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Abstract. In this paper we present a class of operators for Machine
Learning based on Logic Programming which represents a characteriza-
tion of the subsumption relation in the following sense: The clause C1

subsumes the clause C2 iff C1 can be reached from C2 by applying these
operators. We give a formalization of the closeness among clauses based
on these operators and an algorithm to compute it as well as a bound for
a quick estimation. We extend the operator to programs and we also get
a characterization of the subsumption between programs. Finally, a weak
metric is presented to compute the closeness among programs based on
subsumption.

1 Introduction

In a Machine Learning system based on clausal logic, the main operation lies on
applying an operator to one or more clauses with the hope that the new clauses
give a better classification for the training set. This generalization must fit into
some relation of order on clauses or sets of clauses. The usual orders are the
subsumption order, denoted by �, and the implication order |=.

Subsumption was presented by G. Plotkin [9]. In his study about the lattice
structure induced by this relation on the set of clauses, he proved the existence
of the least general generalization of two clauses under subsumption and defined
the least generalization under relative subsumption. Both techniques are the basis
of successful learning systems on real-life problems. Later, different classes of
operators on clauses, the so-called refinement operators, were studied by Shapiro
[11], Laird [5] and van der Laag and Nienhuys-Cheng [13] among others. In their
works, the emphasis is put on the specialization operators, which are operators
such that the obtained clause is implied or subsumed by the original clause, and
the generalization operators are considered the dual of the first ones.

In this paper we present new results and algorithms about the generalization
of clauses and logic programs via subsumption. We propose new generalization
operators for clausal learning, the Learning Operators under Subsumption which
represent a characterization by operators of the subsumption relation between
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clauses in the following sense: If C1 and C2 are clauses, C1 subsumes C2 if and
only if there exists a finite sequence (a chain) of LOS {∆1/x1}, . . . , {∆n/xn}
such that C1 = C2{∆1/x1} . . . {∆n/xn}. If C1 subsumes C2, we know that the
set of chains of LOS from C2 to C1 is not empty, but in general the set has more
than one element.

The existence of a non-empty set of chains gives us the idea for a formalization
of closeness among clauses as the length of the shortest chain from C2 to C1, if
C1 subsumes C2, and infinity otherwise.

This mapping, which will be denoted by dc, is the algebraic expression of the
subsumption order: for every pair of clauses, C1 and C2, C1 subsumes C2 if and
only if dc(C2, C1) is finite. Since the subsumption order is not symmetric, the
mapping dc is not either. Therefore dc is not a metric, but a quasi-metric.

Finally, dc is computable. We give in this paper an algorithm which calculates
the quasi-distance between two clauses and present a bound which allows to
estimate the closeness between clauses under the hypothesis of subsumption.
This algorithm and estimation provides useful tools for the design of new learning
systems which use quasi metrics to compute closeness.

In the second part of the paper, we extend the study to programs. We define
a new class of operators, the composed LOS, which act on the set of programs
and they also represent a characterization of the subsumption relation between
programs. Analogously to the clausal case, the minimum of the length of the
chains of operators between two programs is the basis of a weak metric to quan-
tify the closeness between programs. This weak metric has been experimentally
checked and can be added to existing systems or used to design new ones.

2 Preliminaries

From now on, we will consider some fixed first-order language L with at least
one function symbol. V ar, Term and Lit are, respectively, the sets of variables,
terms and literals of L. A clause is a finite set of literals, a program is a non-
empty finite set of non-empty clauses, C is the set of all clauses and P is the
set of all programs. A definite program is a program where each clause contains
one positive and zero or more negative literals. As usual, TP will denote the
immediate consequence operator of the program P .

A substitution is a mapping θ : S → Term where S is a finite set of variables
such that (∀x ∈ S)[x �= θ(x)]. We will use the usual notation θ = {x/t : x ∈ S},
where t = θ(x), Dom(θ) for the set S and Ran(θ) = ∪{V ar(t) : x/t ∈ θ}. A
pair x/t is called a binding. If A is a set, then |A| is the cardinal of A and PA
its power set. We will denote by |θ| the number of bindings of the substitution
θ. The clause C subsumes the clause D, C � D, iff there exists a substitution θ
such that Cθ ⊆ D. A position is a non-empty finite sequence of positive integers.
Let N

+ denote the set of all positions. If t = f(t1, . . . , tn) is an atom or a term,
ti is the term at position i in t and the term at position î u in t is s if s is at
position u in ti. Two positions u and v are independent if u is not a prefix of v
and vice versa. A set of positions P is independent if it is a pairwise independent
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C2 = { sum(z, 0, s(x)), sum(s(x), 0, s(x)), sum(z, 0, z) }
z z

P1 = {1} P2 = ∅ P3 = {1, 3}

s(x)

sum(s(x), 0, s(x)) }C1 = {

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fig. 1. Example of generalization

set of positions. The set of all positions of the term t in L will be denoted by
Pos(L, t). If t is a term (resp. an atom), we will denote by t[u ← s] the term
(resp. the atom) obtained by grafting the term s in t at position u and, if L is
a literal, we will write L[P ← s] for the literal obtained by grafting the term s
in L at the independent set of positions P .

3 The Operators

In the generalization process, when a program P is too specific, we replace it
by P ′ with the hope that P ′ covers the examples better than P . The step from
P to P ′ is usually done by applying an operator to some clause C of P . These
operators can be defined as mappings from C to C, where C is the set of clauses
of the language. Before giving the definition of the operator, we will give some
intuition with an example.

Consider the one–literal clause C1 = {L} with L = sum(s(x), 0, s(x)).
In order to generalize it with respect to the subsumption order, we have
to obtain a new clause C2 such that there exists a substitution θ verifying
C2θ ⊆ C1. For that, we firstly choose a term t in L, say t = s(x), then we
choose several subsets of Pos(L, t), e.g. P1 = {1}, P2 = ∅, P3 = {1, 3} and
a variable not occurring in L, say z, and finally we build the clause C2 =
{L[Pi ← z] | i = 1, 2, 3} = {sum(z, 0, s(x)), sum(s(x), 0, s(x)), sum(z, 0, z)}.
Obviously θ = {z/s(x)} satisfies C2θ ⊆ C1 (see Fig. 1). If the clause has
several literals, for example, C1 = {L1, L2, L3}, with L1 = num(s(x)), L2 =
less than(0, s(x)) and L3 = less than(s(x), s(s(x))), the operation is done with
all literals simultaneously. First, the same term is chosen in every literal of
C1, say t = s(x). Then, for each literal Li ∈ C1, some subsets of Pos(Li, t)
are chosen, e.g.,P ∗

1 = { ∅, {1} } ⊆ PPos(L1, t), P ∗
2 = ∅ ⊆ PPos(L2, t) and

P ∗
3 = { {1, 2 ·1}, {1} } ⊆ PPos(L3, t) After taking a variable which does not

occur in C1, say z, we build the sets L1
P ∗

1−−→ {num(s(x)), num(z)} L2
P ∗

2−−→ ∅
and L3

P ∗
3−−→ {less than(z, s(z)), less than(z, s(s(x)))}. C2 is the union of these

sets, i.e., C2 = {num(s(x)), num(z), less than(z, s(z)), less than(z, s(s(x)))}
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and C2{z/s(x)} ⊆ C1. In our general description, we will begin with substitu-
tions and grafts.

Definition 1. Let L be a literal and t a term. The set of positions P is called
compatible with the pair 〈L, t〉 if P ⊆ Pos(L, t).

Let P ∗ be a set whose elements are sets of positions. Let L be a literal and
t a term. P ∗ is called compatible with the pair 〈L, t〉 if every element of P ∗ is
compatible with 〈L, t〉
For example, if L = sum(s(x), 0, s(x)) and t = s(x), then P1 = {1}, P2 = ∅,
P3 = {1, 3} are compatible with 〈L, t〉 but P4 = {1·1, 2}, P5 = {1, 4·3} are not.
If P ∗

1 = {P1, P2, P3} and P ∗
2 = {P2, P4}, then P ∗

1 is compatible with 〈L, t〉 and
P ∗

2 is not.
The next mappings are basic in the definition of our operators. As we saw

in the example, the key is to settle a set of sets of positions for each literal, all
them occupied by the same term. This one is done by the following mappings.

Definition 2. A mapping ∆ : Lit → PPN
+ is an assignment if there exists a

term t such that, for every literal L, ∆(L) is compatible with the pair 〈L, t〉.
Note that the term t does not have to be unique, for example, consider the
identity assignment (∀L ∈ Lit)[∆(L) = {∅}], the empty assignment (∀L ∈
Lit)[∆(L) = ∅] or any mixture of both.

The assignments map a literal into a set of sets of positions. Each element of
this set of positions will produce a literal, and the positions are the places where
the new term is grafted. If ∆ : Lit→ PPN

+ is an assignment of positions and s
is a term, we will denote by L{∆(L)/s} the set of literals, one for each element
P ∈ ∆(L), obtained by grafting s in L at P . Formally L{∆(L)/s} = {L[P ←
s] |P ∈ ∆(L)} For example, if L = sum(s(x), 0, s(x)), z is a variable, P ∗

1 is
taken from the above example and ∆ is an assignment such that ∆(L) = P ∗

1
then L{∆(L)/z} = {L[P ← z] |P ∈ ∆(L)} = {L[P ← z] |P ∈ P ∗

1 } = {L[P1 ←
z]}, L[P2 ← z], L[P3 ← z]} = {sum(z, 0, s(x)), sum(s(x), 0, s(x)), sum(z, 0, z)}
We can now define our Learning Operators under Subsumption1.

Definition 3. Let ∆ be an assignment and x a variable. The mapping

{∆/x} : C −→ C

C �→ C{∆/x} =
⋃

L∈C L{∆(L)/x}
is a Learning Operator under Subsumption (LOS) if for all literal L, if ∆(L) �= ∅
then x �∈ V ar(L).

Turning back to a previous example, if C = {L1, L2, L3}, with L1 = num(s(x)),
L2 = less than(0, s(x)), L3 = less than(s(x), s(s(x))), and the assignment

∆(L) =






P ∗
1 = { ∅, {1} } if L = L1

P ∗
2 = ∅ if L = L2

P ∗
3 = { {1, 2·1}, {1} } if L = L3
∅ otherwise

1 A preliminary version of these operators appeared in [2].
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and considering z as the variable to be grafted, then C{∆/z} = {num(s(x)),
num(z), less than(z, s(z)), less than(z, s(s(x)))}. These operators allow us to
generalize a given clause and go up in the subsumption order on clauses as we
see in the next theorem.

Proposition 1. Let C be a clause and {∆/x} a LOS. Then C{∆/x} � C.

The LOS define an operational definition of the subsumption relation. The last
result states one way of the implication. The next one claims that all the learning
based on subsumption of clauses can be carried out only by applying LOS.

Theorem 1. Let C1 and C2 be two clauses such that C1 � C2. Then there exists
a finite sequence (a chain) {∆1/x1}, . . . , {∆n/xn} of LOS such that

C1 = C2{∆1/x1} . . . {∆n/xn}
For example, if we consider C1 = {p(x1, x2)} and C2 = {p(x2, f(x1)), p(x1, a)}
and the substitution θ = {x1/x2, x2/f(x1)}. Then C1θ ⊆ C2 holds and there-
fore C1 � C2. Decomposing θ we can get σ1 = {x2/x3}, σ2 = {x1/x2},
σ3 = {x3/f(x1)} and C1σ1σ2σ3 ⊆ C2 holds. Hence, considering the assignments

∆1(p(x2, f(x1)) = {{2}} and ∆1(L) = ∅ if L �= p(x2, f(x1))
∆2(p(x2, x3)) = {{1}} and ∆2(L) = ∅ if L �= p(x2, x3)
∆3(p(x1, x3)) = {{2}} and ∆3(L) = ∅ if L �= p(x1, x3)

we have C1 = C2{∆1/x3}{∆2/x1}{∆3/x2}. Note that if we take the assignment
∆(p(x1, a)) = {{2}} ; ∆(L) = ∅ if L �= p(x1, a), then C1 = C2{∆/x2} also holds.

4 A Quasi-metric Based on Subsumption

The operational characterization of the subsumption relation given in the pre-
vious section gives us a natural way of formalizing the closeness among clauses.
As we have seen, if C1 � C2 then there exists at least one chain of LOS from
C2 to C1 and we can consider the length of the shortest chain from C2 to C1. If
C1 does not subsume C2, we will think that C1 cannot be reached from C2 by
applying LOS, so both clauses are separated by an infinite distance.

Definition 4. A chain of LOS of length n (n ≥ 0) from the clause C2 to the
clause C1 is a finite sequence of n LOS {∆1/x1}, {∆2/x2}, . . . , {∆n/xn} such
that C1 = C2{∆1/x1}{∆2/x2} . . . {∆n/xn} The set of all the chains from C2 to
C1 will be denoted by L(C2, C1) and |C| will denote the length of the chain C.
We define the mapping dc : C × C→ [0, +∞] as follows:

dc(C2, C1) =
{

min{|C| : C ∈ L(C2, C1)} if C1 � C2
+∞ otherwise

The subsumption relation is not symmetric, so the mapping dc is not either.
Instead of being a drawback, this property gives an algebraic characterization
of the subsumption relation, since C1 � C2 iff dc(C2, C1) �= +∞. Notice that a
quasi–metric satisfies the conditions to be a metric, except for the condition of
symmetry.
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Definition 5. A quasi–metric on a set X is a mapping d from X × X to the
non–negative reals (possibly including +∞) satisfying: (1) (∀x ∈ X) d(x, x) = 0,
(2) (∀x, y, z ∈ X) d(x, z) ≤ d(x, y) + d(y, z) and (3) (∀x, y ∈ X) [d(x, y) =
d(y, x) = 0⇒ x = y]

The next result states the computability of dc and provides an algorithm to
compute it.

Theorem 2. dc is a computable quasi–metric.

Proof (Outline). Proving that dc is a quasi-metric is straightforward from the
definition. The proof of the computability is split in several steps. Firstly, for
each substitution θ we define the set of the splittings up:

Split(θ) =
{

σ1 . . . σn :
σi = {xi/ti} xi �∈ V ar(ti)
(∀z ∈ Dom(θ))[zθ = zσ1 . . . σn]

}

with length(σ1 . . . σn) = n and weight(θ) = min{length(Σ) |Σ ∈ Split(θ)}.
The next equivalence holds

dc(C2, C1) =






0 if C1 = C2
1 if C1 �= C2 and C1 ⊆ C2
min{weight(θ) |C1θ ⊆ C2} if C1 � C2 and C1 �⊆ C2
+∞ if C1 �� C2

We can decide if C1 � C2 and, if it holds, we can get the finite set of all θ
such that C1θ ⊆ C2, so to conclude the theorem we have to give an algorithm
which computes weight(θ) for each θ. The Fig. 2 shows a non-deterministic
algorithm which generates elements of Split(θ). The algorithm finishes and for
all Σ ∈ Split(θ) it outputs Σ∗ ∈ Split(θ) verifying length(Σ∗) ≤ length(Σ).

The previous theorem provides a method for computing dc, but deciding whether
two clauses are related by subsumption is an NP-complete problem [1], so, from
a practical point of view we need a quick estimation of the quasi-metric before
deciding the subsumption. The next result settles an upper and lower bounds
for the quasi-metric under the assumption of subsumption.

Theorem 3. Let C1 and C2 be two clauses such that C1 �⊆ C2. If C1 � C2 then

|V ar(C1)−V ar(C2)| ≤ dc(C2, C1) ≤ min{2 · |V ar(C1)| , |V ar(C1)|+ |V ar(C2)|}
Proof (Outline). For each θ such that C1θ ⊆ C2, θ has at least |V ar(C1) −
V ar(C2)| bindings and we need at least one LOS for each binding, hence the first
inequality holds. For the second one, if C1θ ⊆ C2 then we can find n substitutions
σ1, . . . , σn with σ1 = {xi/ti} and xi �∈ V ar(ti) such that C1σ1 . . . σ2 ⊆ C2
verifying n = |θ| + |Ran(θ) ∩ Dom(θ)|. The inequality holds since Ran(θ) ⊆
V ar(C2), Dom(θ) ⊆ V ar(C1) and |θ| ≤ V ar(C1). If C1 = {p(x1, x2)}, C2 =
{p(a, b)} and C3 = {p(f(x1, x2), f(x2, x1))} then

dc(C2, C1) = |V ar(C1)− V ar(C2)| = 2
dc(C3, C1) = min{2 · |V ar(C1)| , |V ar(C1)|+ |V ar(C2)|} = 4

The above examples show that these bounds cannot be improved.
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Input: A non-empty substitution θ
Output: An element of Split(θ)
Set θ0 = θ and U0 = Dom(θ) ∪Ran(θ)
Step 1:

If θi is the empty substitution
Then stop
Otherwise: Consider θi = {x1/t1, . . . , xn/tn} and go to Step 2.

Step 2:
If there exists xj ∈ Dom(θi) such that xj �∈ Ran(θi)

Then for all k ∈ {1, . . . , j − 1, j + 1, . . . , n} let t∗
k be a term

such that tk = t∗
k{xj/tj} Set

θi+1 = {x1/t∗
1, . . . , xj−1/t∗

j−1, xj+1/t∗
j+1, . . . , xn/t∗

n}
σi+1 = {xj/tj}
Ui+1 = Ui

set i to i + 1 and go to Step 1.
Otherwise: Go to Step 3.

Step 3:
In this case let zi be a variable which does not belong to Ui and set
Ui+1 = Ui ∪ {zi}

choose j ∈ {1, . . . , n} y let T be a subterm of tj such that T is not a variable
belonging to Ui+1. Then, for all k ∈ {1, . . . , n} let t∗

k be a term
such that tk = t∗

k{z/T}. Set
θi+1 = {x1/t∗

1, . . . , xn/t∗
n}

σi+1 = {z/T}
set i to i + 1 and go to Step 1.

Fig. 2. Algorithm scheme to compute the subset of Split(θ)

5 Programs

In this section we extend the study of subsumption to programs.

Definition 6. The program P2 subsumes the program P1, P2 � P1, if there
exists a mapping F : P1 → P2 such that F (C) � C, for all C ∈ P1.

In the case of definite programs, the subsumption is related to the semantics via
the immediate consequence operator. The proof is adapted from [7].

Proposition 2. Let P1 and P2 be two definite programs. Then P1 � P2 if and
only if for all interpretation I, TP2(I) ⊆ TP1(I)

The operators for programs are sets of pairs assignment–variable. These opera-
tors represent a characterization for the subsumption relation between programs,
as we will show below.

Definition 7. A composed LOS is a finite set of pairs Θ = {∆1/x1, . . . , ∆n/xn}
where {∆i/xi} is a LOS for all i ∈ {1, . . . , n}.
For applying a composed LOS to a program we need an auxiliary mapping which
associates one LOS to each clause of the program.
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Definition 8. Let P be a program and Θ a composed LOS. An auxiliary map-
ping for applying (amfa) is a mapping a : P → Θ such that for all clause
C ∈ P , the clause C {a(C)} is not the empty clause. The program PaΘ =
{C {a(C)} |C ∈ P} is the program obtained by applying Θ to P via the amfa a.

For example, consider the program2 P = {C1, C2, C3} with

C1 = sum(0, s(s(0)), s(s(0)))← sum(0, s(0), s(0))
C2 = sum(s(x), s(0), s(z))← sum(s(0), 0, s(0)), sum(x, s(0), z)
C3 = sum(s(y), y, s(z))← sum(0, y, y), sum(y, y, z)

and Θ = {∆1/x, ∆2/y, ∆3/x} with

∆1(L) =
{{{2, 3}} if L = sum(0, s(s(0)), s(s(0)))

∅ otherwise

∆2(L) =






{{2}} if L ∈
{

sum(s(x), s(0), s(z))
¬sum(x, s(0), z)

}

∅ otherwise

∆3(L) =






{{1 · 1}} if L = sum(s(y), y, s(z))
{{1}} if L = ¬sum(y, y, z)
∅ otherwise

Consider the amfa a : P → Θ such that a(C1) = ∆1/x , a(C2) = ∆2/y ,
a(C3) = ∆3/x . Then

C1 {a(C1)} = C1 {∆1/x} ≡ sum(0, x, x)←
C2 {a(C2)} = C2 {∆2/y} ≡ sum(s(x), y, s(z))← sum(x, y, z)
C3 {a(C2)} = C3 {∆3/x} ≡ sum(s(x), y, s(z))← sum(x, y, z)

Therefore

PaΘ =
{

sum(0, x, x)←
sum(s(x), y, s(z))← sum(x, y, z)

}

The composed LOS also represent an operational characterization of the sub-
sumption relation among programs. The main results are theorems 4 and 5.

Theorem 4. Let P1 and P2 be two programs and Θ a composed LOS. If P2θ ⊆
P1 then P1 � P2, where Θ is applied to P via an appropriate amfa.

The following corollary is immediate.

Corollary 1. Let P1 and P2 be two programs and Θ1 . . . Θn a finite chain of
composed LOS. If P2Θ1 . . . Θn ⊆ P1 then P1 � P2, where each Θ is applied via
an appropriate amfa ai.

The next result is the converse of the corollary 1.
2 We use the Prolog notation A← B1, . . . , Bn instead of {A,¬B1, . . . ,¬Bn}
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Theorem 5. Let P1 and P2 be two programs. If P1 � P2 then there exists a
finite chain of composed LOS Θ1 . . . Θn such that P2Θ1 . . . Θn ⊆ P1, where each
Θ is applied via an appropriate amfa ai.

The proof of this theorem can be obtained straightforwardly from the theorem
1. If P1 � P2 then for each C ∈ P2 there exists D ∈ P1 such that D � C
and we can find a finite chain of LOS {∆1/x1}, . . . , {∆n/xn} such that D =
C{∆1/x1}, . . . , {∆n/xn}. By joining appropriately the LOS from these chains
we have the composed LOS.

6 Quantifying Closeness among Programs

If P1 subsumes P2 we can find a finite chain of composed LOS which maps P2
onto a subset of P1. This chain has not to be unique. In a similar way to the
clausal case, the shortest chain quantifies the closeness between programs. We
formalize this idea in the next definitions.

Definition 9. Let P1 and P2 be two programs such that P1 � P2. We will say
that C = 〈〈Θ1, a1〉, . . . , 〈Θn, an〉〉 is a chain from P1 to P2 if

– Θ1, . . . , Θn are composed LOS.
– For all i ∈ {1, . . . , n}, ai : P2Θ1 . . . Θi−1 → Θi is an amfa.
– P2Θ1 . . . Θn ⊆ P1 where the composed LOS have been applied via the corre-

spondent ai.

In this case we will say that C is a chain of length n and we will denote it by
|C| = n. If P1 ⊆ P2 we will say that the empty chain, of length zero, is a chain
from P1 to P2. The set of chains from P1 to P2 will be denoted by L(P1, P2).

If P1 � P2, the set L(P1, P2) is not empty and the next definition makes sense.

Definition 10. We will define the mapping dp : P× P→ [0, +∞] as follows:

dp(P1, P2) =
{

min{|C| : C ∈ L(P1, P2)} if P1 � P2
+∞ otherwise

The mapping dp verifies the following properties:

– P1 ⊆ P2 ⇔ dp(P2, P1) = 0, in particular, dp(P, P ) = 0
– In general, dp(P1, P2) �= dp(P2, P1), P1, P2 ∈ P

– dp(P1, P2) ≤ dp(P1, P0) + dp(P0, P2) for all P1, P2, P3 ∈ P

hence, dp is a pseudo-quasi-metric and (P, dp) is a quantitative domain.
The next equivalence summarize our study about the generalization of pro-

grams under subsumption, by putting together our operators, the subsumption
relation, the semantics of definite programs and the weak metric dp.

Theorem 6. Let P1 and P2 be two definite programs. The following sentences
are equivalent:
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– For all interpretation I, TP2(I) ⊆ TP1(I).
– P1 � P2.
– There exists a finite chain of composed LOS Θ1 . . . Θn such that P2Θ1 . . . Θn

⊆ P1, where each Θ is applied via an appropriate amfa.
– dp(P1, P2) < +∞.

Since the programs are finite set of clauses, the next theorem provides a method
to compute the pseudo–quasi–distance of two programs.

Theorem 7. Let P1 and P2 be two programs.

dp(P1, P2) = max
D∈P2

{

min
C∈P1

{dc(C, D)}
}

Note that the mapping dp∗(P1, P2) = max{dp(P1, P2), dp(P2, P1)} is the Haus-
dorff metric between programs based on the quasi-metric dc.

7 Related Work and Examples

The problem of quantifying the closeness among clauses has already been studied
previously by offering distinct alternatives of solution to the problem. In the
literature, a metric is firstly defined on the set of literals and then, the Hausdorff
metric is used to get, from this metric, a metric on the set of clauses.

In [8], Nienhuys-Cheng defines a distance for ground atoms

– dnc,g(e, e) = 0
– p/n �= q/m⇒ dnc,g(p(s1, . . . , sn), q(t1, . . . , tm)) = 1
– dnc,g(p(s1, . . . , sn), p(t1, . . . , tn)) = 1

2n

∑n
i=1 dnc,g(si, ti)

then she uses the Hausdorff metric to define a metric on sets of ground atoms

dh(A, B) = max
{

max
a∈A
{min

b∈B
{dnc,g(a, b)}}, max

b∈B
{min

a∈A
{dnc,g(a, b)}}

}

The aim of this distance was to define a distance between Herbrand interpreta-
tions, so dnc,g was only defined on ground atoms. In [10], Ramon and Bruynooghe
extended it to handle non–ground expressions:

– dnc(e1, e2) = dnc,g(e1, e2) if e1, e2 are ground expressions
– dnc(p(s1, . . . , sn), X) = dnc(X, p(s1, . . . , sn)) = 1 with X a variable.
– dnc(X, Y ) = 1 and dnc(X, X) = 0 for all X �= Y with X and Y variables.

This metric can be easily extended to literals: If A and B are atoms, we consider
dnc(¬A, B) = dnc(A,¬B) = 1 and dnc(¬A,¬B) = dnc(A, B). By applying the
Hausdorff metric to dnc we have a metric dh on clauses. We have implemented
dc and dh with Prolog programs. The following example allows us to compare
this metric with our quasi-metric.
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Table 1. Comparison of dc vs. dh

N dc(Cn, Dn) dh(Cn, Dn)
Sec Q–dist Sec Dist

64 0.02 3 0.11 ∼ 2.7 10−20

128 0.06 3 0.21 ∼ 1.4 10−39

256 0.1 3 0.43 ∼ 4.3 10−78

512 0.26 3 0.93 ∼ 3.7 10−155

1024 0.67 3 2.03 ∼ 2.7 10−309

For all n ≥ 0, consider the clauses

Cn ≡ sum(sn+1(x1), sn(y1), sn+1(z1)) ← sum(sn(x1), sn(y1), sn(z1))
Dn ≡ sum(s2n+1(x2), s2n(y2), s2n+1(z2))← sum(s2n(x2), s2n(y2), s2n(z2))

and the substitution θn = {x1/sn(x2), y1/sn(y2), x3/sn(y3)}. Then Cnθn = Dn

for all n and hence, Cn � Dn. Table 1 shows the values of the quasi-metric
dc(Cn, Dn) and the metric dh(Cn, Dn) for several values of N as well as the
time of computation on a PIII 800 Mhz. in an implementation for SWI-Prolog
4.0.11. It can be easily calculated that, for all n ≥ 0, dc(Cn, Dn) = 3. If we use the

Hausdorff metric dh based on dnc we have that, for all n ≥ 0, dh(Cn, Dn) =
1

2n+1

which tends to zero in spite of the subsumption relation holds for all n.
In the literature, other formalizations of the closeness among clauses (e.g. [4]

or [10]) can be found.
If we consider now the clauses

C ′
n ≡ sum(0, sn(u1), sn(u1)) and D′

n ≡ sum(0, s2n(u2), s2n(u2))

and the programs P 1
n = {Cn, C ′

n} and P 2
n = {Dn, D′

n} we have that, for all
n ≥ 0, dp(P 1

n , P 2
n) = 3 and

dhh(P 1
n , P 2

n) =
1

2n+1

where dhh is the Hausdorff metric associated to dh.

8 Conclusions and Future Work

The operators presented in this paper might provide a general framework to
specify learning process based on Logic Programming [3]. The operators are
not related to any specific system, they can be easily implemented and used
in any system. But the main property is that the LOS are sufficient for all
generalization process of clauses based on subsumption. As we have showed, the
LOS are a complete set of generalization operators.

We define a quasi-metric on the set of clauses and give an algorithm to
compute it as well as a method for a quick estimation. The process of quantifying
qualitative relations (as subsumption) is a hard and exciting problem which
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arises in many fields of Computer Science (see [6]) which is far from a complete
solution. We present a contribution to its study by defining a quasi-metric on the
set of clauses in a natural way, as the minimum number of operators which map
a clause into another. As we have seen, this quasi-metric considers the clauses
as members of a net of relations via subsumption and overcomes the drawbacks
found in others formalizations of closeness.

The definition of quasi-metric is completed with an algorithm to compute it
and a bound for a quick estimation. This estimation can be a useful tool for the
design of new learning algorithms based on subsumption.

In the second part of the paper we present a family of operators which
also represents an operational characterization of the subsumption between pro-
grams. These operators provide a weak metric which captures the idea of close-
ness among programs based on subsumption. The main results about general-
ization of programs are summarized in the theorem 6. The relation between the
composed LOS and TP opens a door for studying in the future new links between
these operators and the semantics of logic programs.

References

1. M.R.Garey and D.S. Johnson: Computers and Intractability: A Guide to the The-
ory of NP-Completeness. Freeman, New York, 1979.

2. M.A. Gutiérrez-Naranjo, J.A. Alonso-Jiménez and J. Borrego-Dı́az: A topological
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