a given
definition. Although these heuristics are often successful, sometimes, if the
termination is not trivial, the user has to explicitly provide a well-founded
relation and a measure to get the termination proof, as we will see in the
examples of section 5.

3 FORMALIZATION OF MULTISET RELATIONS IN ACL2

3.1 Multisets: definitions and properties

A multiset M over a set A is a function from A to the set of natural numbers.
This is a formal way to define “sets with repeated elements”. Intuitively,
M(x) is the number of copies of x ∈ A in M . This multiset is finite if there
are finitely many x such that M(x) > 0. The set of all finite multisets over
A is denoted as M(A).

2The user may also assist the prover by giving some hints when submitting the con-
jecture; for example, indicating the use of some specific lemma instance or providing an
induction scheme.
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We will use standard set notation to denote multisets. For example, if
A = {a, b, c}, an example of a multiset over A is M = {a, b, b, b}, an abbre-
viation of the function M(a) = 1, M(b) = 3 and M(c) = 0. Thus, {a, b, b, b}
is identical to the multiset {b, b, a, b}, but distinct from the multiset {a, b, b}.

Basic operations on multisets are defined to generalize the same opera-
tions on sets, taking into account multiple occurrences of elements: x ∈M
means M(x) > 0, M ⊆ N means M(x) ≤ N(x) for all x ∈ A, M ∪ N is
the function M + N and M \ N is the function M .− N (where x .− y is
x− y if x ≥ y, and 0 otherwise). For example, {a, b, b, a} ∪ {c, c, a, b} is the
multiset {a, a, a, b, b, b, c, c} and {a, b, b, a} \ {c, c, a, b} is the multiset {a, b}.
The empty multiset, denoted as ∅, is the function identically zero.

Any ordering defined on a set A induces an ordering on finite multisets
over A: given a multiset, a smaller multiset can be obtained by removing a
non-empty subset X and adding elements which are smaller than some ele-
ment in X (not necessarily the same). This construction can be generalized
to binary relations in general, not only for partial orderings. The following
is the precise definition:

DEFINITION 1. Given a relation < on a set A, the multiset relation
induced by < onM(A), denoted as <mul, is defined as: N <mul M if there
exist X, Y ∈ M(A) such that ∅ 6= X ⊆ M , N = (M \ X) ∪ Y and for all
y ∈ Y there exists x ∈ X such that y < x.

For example, if A = {a, b, c, d, e} and b < a, d < c, from the definition we
have {a, b, b, b, b, d, d, d, d, d, e} <mul {a, a, b, c, d, e} by replacing X = {a, c}
by Y = {b, b, b, d, d, d, d}. It can be shown that if < is a strict ordering, then
so is <mul. In such case we talk about multiset orderings.

A relation < on a set A is terminating if there is no infinite decreasing3

sequence x0 > x1 > x2 . . .. An important property of multiset relations
on finite multisets is that they are terminating when the original relation
is terminating, as stated by the following theorem [Dershowitz and Manna,
1979]:

THEOREM 2. Let < be a terminating relation on a set A, and <mul the
multiset relation induced by < on M(A). Then <mul is terminating.

The above theorem provides a tool for showing termination of recursive
function definitions, by using multisets: show that some multiset measure
decreases in each recursive call comparing multisets with respect to the
relation induced by a given terminating relation. In the following subsection,
we explain how we formalize Theorem 2 in the ACL2 logic.

3Although not explicitly, we will suppose that the relations given here represent some
kind of “smaller than” relation.
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3.2 Well-founded multiset relations in ACL2

Let us now explain how we formalize the assumption of Theorem 2. As we
said before, ACL2 contains the definition of the ordinals up to ε0, given by
the predicates e0-ordinalp (recognizing those objects that represent ordi-
nals) and e0-ord-< (the order between ordinals). In addition, a restricted
notion of terminating relation is built into ACL2 based on the following
meta-theorem (axiom of choice needed): a relation < on a set A is terminat-
ing iff there exists a function F : A→ Ord such that x < y ⇒ F (x) < F (y),
where Ord is the class of all ordinals4. In this case, we also say that the
relation is well-founded. Thus, a general well-founded relation rel defined
on a set of objects satisfying a property mp can be defined in ACL2 as shown
below (dots are used to omit the definition of the local witnesses, as in the
rest of the paper):

(encapsulate
(((mp *) => *) ((rel * *) => *) ((fn *) => *))
. . .
(defthm rel-well-founded-relation-on-mp
(and (implies (mp x) (e0-ordinalp (fn x)))

(implies (and (mp x) (mp y) (rel x y))
(e0-ord-< (fn x) (fn y))))

:rule-classes :well-founded-relation))

The predicate mp (called the measure property) recognizes the kind of
objects that are ordered in a well-founded way by the relation rel. The
embedding function fn is an order-preserving function mapping every mea-
sure object to an ordinal. The theorem rel-well-founded-relation-on-
-mp above is called the well-foundedness theorem for rel, mp and fn. In
ACL2, every particular well-founded relation has to be given by means of
three functions (a binary relation, a measure property and an embedding
function) and the corresponding well-foundedness theorem for such func-
tions. Note that this notion of well-foundedness is restricted: since only
ordinals up to ε0 are formalized in the ACL2 logic, a limitation is imposed
on the maximal order type of well-founded relations that can be formalized.
Consequently, our formalization suffers from the same restriction.

Once a relation is proved to satisfy a theorem of the above form, the
relation can be used in the admissibility test for recursive functions5. Note
that here encapsulate is used to define a general well-founded relation rel,
without any additional restriction.

4Note that we are denoting the relation on A and the ordering between ordinals using
the same symbol <.

5For that purpose, the well-foundedness theorem has to be stored with :rule-classes

:well-founded-relation. In general, the :rule-classes argument of defthm specifies
how the theorem will be used by the system in the sequel.
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Let us now deal with the formalization of multiset relations. We repre-
sent multisets in ACL2 as true lists (a true list is either nil or an ordered
pair whose right component is a true list, usually called a list in Lisp ter-
minology). Given a predicate mp describing a set A, finite multisets over A
are described by the following function:

(defun mp-true-listp (l)
(if (atom l)

(equal l nil)
(and (mp (car l)) (mp-true-listp (cdr l)))))

Note that this function depends on the particular definition of the predi-
cate mp. With this representation, different true lists can represent the same
multiset: two true lists represent the same multiset iff one is a permutation
of the other. Thus, the order in which the elements appear in a list is not
relevant, but the number of occurrences of an element is important. This
must be taken into account, for example, when defining multiset difference
in ACL2:

(defun multiset-diff (m n)
(if (atom n)

m
(multiset-diff (remove-one (car n) m) (cdr n))))

Let us now describe how we define the multiset relation. The definition
of <mul given in the preceding subsection is quite intuitive but, due to its
many quantifiers, difficult to implement. Instead, we will use a somewhat
restricted definition, based on the following theorem (lemma 2.5.6 in [Baader
and Nipkow, 1998]):

THEOREM 3. Let < be a strict ordering on a set A, and M, N two finite
multisets over A. Then N <mul M iff M \ N 6= ∅ and for all n ∈ N \
M, there exists m ∈M \N, such that n < m.

From the computational point of view, the main advantage of this al-
ternative definition6 is that the we do not have to search the multisets X
and Y of the original definition because we can take M \ N and N \M ,
respectively. Thus, given a defined (or constrained) binary relation rel, we
define the induced relation on multisets based on this alternative definition:

(defun exists-rel-bigger (x l)
(cond ((atom l) nil)

((rel x (car l)) t)
(t (exists-rel-bigger x (cdr l)))))

6It should be remarked that this equivalence is true only when < is a strict partial
ordering. Anyway, this is not a severe restriction. Moreover, well-foundedness of <mul

also holds when this restricted definition is used, even if the relation < is not transitive.
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(defun forall-exists-rel-bigger (l m)
(if (atom l)

t
(and (exists-rel-bigger (car l) m)

(forall-exists-rel-bigger (cdr l) m))))

(defun mul-rel (n m)
(let ((m-n (multiset-diff m n))

(n-m (multiset-diff n m)))
(and (not (atom m-n))

(forall-exists-rel-bigger n-m m-n))))

Finally, let us see how we can formalize Theorem 2 in the ACL2 logic,
stating well-foundedness of the relation mul-rel. As said before, in or-
der to establish well-foundedness of a relation in ACL2, in addition to the
relation (mul-rel in this case), we have to give the measure property and
the embedding function, and then prove the corresponding well-foundedness
theorem. Since mul-rel is intended to be defined on multisets of elements
satisfying mp, then mp-true-listp is clearly the measure property in this
case. Let us suppose we have defined a suitable embedding function called
map-fn-e0-ord. Then Theorem 2 is formalized as follows:

(defthm multiset-extension-of-rel-well-founded
(and (implies (mp-true-listp x)

(e0-ordinalp (map-fn-e0-ord x)))
(implies (and (mp-true-listp x)

(mp-true-listp y)
(mul-rel x y))

(e0-ord-< (map-fn-e0-ord x)
(map-fn-e0-ord y))))

:rule-classes :well-founded-relation)

In the next subsection we show a suitable definition of map-fn-e0-ord
and describe some aspects of the ACL2 proof of this theorem.

3.3 A proof of well-foundedness of the multiset relation

In the literature [Dershowitz and Manna, 1979], Theorem 2 is usually proved
using König’s lemma: every infinite and finitely branched tree has an in-
finite path. More recently, a constructive formal proof is described in
[Persson, 1999] (chapter II), also formalized in the HOL system [Slind,
2000]. Nevertheless, we have to find a different proof in ACL2, since well-
foundedness in ACL2 has to be stablished defining an order-preserving func-
tion map-fn-e0-ord from mp-true-listp objects to e0-ordinalp objects.
Thus, our proof is based on the following result from ordinal theory: given
an ordinal α, the setM(α) of finite multisets of elements of α (ordinals less
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than α), ordered by the multiset relation induced by the order between ordi-
nals, is order-isomorphic to the ordinal ωα and the isomorphism is given by
the function H where H({β1, . . . , βn}) = ωβ1 ⊕ . . .⊕ ωβn , where ⊕ denotes
natural addition of ordinals (see, for example, [Levy, 1979]).

As a by-product, an interesting property about multiset well-founded re-
lations can be deduced. Since α ≤ ε0 implies ωα ≤ ωε0 = ε0, this means
that one can always prove, in the ACL2 logic, well-foundedness of the mul-
tiset relation induced by a given well-founded ACL2 relation (i.e., using
embeddings in the ordinal ε0). This is not the case, for example, of lexico-
graphic products, since the maximal ordinal type of a lexicographic product
of two ACL2 well-founded relations may be greater than ε0.

The isomorphism H above suggests the following definition of the embed-
ding function map-fn-e0-ord: given a multiset of elements satisfying mp,
apply fn to every element to obtain a multiset of ordinals. Then apply H to
obtain an ordinal less than ε0. If ordinals are represented in ACL2 notation,
then the function H can be easily defined, provided that the function fn
returns always a non-zero ordinal: the function H simply has to sort the or-
dinals in the multiset and add 0 as the final cdr. These considerations lead
us to the following definition of the embedding function map-fn-e0-ord 7.

(defun insert-e0-ord-< (x l)
(cond ((atom l) (cons x l))

((not (e0-ord-< x (car l))) (cons x l))
(t (cons (car l) (insert-e0-ord-< x (cdr l))))))

(defun add1-if-integer (x) (if (integerp x) (1+ x) x))

(defmacro fn1 (x) ‘(add1-if-integer (fn ,x)))

(defun map-fn-e0-ord (l)
(if (not (atom l))

(insert-e0-ord-< (fn1 (car l))
(map-fn-e0-ord (cdr l)))

0))

Once map-fn-e0-ord has been defined, let us now deal with the ACL2
mechanical proof of the well-foundedness theorem for mul-rel, mp-true-
-listp and map-fn-e0-ord as stated at the end of subsection 3.2 by mul-
tiset-extension-of-rel-well-founded. The part of the theorem estab-
lishing that (map-fn-e0-ord x) is an ordinal when (mp-true-listp x) is
not difficult, and can be proved in ACL2 with minor help form the user. The
hard part of the theorem is to show that map-fn-e0-ord is order-preserving.
Here is an informal proof sketch:

7Note that the non-zero restriction on fn is easily overcome, defining (the macro)
fn1 equal to fn except for integers, where 1 is added. In this way fn1 returns non-zero
ordinals for every measure object and it is order-preserving iff fn is.
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Proof sketch: Let us denote, for simplicity, the functions fn1 and map-
-fn-e0-ord, as f and fmul, and the relations rel, mul-rel and e0-ord-<
as <rel, <mul and <, respectively. Let M and N be two multisets of mp
elements such that N <mul M . We have to prove that fmul(N) < fmul(M).
We can apply induction on the number of elements of N . Note that M can
not be empty, and if N is empty the result trivially holds. So let us suppose
that M and N are not empty. Let f(x), f(y) be the biggest elements of
f [N ] and f [M ], respectively. Note that f(x) and f(y) are the car elements
of fmul(N) and fmul(M), respectively (recall that we are dealing with the
ACL2 representation of ordinals, so it makes sense to talk about the car or
the cdr of an ordinal). Since f(x) and f(y) are ordinals, three cases may
arise:

1. f(x) < f(y). Then, by definition of <, we have fmul(N) < fmul(M).

2. f(x) > f(y). This is not possible: in that case x is in N \M and by
the multiset relation definition, exists z in M \N such that x <rel z.
Consequently f(z) > f(x) > f(y). This contradicts the fact that f(y)
is the biggest element of f [M ].

3. f(x) = f(y). In that case, x ∈ M , since otherwise it would exist
z ∈ M \ N such that x <rel z and the same contradiction as in the
previous case appears. Let M ′ = M \ {x} and N ′ = N \ {x}. We
have N ′ <mul M ′ and, in addition, fmul(N ′) and fmul(M ′) are the
cdr of fmul(N) and fmul(M), respectively. Induction hypothesis can
be applied here to conclude that fmul(N ′) < fmul(M ′) and therefore
fmul(N) < fmul(M).

The ACL2 proof we carried out is based on this informal description.
First the above induction scheme must be supplied as hint and then lemmas
to handle each of the cases generated by the induction scheme have to be
proved, leading ACL2 to a mechanical proof very close to the previous proof
sketch. See the web page for details.

Well-foundedness of mul-rel has been proved in an abstract framework,
without assuming any particular properties of rel, mp and fn, except those
concerning well-foundedness. This allows us to functionally instantiate the
theorem in order to establish well-foundedness of the multiset relation in-
duced by any given well-founded ACL2 relation. We developed a macro
named defmul in order to mechanize this process of functional instantia-
tion. The following section describes the macro.

4 THE DEFMUL MACRO

We defined a macro defmul in order to provide a convenient way to define
the multiset relation induced by a well-founded relation, and to prove the
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corresponding well-foundedness theorem. We explain now how defmul is
used.

Let us suppose we have a previously defined (or constrained) relation
my-rel, which is known to be well-founded on a set of objects satisfying the
measure property my-mp and justified by the embedding function my-fn.
That is to say, the following theorem, using variables x and y, has been
proved (and stored as a well-founded relation rule):

(defthm theorem-name

(and (implies (my-mp x ) (e0-ordinalp (my-fn x )))
(implies (and (my-mp x ) (my-mp y )

(my-rel x y ))
(e0-ord-< (my-fn x ) (my-fn y ))))

:rule-classes :well-founded-relation)

In order to define the (well-founded) multiset relation induced by my-rel,
we simply introduce the following macro call:

(defmul (my-rel theorem-name my-mp my-fn x y ))

The expansion of this macro generates a number of ACL2 forms, leading
to the definition of a function mul-my-rel as the well-founded relation on
multisets of elements satisfying the property my-mp, induced by the well-
founded relation my-rel. More specifically:

• the multiset measure property my-mp-true-listp, the embedding
function map-my-fn-e0-ord from multisets to ordinals and the mul-
tiset relation mul-my-rel are defined, in an analogue way to the cor-
responding functions defined in the previous section, where my-mp,
my-fn and my-rel play the roles of mp, fn and rel, respectively.

• the well-foundedness theorem for mul-my-rel, my-mp-true-listp
and map-my-fn-e0-ord is proved by functional instantiation from
the theorem multiset-extension-of-rel-well-founded presented
in the previous section.

We have divided the results and tools about multisets into two books. The
book multiset.lisp contains the proof of the theorem multiset-exten-
sion-of-rel-well-founded shown in subsection 3.3. The book defmul-
.lisp contains the macro definition of defmul and includes the multiset
book. We have also included some rules about multisets in multiset.lisp,
which helped us to prove the three examples presented in this paper, and
we think they are general enough to assist in other cases. See the web page
for details.

We expect defmul to work without any assistance from the user. After
the above call to defmul, the well-founded relation mul-my-rel could be
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used in the admissibility test for recursive functions to show that the recur-
sion terminates. In the next section, we illustrate the use of well-founded
multiset relations in the admissibility test of functions defined in ACL2.

5 CASE STUDIES USING MULTISET RELATIONS

We now describe three case studies where well-founded multiset relations
play an important role in the ACL2 proof of non-trivial termination prop-
erties. In the first example, we use a multiset relation to show termination
of the tail-recursive version of a general binary recursive scheme. In the
second example, a multiset relation is used for the admission of an itera-
tive version of McCarthy’s 91 function. The third example is a proof of
Newman’s lemma for abstract reduction systems: every terminating and
locally confluent reduction relation has the Church-Rosser property. This
last example is part of a larger project developed by the authors in order
to formalize some aspects of equational reasoning using ACL2 [Ruiz-Reina
et al., 2002].

All the examples show one function whose termination is proved using a
well-founded multiset relation and a multiset measure function. When the
function is presented for the first time, its code is commented out (using
semicolons), to emphasize that a suitable measure has still to be given in
order to pass the admissibility test.

5.1 A tail-recursive version of binary recursion

This example is inspired by [Slind, 2000], where the author formalizes sev-
eral program transformation schemes using the HOL system. One of these
examples is the transformation of a general binary tree recursion scheme into
iterative form. The example originates from [Wand, 1980] (who presents a
hand proof based on continuations) and has also been developed in the PVS
system by [Shankar, 1995]. We present now a formalization of this example
in ACL2.

To be as generic as possible, we first introduce a number of functions
and assumed properties about them, by means of the encapsulate of Fig-
ure 1. These functions can be seen as “parameters” for the following generic
function defined using a binary recursion scheme:

(defun binrec (x)
(declare (xargs :measure (measure x)

:well-founded-relation rel-bin))
(if (basic x)

(b x)
(join (binrec (l x)) (binrec (r x)))))
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(encapsulate

(((basic *) => *) ((b *) => *) ((join * *) => *)

((l *) => *) ((r *) => *) ((id-join) => *)((measure *) => *)

((rel-bin * *) => *) ((mp-bin *) => *) ((fn-bin *) => *))

...

(defthm join-associative

(equal (join (join x y) z) (join x (join y z))))

(defthm join-identity (equal (join (id-join) x) x))

(defthm mp-bin-measure (mp-bin (measure x)))

(defthm l-and-r-decreases

(implies (not (basic x))

(and (rel-bin (measure (l x)) (measure x))

(rel-bin (measure (r x)) (measure x)))))

(defthm rel-bin-well-founded

(and (implies (mp-bin x) (e0-ordinalp (fn-bin x)))

(implies (and (mp-bin x) (mp-bin y) (rel-bin x y))

(e0-ord-< (fn-bin x) (fn-bin y))))

:rule-classes :well-founded-relation))

Figure 1. Parameters for the binary recursion scheme

Here the predicate basic represents the base case of the recursion, in
which case the function b is applied. The functions l and r (for left and
right) are a pair of destructor functions, used to split non-basic inputs into
two parts on which to recurse. The results of the recursive calls are com-
bined using a function join. We assume that join is associative and that
(id-join) is a left-identity with respect to it.

We assume that the termination of the recursive scheme is justified by
a general well-founded relation rel-bin and a measure function measure
(not necessarily an ordinal), formalizing a termination argument as general
as possible. That is, the measures of (l x) and (r x) decrease with respect
to the well-founded relation.

Note that the measure and the well-founded relation are explicitly given
in the defun of binrec, by the hints :measure and :well-founded-
-relation. This is the way the user provides a particular well-founded
relation and measure, when the heuristics of the prover fails to obtain a
termination argument for a definition.

The following function tailrec implements a tail-recursive scheme that
can be shown to be equivalent to binrec:
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;(defun tailrec-it (l v)
; (cond
; ((atom l) v)
; ((basic (car l))
; (tailrec-it (cdr l) (join v (b (car l)))))
; (t (tailrec-it
; (list* (l (car l)) (r (car l)) (cdr l)) v))))

; (defun tailrec (x) (tailrec-it (list x) (id-join)))

The main auxiliary function used in the definition of tailrec is
tailrec-it. Intuitively, the first argument of tailrec-it is a stack con-
taining the remaining recursive calls and the second argument accumulates
the combination of the values of the function b acting on the basic elements
encountered during the recursive process.

Note that termination of tailrec-it is not trivial (since the length of the
stack increases in each recursive call), but it can be proved using a multiset
relation. The following defmul call automatically defines the well-founded
multiset relation mul-rel-bin induced by rel-bin on multisets of elements
satisfying mp-bin:

(defmul (rel-bin rel-bin-well-founded mp-bin fn-bin x y))

Now, the relation mul-rel-bin can be used as the well-founded relation
in the admissibility test for the function tailrec-it, with a suitable mea-
sure function. This measure is given by the multiset of measures of the
elements of the stack, computed by the following function:

(defun measure-list (l)
(if (atom l)

nil
(cons (measure (car l)) (measure-list (cdr l)))))

We can now prove termination of tailrec-it, giving mul-rel-bin as
well-founded relation and measure-list as measure function:

(defun tailrec-it (l v)
(declare (xargs :measure (measure-list l)

:well-founded-relation mul-rel-bin))
(cond
((atom l) v)
((basic (car l))
(tailrec-it (cdr l) (join v (b (car l)))))

(t (tailrec-it
(list* (l (car l)) (r (car l)) (cdr l)) v))))
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The proof obligations generated for the admission of this definition are
not difficult, and only a very few previous lemmas are needed, in order to
prove that the given multiset measure decreases in the recursive calls. See
the web page for details. After this definition, the admission of the function
tailrec (defined as above) is trivial.

Having tailrec admitted in the logic, it is also easy to prove the equiv-
alence between tailrec and binrec. For that purpose, we first prove the
main invariant in the computation performed by tailrec-it, established
by the following events. Note that the function join-binrec computes the
combination of the results of binrec over the elements of a list:

(defun join-binrec (l v)
(if (atom l)

v
(join-binrec (cdr l) (join v (binrec (car l))))))

(defthm equal-tailrec-it-join-binrec
(equal (tailrec-it l v) (join-binrec l v)))

It is remarkable that ACL2 proves this last theorem without assistance
from the user. As a particular case, and taking into account that (id-join)
is a left identity for join, we finally have the intended result:

(defthm equal-tailrec-binrec
(equal (tailrec x) (binrec x)))

Note that this theorem is proved in a generic way, and it can be easily used
by functional instantiation to show the equivalence of a particular version
of the binary recursive scheme and its transformation into a tail-recursive
version. Thus, we obtain a similar degree of generality as in [Slind, 2000]
(for example, we can use arbitrary ACL2 well-founded relations). From
a practical point of view, this allows to transform every executable func-
tion in ACL2 (and therefore executable in Common Lisp) that follows the
general binary recursive schema, into an equivalent tail-recursive function,
generating a formal proof of that equivalence.

5.2 McCarthy’s 91 function

This example is taken from [Dershowitz and Manna, 1979] and shows ad-
missibility of an iterative version of the recursive definition of McCarthy’s
91 function. For a detailed treatment (in ACL2) of McCarthy’s 91 func-
tion and its generalization given by Knuth, we urge the interested reader
to consult the work of [Cowles, 2000], where proofs are done over arbitrary
archimedian fields. Our intention here is only to show how multisets can
help to prove a non-trivial termination property.
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The “91 function” is a function acting on integers, originally given by
McCarthy by the following recursive scheme:

(defun mc (x)
(declare (xargs :mode :program))
(cond ((not (integerp x)) x)

((> x 100) (- x 10))
(t (mc (mc (+ x 11))))))

This function is defined in :program mode, which means that it can be
executed but it is logically undefined. See [Cowles, 2000] for a description
of ACL2’s resistance to accept this definition in logic mode8. Instead, we
try to define the following iterative version of that recursive scheme:

; (defun mc-aux (n z)
; (cond ((or (zp n) (not (integerp z))) z)
; ((> z 100) (mc-aux (- n 1) (- z 10)))
; (t (mc-aux (+ n 1) (+ z 11)))))

; (defun mc-it (x) (mc-aux 1 x))

As we will show, the recursive algorithm implemented by mc-it is a
somewhat complicated way to compute the following function:

(defun f91 (x)
(cond ((not (integerp x)) x)

((> x 100) (- x 10))
(t 91)))

The intended behavior of the function mc-aux is that in every iterative
step (mc-aux n z)= (f91 (f91 n. . .(f91 z))) and therefore (mc-it x) =
(f91 x). Proving termination of mc-aux may be difficult: note the differ-
ent behavior of the two recursive calls. In [Dershowitz and Manna, 1979],
a multiset measure is given to justify termination of the function: every
recursive call of (mc-aux n z) is measured with the following multiset:
{z, (f91 z), (f91 (f91 z)), . . . , (f91 (f91 n−1. . . (f91 z)))}, and mul-
tisets are compared with respect to the multiset relation induced by the
“greater-than” relation defined for integers equal 9 or less than 111. In the
sequel, we describe how ACL2 is guided to this termination argument.

8To prove its termination, the nested recursion in the definition of mc leads the ACL2
prover to reason about the function before being introduced in the logic. See [Giesl, 1997]

for a method to deal with termination proofs of algorithms with nested recursion, and in
particular termination of McCarthy’s 91 function.

9Performing the ACL2 proof, we discovered a minor bug in the proof given in [Der-
showitz and Manna, 1979]: it is necessary to consider integers equal or less than 111, and
not only strictly less than 111.
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First, we define the well-founded relation rel-mc that will be extended
later to a multiset relation. The following sequence of events defines rel-mc
and stores it as a well founded relation:

(defun integerp-<=-111 (x)
(and (integerp x) (<= x 111)))

(defun rel-mc (x y)
(and (integerp-<=-111 x) (integerp-<=-111 y) (< y x)))

(defun fn-mc (x)
(if (integerp-<=-111 x) (- 111 x) 0))

(defthm rel-mc-well-founded
(and (e0-ordinalp (fn-mc x))

(implies (rel-mc x y)
(e0-ord-< (fn-mc x) (fn-mc y))))

:rule-classes :well-founded-relation)

Note that in this case, the measure property is t, although only integers
under 111 are comparable with respect to rel-mc10.

We now define the well-founded multiset relation induced by rel-mc on
multisets (true-listp objects in this case), using the following defmul call:

(defmul (rel-mc rel-mc-well-founded t fn-mc x y))

With this macro call, we have defined the well-founded relation
mul-rel-mc, allowing us to use it in the admissibility test for the function
mc-aux, with the measure described above, and implemented by the function
measure-mc-aux:

(defun measure-mc-aux (n z)
(if (zp n)

nil
(cons z (measure-mc-aux (- n 1) (f91 z)))))

We can now define the function mc-aux, giving mul-rel-mc and
measure-mc-aux as the well-founded relation and measure function to be
used, respectively:

(defun mc-aux (n z)
(declare (xargs :measure (measure-mc-aux n z)

10One could think that integerp-<=-111 should be the measure property of the well-
founded relation, instead of t. But there is a subtle difference: the multiset measure
we will define may contain elements greater than 111, although those elements are not
comparable w.r.t. rel-mc.



TERMINATION IN ACL2 USING MULTISET RELATIONS 21

:well-founded-relation mul-rel-mc))
(cond ((or (zp n) (not (integerp z))) z)

((> z 100) (mc-aux (- n 1) (- z 10)))
(t (mc-aux (+ n 1) (+ z 11)))))

The function is admitted with a minor help from the user (surprisingly,
only one specific lemma is needed). After this definition we can define the
function mc-it as above, and show that verifies the original recursion scheme
given by McCarthy. Moreover, we can even prove very easily that mc-it
is equal to f91 (previously proving a suitable generalization, as sketched
above):

(defthm mc-it-recursive-schema
(equal (mc-it x)

(cond ((not (integerp x)) x)
((> x 100) (- x 10))
(t (mc-it (mc-it (+ x 11)))))))

(defthm mc-it-equal-f91
(equal (mc-it x) (f91 x)))

5.3 Newman’s lemma

Abstract reduction systems

Newman’s lemma is a result about abstract reduction systems, which plays
an important role in the study of decidability of certain equational theories.
We give a short introduction to basic concepts and definitions from abstract
reductions. See [Baader and Nipkow, 1998] for more details.

Reduction systems are simply an abstract formalization of step by step
activities, such as the execution of a computation, the gradual transforma-
tion of an object until some normal form is reached, or the traversal of some
directed graph. The term “reduction” gives the intuition that an element
of less complexity is obtained in every step. Formally speaking, an abstract
reduction is simply a binary relation → defined on a set A, called its do-
main. We will denote as ←, ↔, ∗→ and ∗↔ respectively the inverse relation,
the symmetric closure, the reflexive-transitive closure and the equivalence
closure. The following concepts are defined with respect to a reduction re-
lation →. We say that x and y are equivalent if x

∗↔ y. We say that x and
y are joinable (denoted as x ↓ y) if there exists u such that x

∗→ u
∗← y. An

element x is in normal form (or irreducible) if there is no z such that x→ z.
A reduction relation has the Church-Rosser property if every two equiv-

alent elements are joinable. An equivalent property is confluence: for all
x, u, v such that u

∗← x
∗→ v, then u ↓ v. In a reduction relation with

the Church-Rosser property, two distinct elements in normal form cannot



22 J.L. RUIZ, J.A. ALONSO, M.J. HIDALGO AND F.J. MARTÍN

be equivalent. A reduction relation is normalizing if every element has an
equivalent normal form (denoted as x ↓). Obviously, every terminating (as
defined in subsection 3.1) reduction is normalizing. Church-Rosser and nor-
malizing reduction relations have a nice property: provided normal forms
are computable and identity in A is decidable, then the equivalence relation
∗↔ is decidable. This is due to the fact that, in that case, x

∗↔ y iff x ↓= y ↓,
for all x, y ∈ A.

Confluence can be “localized” when the reduction is terminating. In that
case, an equivalent property is local confluence: for all x, u, v such that
u ← x → v, then u ↓ v. The following theorem, named Newman’s lemma,
states this:

THEOREM 4. (Newman’s lemma) Let → be a terminating and locally
confluent reduction relation. Then → is confluent.

This result simplifies the study of confluence (or equivalently, of the
Church-Rosser property) for terminating reduction relations. One only has
to deal with joinability of local divergences. This is crucial in the develop-
ment of completion algorithms for term rewriting systems in order to obtain
decision procedures for equational theories [Baader and Nipkow, 1998].

Formalization of Newman’s lemma in ACL2

Every reduction relation has two important aspects. On the one hand, it has
a declarative aspect, since it describes its equivalence closure. On the other
hand, it has a computational aspect, describing a stepwise activity, a gradual
transformation of objects until (eventually) a normal form is reached. Thus,
if x→ y, the point here is that y is obtained from x by applying some kind
of transformation or abstract operator. In its most abstract formulation,
we can view a reduction as a binary function that, given an element and
an operator, returns another element, performing a one-step reduction. Of
course not any operator can be applied to any element: we need a boolean
binary function to test if it is legal to apply an operator to an element.

The discussion above leads us to formalize a general abstract reduction
relation using three partially defined functions: q, reduce-one-step and
legal; (q x) defines the domain of the reduction, (reduce-one-step x
op) represents a one-step reduction applying the operator op to x, and
(legal x op) represents a test to check if the operator op may be applied
to x.

We introduce these three functions via encapsulate. In order to formal-
ize Newman’s lemma, properties are included to assume termination and
local confluence of the reduction relation, encoding in this way the assump-
tions of the theorem we want to prove. This is shown in Figure 2. In the
following, we describe in detail the events appearing in it.

Before describing how we formalized termination and local confluence,
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(encapsulate

(((rel * *) => *) ((fn *) => *) ((q *) => *)

((legal * *) => *) ((reduce-one-step * *) => *)

((transform-local-peak *) => *))

...

(defthm local-confluence

(let ((valley (transform-local-peak p)))

(implies (and (equiv-p x y p) (local-peak-p p))

(and (steps-valley valley)

(equiv-p x y valley)))))

(defthm rel-well-founded-relation-on-q

(and (implies (q x) (e0-ordinalp (fn x)))

(implies (and (q x) (q y) (rel x y))

(e0-ord-< (fn x) (fn y))))

:rule-classes :well-founded-relation)

(defthm rel-transitive

(implies (and (q x) (q y) (q z)

(rel x y) (rel y z))

(rel x z)))

(defthm terminating

(implies (and (q x) (legal x op)

(q (reduce-one-step x op)))

(rel (reduce-one-step x op) x))))

Figure 2. Assumptions of Newman’s lemma

we show how we can define the equivalence closure of a reduction relation.
In order to define x

∗↔ y, we include an extra argument with a sequence
of steps x = x0 ↔ x1 ↔ x2 . . . ↔ xn = y. An abstract proof (or simply, a
proof) is a sequence of legal proof steps and each proof step is a structure11

r-step with four fields: elt1, elt2 (the elements connected), direct (a
boolean value indicating if the step is direct or inverse) and an operator:

(defstructure r-step direct operator elt1 elt2)

A proof step is legal if one of its elements is obtained by applying the
(legal) operator to the other, in the direction indicated. The function
proof-step-p (we omit its definition) implements this concept. The func-
tion equiv-p implements the equivalence closure of our abstract reduction

11We used the defstructure tool developed by Bishop Brock [Brock, 1997], which
provides records in ACL2 in a similar way to Common Lisp’s defstruct.
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relation: (equiv-p x y p) checks if p is a proof justifying that x ∗↔y (with
all the involved elements in the domain q):

(defun equiv-p (x y p)
(if (atom p)

(and (q x) (equal x y))
(and (q x) (proof-step-p (car p))

(equal x (elt1 (car p)))
(equiv-p (elt2 (car p)) y (cdr p)))))

Two proofs justifying the same equivalence will be said to be equivalent.
We hope it will be clear from the context when we talk about abstract proofs
objects and proofs in the ACL2 system.

The Church-Rosser property and local confluence can be redefined with
respect to the form of a proof. We define (omitted here) functions to recog-
nize proofs with particular shapes (valleys and local peaks): local-peak-p
recognizes proofs of the form v ← x → u and steps-valley recognizes
proofs of the form v

∗→ x
∗← u.

To deal with the assumption of local confluence, note that a reduc-
tion is locally confluent iff for every local peak proof there is an equiv-
alent valley proof. Therefore, in order to state local confluence of the
general reduction relation defined, we assume the existence of a function
transform-local-peak which returns a valley proof for every local peak
proof (assumption local-confluence in Figure 2).12

Let us now see how can we formalize termination. Our formalization
is based on the following meta-theorem: a reduction is terminating if and
only if it is contained in a well-founded partial ordering (axiom of choice
needed). Thus, let rel13 be a given general well-founded partial order on
the set defined by q (assumptions rel-well-founded-relation-on-q and
rel-transitive in Figure 2). This well-founded partial order rel is used to
state termination of the general reduction relation defined, by assuming that
every legal reduction step relating elements of the reduction domain always
obtains a smaller element with respect to rel (assumption terminating in
Figure 2).

Having formalized the assumptions, in order to prove Newman’s lemma
we must show confluence of this general reduction relation assumed to be
terminating and locally confluent. Instead of confluence, we prove the
Church-Rosser property, which is equivalent. Therefore, we must prove that
for every proof there exists an equivalent valley proof; that is, we have to
define a function transform-to-valley and prove that (transform-to-

12Note that the functions proof-step-p and equiv-p have to be defined as non-local
events inside the encapsulate (although, for the sake of clarity, we omit their definitions
in the figure).

13Conflicts with names used in the multiset.lisp book are avoided using packages.
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-valley p) is a valley proof equivalent to p. This is the statement of
Newman’s lemma:

(defthm Newman-lemma
(let ((valley (transform-to-valley p)))
(implies (equiv-p x y p)

(and (steps-valley valley)
(equiv-p x y valley)))))

A suitable definition of transform-to-valley and a proof of this the-
orem in ACL2 is shown in the following subsection. The hard part of the
proof is to show termination of transform-to-valley. It will be done with
the help of a well-founded multiset relation.

An ACL2 proof of Newman’s lemma

The proof commonly found in the literature [Baader and Nipkow, 1998],
is done by well-founded induction on the terminating reduction relation.
Due to our formalization of the theorem, our approach is more constructive
and is based on a proof given in [Klop, 1992]. We have to define a func-
tion transform-to-valley which transforms every proof into an equivalent
valley proof. For that purpose, we can use the function transform-local-
-peak, assumed to transform every local peak proof into a equivalent valley
proof. Thus, the function we need is defined to iteratively apply replace-
-local-peak, (which replaces the first local peak subproof by the equivalent
subproof given by transform-local-peak) until there are no local peaks
(checked by exists-local-peak). The following is our intended defini-
tion of transform-to-valley (we omit here the definition of the functions
replace-local-peak and exists-local-peak):

; (defun transform-to-valley (p)
; (if (exists-local-peak p)
; (transform-to-valley (replace-local-peak p))
; p))

This function is not admitted without help from the user. The reason
is that when a local peak in a proof is replaced by an equivalent valley
subproof, the length of the proof obtained may be larger than the length of
the original proof. Nevertheless, the key point here is that every element
involved in the new subproof is smaller (w.r.t. the well-founded relation
rel) than the greatest element of the local peak. If we measure a proof
as the multiset of the elements involved in it, then replacing a local peak
subproof by an equivalent valley subproof, we obtain a proof with smaller
measure with respect to the well-founded multiset relation induced by rel.
The function proof-measure returns this measure for a given proof: it
collects the elt1 elements of every proof step in a proof.
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(defun proof-measure (p)
(if (atom p)

nil
(cons (elt1 (car p)) (proof-measure (cdr p)))))

Using defmul, we define the well-founded relation mul-rel, induced by
the well-founded relation rel introduced in the previous subsection:

(defmul (rel rel-well-founded-relation-on-q q fn x y))

The main result we proved states that the proof measure decreases (with
respect to the well-founded relation mul-rel) if a local-peak is replaced by
an equivalent valley subproof:

(defthm transform-to-valley-admission
(implies (exists-local-peak p)

(mul-rel (proof-measure (replace-local-peak p))
(proof-measure p))))

With this theorem, admission of the function transform-to-valley is
now possible, giving a suitable indication:

(defun transform-to-valley (p)
(declare
(xargs :measure (if (steps-q p) (proof-measure p) nil)

:well-founded-relation mul-rel))
(if (and (steps-q p) (exists-local-peak p))

(transform-to-valley (replace-local-peak p))
p))

Note that our original intended definition had to be slightly modified:
since rel is well-founded on q, mul-rel is well-founded on multisets of ele-
ments satisfying q. The function steps-q (omitted here) checks whether all
the elements appearing in a proof satisfy q, thus ensuring that the measure
proof-measure returns a multisets of elements satisfying q. Anyway these
modifications do not affect the statement of the final theorem proved.

Once transform-to-valley is admitted (which is the hard part of the
theorem), the following two theorems are proved, and this trivially implies
Newman’s lemma as stated at the end of subsection 5.3.

(defthm equiv-p-x-y-transform-to-valley
(implies (equiv-p x y p)

(equiv-p x y (transform-to-valley p))))

(defthm valley-transform-to-valley
(implies (equiv-p x y p)

(steps-valley (transform-to-valley p))))
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It is remarkable that the induction scheme generated by the system in
the proofs of these two theorems is based on the relation mul-rel. That is,
they are by induction on the measure of the proofs, rather than an induction
based on the terminating relation rel as in the standard proof.

The proof of Newman’s lemma is a classical result formalized in most
of the main proof checking systems like Coq, Mizar or Isabelle/HOL. A
comparison with those developments is difficult because our formulation is
different and, more important, the logics involved are significantly different:
ACL2 logic is a much weaker logic than those of Coq or HOL. This proof
is the most difficult of the three examples presented here. Lemmas have to
be proved to simplify the multiset differences appearing in the conjecture
generated by the termination proof of transform-to-valley. We also pro-
vide books proving decidability of the equivalence relation generated by a
terminating and locally confluent reduction relation (see the web page for
details). To see how this result can be exported to the study of equational
theories, see [Ruiz-Reina et al., 2002].

6 CONCLUSIONS

We have presented a formalization of multiset relations in ACL2, show-
ing how they can be used as a tool for proving non-trivial termination
properties of recursive functions in ACL2. We have defined the multiset
relation induced by a given relation and proved a theorem establishing well-
foundedness of the multiset relation induced by a well-founded relation.
This theorem is formulated in an abstract way, so that functional instanti-
ation can be used to prove well-foundedness of concrete multiset relations.

We have presented also a macro named defmul, implemented to pro-
vide a convenient tool to define well-founded multiset relations induced by
well-founded relations. This macro allows the definition of these multiset
relations in a single step.

Three case studies are presented, to show how this tool can be useful in
obtaining proofs of non-trivial termination properties of functions defined
in ACL2. The first case study is the definition of a tail-recursive version
of a general binary recursion scheme. The second is the admissibility of a
definition of McCarthy’s 91 function, and a study of its properties. The
third is a proof of Newman’s lemma for abstract reduction relations.

From the variety of the examples presented, we think that well-founded
multiset relations can be used in other situations as well. See additional
examples on the web page. We also think that the defmul macro is a good
example of the use of macros in ACL2 as a mean to “customize” the behavior
of the system.

As a general conclusion, the case studies presented here show how non-
trivial mathematical results can be stated and proved in the ACL2 logic, in
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spite of its apparent lack of expressiveness (first-order and quantifier-free).
As we said before, some of the examples (Newman’s lemma, for instance)
have also been formalized in theorem provers systems with more expressive
logics. Although sometimes the use of a more restrictive logic means that
formalization is more difficult, usually this also means that automation in
the proof is increased. But our main reason for choosing ACL2 is that it is
a prover for a widely used programming language: deduction and efficient
computation can be done in the same system. Although the examples pre-
sented here are all of a theoretical nature, they can serve as a basis for the
verification of executable Common Lisp functions of practical interest. For
example, the formalization of Newman’s lemma allows us the verification of
decision procedures for equational theories, as described in [Ruiz-Reina et
al., 2002].

Finally, we point out some possible topics for future work. First, it is
our intention to provide a good ACL2 library of lemmas to handle multi-
sets and their operations. Also, a remark given at the end of section III
in [Dershowitz and Manna, 1979], pointing out a heuristic procedure for
proving termination of loops using multisets, suggests that this kind of or-
derings could be applied to a wider class of termination problems and that
the search for a suitable multiset measure could be mechanized to some
extent. Another application of multiset orderings could be to provide the
basis for some formal proofs of termination of term rewriting systems. In
particular, it would be interesting to formalize in ACL2 some well-known
termination orderings like the recursive path ordering or the Knuth–Bendix
ordering [Baader and Nipkow, 1998]. We intend to make further research
following these two lines.
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