
Verification in ACL2 of a Generic Framework
to Synthesize SAT–Provers�

F.J. Mart́ın–Mateos, J.A. Alonso, M.J. Hidalgo, and J.L. Ruiz–Reina

Departamento de Ciencias de la Computación e Inteligencia Artificial
Escuela Técnica Superior de Ingenieŕıa Informática, Universidad de Sevilla

Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
http://www.cs.us.es/{˜fmartin, ˜jalonso,˜mjoseh,˜jruiz}

Abstract. We present in this paper an application of the ACL2 system
to reason about propositional satisfiability provers. For that purpose,
we present a framework where we define a generic transformation based
SAT–prover, and we show how this generic framework can be formalized
in the ACL2 logic, making a formal proof of its termination, soundness
and completeness. This generic framework can be instantiated to obtain
a number of verified and executable SAT–provers in ACL2, and this
can be done in an automatized way. Three case studies are considered:
semantic tableaux, sequent and Davis–Putnam methods.

1 Introduction

ACL2 [8] is a programming language, a logic for reasoning about programs in the
language, and a theorem prover supporting formal reasoning in the logic. These
components make ACL2 a particularly suitable system for reasoning about deci-
sion procedures, since proving and computing tasks can be done in the same sys-
tem. Efficiency is one of the design goals of the system. Usually, it is obtained by
building specific procedures to solve concrete problems. On the other hand, sys-
tem characteristics make possible the development of generic procedures based
on logic specifications. These generic procedures can be instantiated to obtain
concrete ones [9], and this instantiation can be done maintaining efficiency to
some extent.

In this paper, we describe an application of the ACL2 system to reason
formally about a family of propositional satisfiability decision procedures. The
common pattern of these procedures is that they can be described as rule based
transformation systems. For that purpose, we develop a generic framework into
which these SAT–provers can be placed. A generic SAT–prover is formalized in
ACL2 and its main properties are proved; using functional instantiation, concrete
instances of the generic framework can be defined to obtain formally verified and
Common Lisp executable SAT–provers. We will also describe how this instanti-
ation process can be automatized. Three case studies are considered: semantic
tableaux, sequent calculus and the Davis–Putnam method.
� This work has been supported by project TIC2000-1368-C03-02 (Ministry of Science

and Technology, Spain)

M. Leuschel (Ed.): LOPSTR 2002, LNCS 2664, pp. 182–198, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 183

This paper is organized as follows. In section 2 we define a generic framework
in order to build a generic transformation based SAT–prover, and we sketch a
proof of its termination, soundness and completeness properties. We also describe
how three well–known SAT–provers methods (tableaux, sequent calculus and
Davis–Putnam method) can be placed into the generic framework. In section 3 we
show how this framework can be formalized in ACL2 and how its main properties
can be established. In section 4 we describe how these generic definitions and
theorems can be instantiated in an automatized way, to obtain verified and
executable Common Lisp definitions of tableaux based, sequent based and Davis–
Putnam SAT–provers. Finally, in section 5 we draw some conclusions and discuss
future work.

2 A Generic Framework
to Develop Propositional SAT–Provers

Analyzing some well–known methods of proving propositional satisfiability (such
as sequents, tableaux or Davis–Putnam), we can observe a common behavior.
They do not work directly on formulas but on objects built from formulas. The
objects are repeatedly modified using expansion rules, reducing their complexity
in such a way that their meaning is preserved. Eventually, from some kind of
simple objects, a distinguished valuation proving satisfiability of the original
formula can be obtained. If no such object is found, then unsatisfiability of the
original formula is proved.

We can see this behavior in the semantic tableaux method with an example
(figure 1–left). From the formula (p → q)∧p a tree with a single node is built. In
a first step the formula is expanded obtaining one extension with two formulas
p → q and p. In a second step the formula p → q is expanded obtaining two
extensions, the first with the formula ¬p and the second with the formula q.
The left branch becomes closed (with complementary literals) and the right one
provides a model σ. Thus, the tableaux method can be seen as the application of
a set of expansion rules acting on branches of trees (the objects) until a branch
without complementary literals is obtained. For this branch, a distinguished
valuation (making that branch true) is easily obtained. Otherwise, all branches
are closed and unsatisfiability is proved. In figure 1–right we can see how the
sequent method behaves in a similar way, where objects are now sequents.

So our goal in this section is to describe a generic framework where these
methods can be placed. First we introduce some notation. We consider an infinite
set of symbols Σ and a set of truth values, B = {t, f}, where t denotes true and
f denotes false. P(Σ) denotes the set of propositional formulas on Σ (the truth
values are not considered as formulas), where the basic connectives are ¬, ∧, ∨,
→ and ↔. F denotes the complementary of a formula F . A literal is a formula
p or ¬p, where p ∈ Σ. A clause is a finite sequence of literals. A valuation
is a function σ : Σ −→ B, we denote VΣ the set of all valuations defined on
Σ. The valuations are extended to P(Σ) in the usual way. We denote σ |= F
when σ(F ) = t, and we say that σ is a model of F . A valuation σ is a model



184 F.J. Mart́ın–Mateos et al.

.....................
.....................

................................................................

................................................................
p

[p → q]∗

[(p → q) ∧ p]∗

¬p q
(p) = 1

σ(q) = 1 (p → q) ∧ p⇒
(p → q), p⇒

p⇒p

Axiom

q, p⇒
σ(p) = 1
σ(q) = 1

Fig. 1. An example of tableaux and sequents methods

of a clause C, if it is a model of some literal in C. The capital Greek letters
Γ and ∆ (possibly with subscripts) denote sequences of formulas. We will use
the notation 〈e1, ..., ek〉 to represent a finite sequence, and O∗ to denote the set
of sequences of elements from the set O. We write 〈Γ1, F, Γ2〉 or Γ1, F, Γ2, to
distinguish the formula F in a sequence of formulas. Finally, Ord denotes the
class of all ordinals.

Definition 1. A Propositional Transformation System (for short, PTS) is a
triple G = 〈O,R,V〉, where O, R and V are sets such that R ⊆ O × (O∗ ∪ {t})
and V ⊆ O × VΣ.

We will call O the set of propositional objects (or simply objects) and R the
set of expansion rules. An element (O, L) ∈ R will be denoted as O �G L. Note
that we allow rules of the form O �G 〈〉 and rules of the form O �G t. When
(O, σ) ∈ V we say that σ is a distinguished valuation for O, denoted as σ |=G O.

Definition 2. Given a PTS G = 〈O,R,V〉:

1. A computation rule is a function r : O −→ O∗ ∪ {t} such that r ⊆ R.
2. A representation function is a function i : P(Σ) −→ O.
3. A measure function is a function µ : O −→ Ord.
4. A model function is a function σ :Ot −→VΣ, where Ot ={O ∈ O : O �G t}.

Given a PTS G = 〈O,R,V〉, a computation rule r and a representation
function i, we define the following algorithm SATG for proving satisfiability of a
propositional formula.

Algorithm 3 (SATG) The input to this algorithm is a propositional formula F
and it proceeds as follows:

1. Initially the list of objects 〈i(F )〉 is considered.
2. Given a list of objects 〈O1, ..., On〉, an element Oj is selected.

(a) If r(Oj) = t, then the algorithm stops returning 〈Oj〉.
(b) If r(Oj) = 〈O′

1, ..., O
′
m〉, then the algorithm returns to point 2 with the

list 〈O′
1, ..., O

′
m, O1, ..., Oj−1, Oj+1, ..., On〉.

3. If the list of objects becomes empty, the algorithm stops returning f .



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 185

The intuitive idea is simple: given F , we start with the initial object i(F )
and repeatedly apply the rules of R until t is obtained or until there are no more
objects left (termination of this process will be guaranteed by a measure function
µ). In the first case, from an object Oj such that r(Oj) = t we can obtain a
distinguished valuation using a model function, which turns out to be a model
of the original formula. In the second case, the original formula is unsatisfiable.
Let us now establish the main properties of this generic algorithm.

Definition 4. We say that SATG is complete if for all F ∈ P(Σ) such that
∃σ : σ |= F , then SATG(F ) �= f . We say that it is sound if for all F ∈ P(Σ)
such that SATG(F ) �= f , then ∃σ : σ |= F .

Theorem 1. Let G = 〈O,R,V〉 be a PTS, r a computation rule, i a represen-
tation function, µ a measure function and σ a model function, such that the
following properties holds:

P1: Oi ∈ r(O) =⇒ µ(Oi) < µ(O)
P2: F ∈ P(Σ) =⇒ (σ |= F ⇐⇒ σ |=G i(F ))
P3: O ∈ O ∧ r(O) �= t =⇒ (σ |=G O ⇐⇒ ∃Oi ∈ r(O), σ |=G Oi)
P4: O ∈ O ∧ r(O) = t =⇒ σ(O) |=G O

then the algorithm SATG terminates for any formula and is complete and sound.
Furthermore, if SATG(F ) = 〈O〉 then σ(O) |= F .

Termination Proof: To prove termination of SATG we must prove that point 2
is a finite loop. Assume that the list of objects in point 2 is 〈O1, ..., On〉, the
selected element is Oj and r(Oj) = 〈O′

1, ..., O
′
m〉.

We consider the relation <µ in O defined as follows O1 <µ O2 if and only if
µ(O1) < µ(O2). Obviously, <µ is a well founded relation on O. Then, for every k,
O′

k <µ Oj by P1. Therefore, the multiset {O′
1, ..., O

′
m, O1, ..., Oj−1, Oj+1, ..., On}

is smaller than {O1, ..., On} with respect to the multiset extension of <µ (which
is also well-founded as proved in [5]). This proves termination of SATG.
Completeness Proof: First of all note that, by P3, if the algorithm reaches point
2–(b), σ is a distinguished valuation of some object in the list considered in point
2 if and only if it is a distinguished valuation of some object in the new list built
in point 2–(b).

If σ |= F then, by P2, σ |=G i(F ). Then, by the above observation, in every
list considered in point 2 exists O such that σ |=G O. Therefore the list in point 2
cannot become empty and, as the algorithm terminates, in some step an object
O′ such that r(O′) = t will be considered. Then SATG(F ) = 〈O′〉 �= f .
Soundness Proof: If SATG(F ) = 〈O〉 then r(O) = t and, by P4, σ(O) |=G O.
Then, by the property noted in the completeness proof, in every list considered
in point 2 exists O such that σ(O) |=G O. Therefore, this holds for the initial list
considered 〈i(F )〉, i.e., σ(O) |=G i(F ), and, by P2, σ(O) |= F . �

2.1 Semantic Tableaux

We consider the semantic tableaux method as it is described in [6]. The tableaux
expansion rules are concisely presented using the uniform notation [14]. Using



186 F.J. Mart́ın–Mateos et al.

this notation, non–literal formulas are classified as doubly negated, α–formulas
(equivalent to the conjunction of two components α1 and α2) or β–formulas
(equivalent the a disjunction of two components, β1 and β2)1.

We now describe the PTS T = 〈OT ,RT ,VT 〉 associated with the semantic
tableaux method. In this PTS, OT is the set of tableau branches (represented
as lists of formulas), VT is the set of pairs (θ, σ) such that σ makes true every
formula in θ, and RT the set of rules given by the following rule schemata:

RT 1 : 〈Γ1, G, Γ2,¬G, Γ3〉 �T 〈〉
RT 2 : 〈Γ1,¬¬G, Γ2〉 �T 〈〈Γ1, G, Γ2〉〉
RT 3 : 〈Γ1, α, Γ2〉 �T 〈〈Γ1, α1, α2, Γ2〉〉
RT 4 : 〈Γ1, β, Γ2〉 �T 〈〈Γ1, β1, Γ2〉, 〈Γ1, β2, Γ2〉〉
RT 5 : Γ �T t if Γ does not have non–literal

nor complementary formulas

We define the representation function iT such that for every F ∈ P(Σ),
iT (F ) = 〈F 〉. Obviously, σ |= F ⇐⇒ σ |=T i(F ) (property P2).

We consider any computation rule, rT , such that, for every branch θ, rT (θ)
is a rule from the above table that can be applied to θ.

We define the uniform measure, denoted as u, as follows: u(F ) = 5∗δ↔(F )+
2 ∗ (δ∧(F ) + δ∨(F ) + δ→(F )) + δ¬(F ), where δ◦(F ) computes the number of
occurrences of the connective ◦ in F . This measure has the following properties:
u(α1) + u(α2) < u(α), u(β1) < u(β), u(β2) < u(β) and u(F ) < u(¬¬F ). We
define the measure function, µT , as the sum of the uniform measure of the
formulas in a branch. By the properties of u, the expansion rules reduce the
measure of a branch; therefore θi ∈ rT (θ) =⇒ µT (θi) < µT (θ) (property P1).

The uniform notation ensures that an α (β) formula is logically equivalent to
the conjunction (disjunction) of its components and a doubly negated formula
¬¬F is also logically equivalent to F . Hence, if θ �T L with L �= t, it can be
easily proved that σ |=T θ ⇐⇒ ∃θi ∈ L, σ |=T θi. According to the definition
of computation rule, this trivially implies property P3.

Finally, we define the model function σT such that for every branch θ without
non–literal nor complementary formulas, σT (θ) |= p if and only if p is a positive
literal occurring in θ. Obviously if rT (θ) = t then σT (θ) |=T θ (property P4).

Then, by theorem 1, the algorithm SATT terminates for any formula and
is complete and sound. The algorithm applied to the example of figure 1–left
performs the following steps (represented as �−→SATT ):

〈〈(p → q) ∧ p〉〉 �−→SATT 〈〈p → q, p〉〉 �−→SATT

�−→SATT 〈〈p, ¬p〉, 〈p, q〉〉 �−→SATT 〈〈p, q〉〉 �−→SATT 〈〈p, q〉〉

2.2 Sequents and the Gentzen System

We denote sequents as Γ ⇒∆, where Γ and ∆ are lists of formulas. An atomic
sequent is a sequent in which every formula is atomic. A valuation σ makes the
1 We extend the uniform notation to include equivalence: F ↔ G is considered a

β–formula with components β1 = F ∧G, β2 = ¬F ∧¬G, and ¬(F ↔ G) is considered
a β–formula with components β1 = F ∧ ¬G, β2 = ¬F ∧ G.



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 187

sequent Γ ⇒∆ true if and only if ∃X ∈ Γ, (σ �|= X) ∨ ∃Y ∈ ∆, (σ |= Y ). We will
consider the axioms and rules of Gentzen System G′ presented in [7], with two
additional rules about equivalence:

Γ1, F, G, Γ2 ⇒∆ Γ1, Γ2 ⇒F, G, ∆
Γ1, F ↔ G, Γ2 ⇒∆

(↔: left)

F, Γ ⇒∆1, G, ∆2 G, Γ ⇒∆1, F, ∆2

Γ ⇒∆1, F ↔ G, ∆2
(↔: right)

In order to prove the satisfiability of a formula F , the rules are applied to the
initial sequent F ⇒ until atomic sequents are obtained. Some atomic sequents
provide countermodels of the initial sequent, and hence, models of the original
formula. See [7] for more background about the sequent method.

We now describe the PTS S = 〈OS ,RS ,VS〉 associated with the sequents
method. In this PTS, OS is the set of sequents (represented as pairs of lists of
formulas), VS is the set of pairs (S, σ) such that σ makes S false and RS the set
of rules given by the following rule schemata:

RS1 : 〈Γ1, F, Γ2〉⇒〈∆1, F, ∆2〉 �S 〈〉
RS2 : 〈Γ1,¬F, Γ2〉⇒∆ �S 〈〈Γ1, Γ2〉⇒〈F, ∆〉〉
RS3 : 〈Γ1, F ∧ G, Γ2〉⇒∆ �S 〈〈F, G, Γ1, Γ2〉⇒∆〉
RS4 : 〈Γ1, F ∨ G, Γ2〉⇒∆ �S 〈〈F, Γ1, Γ2〉⇒∆, 〈G, Γ1, Γ2〉⇒∆〉
RS5 : 〈Γ1, F → G, Γ2〉⇒∆ �S 〈〈Γ1, Γ2〉⇒〈F, ∆〉, 〈G, Γ1, Γ2〉⇒∆〉
RS6 : 〈Γ1, F ↔ G, Γ2〉⇒∆ �S 〈〈F, G, Γ1, Γ2〉⇒∆, 〈Γ1, Γ2〉⇒〈F, G, ∆〉〉
RS7 : Γ ⇒〈∆1,¬F, ∆2〉 �S 〈〈F, Γ 〉⇒〈∆1, ∆2〉〉
RS8 : Γ ⇒〈∆1, F ∧ G, ∆2〉 �S 〈Γ ⇒〈F, ∆1, ∆2〉, Γ ⇒〈G, ∆1, ∆2〉〉
RS9 : Γ ⇒〈∆1, F ∨ G, ∆2〉 �S 〈Γ ⇒〈F, G, ∆1, ∆2〉〉
RS10 : Γ ⇒〈∆1, F → G, ∆2〉 �S 〈〈F, Γ 〉⇒〈G, ∆1, ∆2〉〉
RS11 : Γ ⇒〈∆1, F ↔ G, ∆2〉 �S 〈〈F, Γ 〉⇒〈G, ∆1, ∆2〉, 〈G, Γ 〉⇒〈F, ∆1, ∆2〉〉
RS12 : Γ ⇒∆ �S t if Γ ⇒∆ is an atomic sequent and Γ ∩ ∆ = Ø

The representation function iS builds the sequent F ⇒ for every F ∈ P(Σ).
Thus, σ |= F ⇐⇒ σ |=S iS(F ) (property P2).

We consider any computation rule, rS , such that, for every sequent S, rS(S)
is a rule from the above table that can be applied to S.

We define the measure function µS as the number of occurrences of proposi-
tional connectives in a sequent. The expansion rules reduce this number, there-
fore Si ∈ rS(S) =⇒ µS(Si) < µS(S) (property P1).

Given an expansion rule S �S L with L �= t, it can be easily proved that
σ |=S S ⇐⇒ ∃Si ∈ L, σ |=S Si. By the definition of computation rule, this
implies property P3.

Finally, we define the model function σS such that for every atomic non–
axiom sequent S, σS(S) |= p if and only if p occurs in the left part of S. Obviously,
if rS(S) = t then σS(S) |=S S (property P4).

Then, by theorem 1, the algorithm SATS terminates for any formula and
is complete and sound. The algorithm applied to the example of figure 1–right
performs the following steps (represented as �−→SATS ):



188 F.J. Mart́ın–Mateos et al.

〈〈(p → q) ∧ p〉⇒〉 �−→SATS 〈〈p → q, p〉⇒〉 �−→SATS 〈p⇒p, 〈q, p〉⇒〉 �−→SATS

�−→SATS 〈〈q, p〉⇒〉 �−→SATS 〈〈q, p〉⇒〉

2.3 Davis–Putnam Method

The Davis–Putnam method is a procedure to decide the satisfiability of a set of
clauses. Then, if FC is a procedure to obtain a set of clauses logically equivalent
to a formula F , we can use the Davis–Putnam method to decide the satisfiability
of F , applying the method to FC(F ). See [6] for more background about the
Davis–Putnam method.

We now describe the PTS D = 〈OD,RD,VD〉 associated with the Davis–
Putnam method. Now, OD is the set of pairs 〈S, M〉, where S is a set of clauses
and M is a literal list without complementary literals and such that for every L
in M , neither L nor L is in some clause in S. VD is the set of pairs (〈S, M〉, σ)
such that σ is model of every clause in S and every literal in M . RD is the set
of rules given by the following rule schemata:

RD1 : 〈S, M〉 �D 〈〉 if the empty clause is in S
RD2 : 〈S, 〈L1, . . . , Ln〉〉 �D 〈〈SL, 〈L, L1, . . . , Ln〉〉〉

if the unitary clause {L} is in S
RD3 : 〈S, 〈L1, . . . , Ln〉〉 �D 〈〈SL, 〈L, L1, . . . , Ln〉〉, 〈SL, 〈L, L1, . . . , Ln〉〉〉

where L is a literal in a clause in S
RD4 : 〈〈〉, M〉 �D t

where S is a set of clauses, 〈S, M〉 and 〈S, 〈L1, . . . , Ln〉〉 are elements in OD, and
SL = {C − {L} : C ∈ S and L /∈ C} and SL = {C − {L} : C ∈ S and L /∈ C}.

The representation function iD builds a pair 〈FC(F ), 〈〉〉, where FC is as-
sumed to be a correct procedure to obtain a set of clauses logically equivalent
to F , that is, σ |= F ⇐⇒ σ |= FC(F ) ⇐⇒ σ |=D iD(F ) (property P2).

We consider a computation rule, rD, that applies one of the expansion rules
schemata in the following preference order RD1, RD2, RD3 and RD4.

We define the measure function µD, such that, for every pair 〈S, M〉 ∈ OD,
µD(〈S, M〉) is the total number of literals of the clauses of S. The expansion
rules reduce this value, therefore 〈Si, Mi〉 ∈ rD(〈S, M〉) =⇒ µD(〈Si, Mi〉) <
µD(〈S, D〉) (property P1).

Given an expansion rule 〈S, M〉 �D L with L �= t, it can be easily proved
that σ |=D 〈S, M〉 ⇐⇒ ∃〈Si, Mi〉 ∈ L, σ |=D 〈Si, Mi〉. By the definition of
computation rule, this implies property P3.

Finally, we define the model function σD such that for every pair 〈〈〉, M〉 and
p ∈ Σ, σD(〈〈〉, M〉) |= p if and only if p ∈ M . Obviously, if rD(〈S, M〉) = t then
σD(〈S, M〉) |=D 〈S, M〉 (property P4).

Then, by theorem 1, the algorithm SATD terminates for any formula and is
complete and sound. The algorithm applied to the formula (p → q)∧ p performs
the following steps (represented as �−→SATD ):

〈〈〈{¬p, q}, {p}〉, 〈〉〉〉 �−→SATD 〈〈〈{q}〉, 〈p〉〉〉 �−→SATD

�−→SATD 〈〈〈〉, 〈q, p〉〉〉 �−→SATD 〈〈〈〉, 〈q, p〉〉〉



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 189

3 Formalizing the Generic SAT–Prover in ACL2

Let us see in this section how we formalize the concepts and results of the
previous section in the ACL2 logic.The ACL2 logic is a quantifier–free, first–order
logic with equality, describing an applicative subset of Common Lisp. The syntax
of terms is that of Common Lisp. The logic includes axioms for propositional
logic and for a number of Lisp functions and data types. Rules of inference
include those for propositional calculus, equality, and instantiation, as well as the
introduction of new total recursive functions by the principle of definition (using
defun) and constrained functions (via encapsulate). The ACL2 theorem prover
mechanizes that logic, being particularly well suited for obtaining automatized
proofs based on simplification and induction. For a detailed description of ACL2,
we refer the reader to the ACL2 book [8].

3.1 Definition of the Generic Algorithm

Before reasoning in ACL2 about the algorithm SATG, we have to define in the
ACL2 logic the functions introduced by the generic framework presented in sec-
tion 2. These ACL2 functions and their intended meanings are shown in the
following table:

gen-object-p(O) O ∈ O
gen-repr(F ) i(F )
gen-comp-rule(O) r(O)
gen-dist-val(σ, O) σ |=G O
gen-model(O) σ(O)
gen-measure(O) µ(O)
gen-select(lst) selects an element from a list lst

These functions are not introduced in the ACL2 logic using the principle of
definition. Since they are generic, we define them by means of the encapsulate
mechanism, which allows the user to introduce new function symbols by ax-
ioms constraining them to have certain properties (to ensure consistency, a wit-
ness local function having the same properties has to be exhibited). Inside an
encapsulate, the properties stated need to be proved for the local witnesses,
and outside, they work as assumed axioms. In this case, the properties about
the generic functions are the following2:

Theorem: gen-object-p-gen-repr
propositional-p(F ) → gen-object-p(gen-repr(F ))

Theorem: gen-object-p-gen-comp-rule
gen-object-p(O1) ∧ (O2 ∈ gen-comp-rule(O1))

→ gen-object-p(O2)
2 The expressions provided to ACL2 are written in Common Lisp notation but, to

improve their legibility, we present them using a infix notation.



190 F.J. Mart́ın–Mateos et al.

Theorem: e0-ordinalp-gen-measure
e0-ordinalp(gen-measure(O))

Theorem: P1
O2 ∈ gen-comp-rule(O1)

→ gen-measure(O2) < gen-measure(O1)

Theorem: P2
propositional-p(F )

→ (gen-dist-val(σ, gen-repr(F )) ↔ models(σ, F ))

Definition:
gen-dist-val-lst(σ, O-lst) =
if endp(O-lst) then nil
else gen-dist-val(σ, car(O-lst))

∨ gen-dist-val-lst(σ, cdr(O-lst))
fi

Theorem: P3
gen-object-p(O) ∧ (gen-comp-rule(O) �= t)

→ (gen-dist-val-list(σ, gen-comp-rule(O))
↔ gen-dist-val(σ, O))

Theorem: P4
gen-object-p(O) ∧ (gen-comp-rule(O) = t)

→ gen-dist-val(gen-model(O), O)

Theorem: gen-select-member
consp(lst) → (gen-select(lst) ∈ lst)

The first three properties state that the functions gen-repr, gen-comp-rule
and gen-measure take values as expected, when acting on elements of their
intended domains. The properties named P1, P2, P3 and P4 are the corresponding
formalization of the properties P1, P2, P3 and P4, respectively, as defined in
the hypothesis of theorem 1 3. The symbol < denotes the “less than” relation
between ordinals. Finally, note that we also introduce a function gen-select,
that selects an element from any non–empty list. This function is needed in the
definition of the generic SAT algorithm.

Once the functions of our generic framework have been (abstractly) defined,
we define in ACL2 the function generic-sat, implementing the algorithm SATG:

3 The functions propositional-p and models are defined in a previous ACL2
formalization about the syntax and semantics of propositional logic; they de-
fine, respectively, the propositional formulas and models of formulas. The func-
tion gen-dist-val-lst can be seen as a generalized disjunction of the predicate
gen-dist-val acting on the objects of a list.



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 191

Definition:
generic-sat-lst(O-lst) =
if endp(O-lst) then nil
else let* O be gen-select(O-lst),

rest be remove-one(gen-select(O-lst), O-lst),
expansion be gen-comp-rule(O)
in

if expansion = t then list(O)
else generic-sat-lst(expansion @ rest)
fi

fi
Measure: gen-measure-lst(O-lst)
Well founded relation: <mul

Definition:
generic-sat(F ) = generic-sat-lst(list(gen-repr(F )))

(1)
(2)

(3)

(4)

where the symbol @ is the “append” operation between lists.
Note that the main function of this algorithm is given by the recursive func-

tion generic-sat-lst, acting on a list of objects to be expanded. When a rule
of the form 〈O, t〉 is applied to a selected object O, the algorithm returns a
singleton list containing O (4). According to the property assumed about the
function gen-model, this object has a distinguished valuation. Thus, returning
the object will be useful to provide a model of the input formula. On the other
hand, when there are no more objects to be expanded, the algorithm returns f,
represented as the ACL2 symbol nil (1).

This algorithm is left unspecified in two aspects: first, no concrete compu-
tation rule is defined by the generic function gen-comp-rule (3); second, the
object to which the expansion rule is applied, selected by the abstractly defined
function gen-select, is not specified (2).

3.2 Termination

By the ACL2 principle of definition, new function definitions are admitted as
axioms only if there exists a well–founded measure in which the arguments of
each recursive call decrease, ensuring in this way that no inconsistencies are
introduced by new definitions. In the case of the function generic-sat-lst the
heuristics of the prover are not able to find a suitable termination argument, so
we must explicitly provide a measure on its argument that decreases in every
recursive call with respect to a well–founded relation.

In ACL2, the only primitive well–founded relation is e0-ord-<, the “less
than” relation between ordinals up to ε0, represented in terms of lists and nat-
ural numbers, given by the predicate e0-ordinalp. Nevertheless, the user can
introduce a new well founded relation by providing the corresponding monotone
ordinal function.



192 F.J. Mart́ın–Mateos et al.

To show termination of generic-sat-lst, we follow the lines described in
the informal proof given in section 2. The measure associated to its argument
is given by a function gen-measure-lst that computes the list of the ordinal
measures of the objects of a given list. This measure decreases with respect to the
well founded relation mul-e0-ord-< (denoted as <mul), defined as the multiset
relation induced by e0-ord-<. Since e0-ord-< is well–founded, so is its induced
multiset relation [5]. This result was formalized in the ACL2 logic in [12], where
a macro named defmul was also developed. This macro automatically generates
the definitions and theorems needed to define a well–founded multiset relation
induced by a given well–founded relation.

The main termination property of generic-sat-lst is given by the following
theorem, establishing that this measure decreases in every recursive call, and
allowing the admission of the function generic-sat-lst.

Theorem: generic-sat-lst-termination-property
let* O be gen-select(O-lst),

rest be remove-one(gen-select(O-lst), O-lst),
expansion be gen-comp-rule(O)
in

consp(O-lst) ∧ (expansion �= t)
→ gen-measure-lst(expansion @ rest) <mul gen-measure-lst(O-lst)

3.3 Soundness and Completeness

The following theorems state the formal properties of the function generic-sat
(soundness and completeness):

Theorem: soundness-generic-sat
propositional-p(F ) ∧ generic-sat(F ) → models(generic-mod(F ), F )

Theorem: completeness-generic-sat
propositional-p(F ) ∧ models(σ, F ) → generic-sat(F )

These two theorems formalize theorem 1 in ACL2. They are proved along the
lines of the informal proof given in section 2, basically first proving by induction
analogue properties about the function generic-sat-lst. Here the properties
assumed about the generic functions showed in the subsection 3.1 plays a crucial
role. The function generic-mod, provides a model of a satisfiable formula, its
definition is the following:

Definition:
generic-mod(F ) = gen-model(first(generic-sat(F )))

4 Instantiating the Generic Framework

Concrete SAT–prover will be given by defining concrete counterparts of the ab-
stractly defined functions given in subsection 3.1. With these concrete functions,
one can define concrete version of the algorithm generic-sat.



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 193

A derived rule of inference in ACL2, functional instantiation, allows some
kind of second–order reasoning: theorems about previously defined (or abstractly
defined) functions can be instantiated with function symbols known to have
the same properties. In this case, if the assumed properties about the generic
functions are verified by the concrete functions, then by functional instantiation
we can easily conclude termination, soundness and completeness of the concrete
SAT–prover.

4.1 A Tableaux Based SAT–Prover

Along the lines of subsection 2.1, we can define in ACL2 a tableaux based in-
stantiation of the generic framework. For that purpose we define a tableaux
version of the generic functions given in subsection 3.1: tableaux-object-p,
tableaux-repr, tableaux-comp-rule, tableaux-dist-val, tableaux-model,
tableaux-measure and tableaux-select. These functions are defined as sug-
gested in subsection 2.1. In this case, objects are lists of propositional formulas,
representing branches in a tableau.

For example, the definition of the computation rule is the following:

Definition:
tableaux-comp-rule(θ) =
if closed-tableau(θ) then nil
else let F be one-formula(θ)

in
if doubly-neg-p(F )
then list(add(neg-neg-component(F ), remove-one(F , θ)))
elseif alfa-formula-p(F )
then list(add(component-1(F ),

add(component-2(F ), remove-one(F , θ))))
elseif beta-formula-p(F )
then list(add(component-1(F ), remove-one(F , θ)),

add(component-2(F ), remove-one(F , θ)))
else t
fi

fi

RT 1

RT 2

RT 3

RT 4
RT 5

Here the function closed-tableau checks if a branch has complementary
formulas. In this case, the branch is expanded to the empty list. Otherwise, a
formula is selected using a function one-formula, and the branch is expanded
according to the type of the formula, as described by RT .

Note that this computation rule implements a strategy for applying the
tableaux expansion rules in a preference order, given by a function one-formula.
Any other strategy could have been defined, provided that the properties as-
sumed about the generic functions could be proved for the concrete counterparts.
In this case, these properties are proved easily, except for P3 and P4, which are
somewhat more elaborated.



194 F.J. Mart́ın–Mateos et al.

Once the assumed properties in the generic framework have been proved for
the tableaux case, we can instantiate the generic SAT–prover algorithm, and
prove analogue theorems of termination, soundness and completeness, but now
using functional instantiation. The same procedure would have to be done for
every concrete instantiation of the generic framework, so it makes sense to use
a tool to mechanize this process to some extent.

In [9], we describe a user tool we developed to instantiate generic ACL2
theories. This tool turns out to be a valuable help in this context, where we have
developed a generic theory about SAT–provers and we want to instantiate the
theory to obtain concrete, formally verified and executable SAT–provers.

We defined a macro named make-generic-theory, which receives as argu-
ment a list of ACL2 events (definitions and theorems) that can be instantiated.
When an ACL2 book4 developing a generic theory is created, we include a call
to this macro in its last line, for example, in the book that formalizes the generic
framework for SAT–provers (as described in the previous section), we include
the following last call:

(make-generic-theory *generic-sat*)

Here *generic-sat* is a constant containing the events corresponding to the
generic definitions and theorems that can be instantiated by other ACL2 books.
For example, the definition of generic-sat and the theorems establishing its
properties. When this macro call is executed, it defines a new macro that recei-
ving as input a functional substitution, generates the corresponding functional
instantiation of the instantiable events.

For example, once defined the functions implementing the tableaux coun-
terparts of the generic functions, when we include the book with the generic
SAT–prover formalization, a macro definstance-*generic-sat* is automati-
cally defined, and we can use this macro to automatically generate instantiated
events for the tableux based SAT–prover, as follows:

(definstance-*generic-sat*
((gen-object-p tableaux-object-p)
(gen-repr tableaux-repr)
(gen-dist-val tableaux-dist-val)
(gen-dist-val-list tableaux-dist-val-list)
(gen-comp-rule tableaux-comp-rule)
(gen-select tableaux-select)
(gen-measure tableaux-measure)
(gen-model tableaux-model))
"-tableaux")

Note that this macro receives as input a functional substitution, associating
every function of the generic framework with its tableaux counterpart. It also
4 A collection of ACL2 definitions and proved theorems is usually stored in a certified

file of events (a book in the ACL2 terminology), that can be included in other books.



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 195

receives a string, used to name the new events generated, by appending it to the
name of the original event.

The result of this macro call is the automatic generation of the events needed
to define and verify in ACL2 a tableaux based propositional SAT–prover. As
a consequence, the definition of a function named generic-sat-tableaux is
generated in an analogue way to generic-sat (using the tableaux auxiliary
functions). And also the following theorems, establishing the soundness and com-
pleteness of generic-sat-tableaux are automatically generated and proved:

Theorem: soundness-generic-sat-tableaux
propositional-p(F ) ∧ generic-sat-tableaux(F )

→ models(generic-mod-tableaux(F ), F )

Theorem: completeness-generic-sat-tableaux
propositional-p(F ) ∧ models(σ, F )

→ generic-sat-tableaux(F )

Note that, once proved that the tableaux counterparts of the generic functions
verify the properties showed in subsection 3.1, no additional proof effort is needed
to define and verify the tableaux–based SAT–prover.

4.2 Sequent and Davis–Putnam Based SAT–Provers

We can follow an analogous procedure to define and verify, sequent and Davis–
Putnam instantiations of the generic SAT–prover. This is done by a macro call
similar to that used in the tableaux case.

As with tableaux, the functional substitution used in the macro call relates
the generic functions with their concrete counterparts. Of course, these concrete
functions have to be previously defined, their properties proved and the book
with the generic development included. These functions are defined as suggested
in subsections 2.2, for the sequent based SAT–prover, and 2.3, for the Davis–
Putnam based SAT–prover.

4.3 Execution Examples

The functions implementing the previous SAT–provers are executable in any
compliant Common Lisp (with the appropriated files loaded). In the following
table we present the results of applying the tableaux and sequents procedures
to prove the satisfiability of a propositional version of the N -queens problem5.
We also apply the Davis–Putnam procedure to the same problem. Note that
the Davis–Putnam procedure works with propositional clauses and a previous
translation of propositional formulas into clauses is needed in this case (we do
not include the translation times).

5 All results are in seconds of user CPU on a double 800MHz Pentium III.



196 F.J. Mart́ın–Mateos et al.

N Tableaux Sequents Davis-Putnam
2 0.010 0.000 0.000
3 0.060 0.020 0.010
4 0.530 0.180 0.040
5 2.370 0.820 0.140
6 212.070 72.600 0.250
7 750.540 255.640 0.570

The complete files with definitions and theorems about the generic frame-
work, the instances and the examples, are available on the Web in
http://www.cs.us.es/˜fmartin/acl2-gen-sat/

5 Conclusions and Further Work

We have presented an application of the ACL2 theorem prover to reason about
SAT decision procedures. First, we considered a generic SAT–prover, having the
essential properties of every transformation based SAT–prover. Second, we rea-
soned about the generic algorithm, establishing its main properties. And third,
we obtained verified and executable SAT–provers using functional instantiation.
This last process can be done in an automatized way.

The main effort in the formalization of the generic SAT–prover has been
done in the termination proof of the generic algorithm. This proof is based on
a previous work about multiset relations [12]. With respect to the instantiation
procedure, the main effort has been done in the proof of the concrete version of
properties P3 and P4 and the development of the instantiation tool. A detailed
presentation of this tool can be found in [9]. The following table summarizes the
number of definitions, theorems and hints needed to formalize and prove each
section:

Section Definitions Theorems Hints
Generic algorithm 15 37 13
Tableaux based SAT–prover 23 53 13
Sequent based SAT–prover 21 37 9
Davis–Putnam SAT–prover 23 47 9

There is some related work in mechanical verification of SAT–provers. A
classical example is Boyer and Moore’s propositional tautology checker [3], pre-
sented as an IF-THEN-ELSE normalization procedure and verified using Nqthm
(the predecessor of ACL2). This example has been formalized in other systems
as well. A more recent work is done by Caldwell [4] using Nuprl and program ex-
traction to obtain a mechanically verified sequent proof system for propositional
logic. See this reference for an additional account of related works.

The methodology we have followed turns out to be suitable for mechanical
verification. Reasoning first about the generic algorithm allows us to concen-
trate on the essential aspects of the process, making verification tasks easier.
Functional instantiation allows us to verify concrete instances of the algorithm,



Verification in ACL2 of a Generic Framework to Synthesize SAT–Provers 197

without repeating the main proof effort and allowing some kind of mechanization
of the process.

We have used this methodology to develop resolution based SAT–provers: we
have defined a generic resolution procedure and we have proved its termination,
soundness and completeness properties. The completeness proof is based on the
developed by Bezem in [2]. This work can be found in [10].

An additional step in this methodology could be refinement. We could de-
fine more efficient functions and obtain their properties by proving equivalence
theorems with the less efficient ones. In this line of work we have implemented a
DPLL (Davis Putnam Logemann Loveland) procedure in ACL2, based on [15],
which turns out to be much more efficient than the one presented here (It solves
the 7-queens problem in 0.010 seconds and the 16-queens problem in 0.750 sec-
onds). Using this technique of refinement, we could verify this more efficient
version of the Davis–Putnam procedure

Another line of work is to apply the generic framework to other SAT meth-
ods (KE, TAS-D [1], etc). Finally, we also plan to use the same methodology
to develop generic framework for non–classical and first–order logics. In the last
case, we think that the development of a generic framework could be easy, com-
bining the results presented here with a verified unification algorithm, such as
the algorithm presented in [13] and [11].

References

1. G. Aguilera, I.P. de Guzman, M. Ojeda–Aciego and A. Valverde. Reductions for
non-clausal theorem proving. Theoretical Computer Science 266, pages 81–112.
Elsevier, 2001.

2. M. Bezem. Completeness of resolution revisited. Theoretical Computer Science 74,
no. 2, pages 227–237, 1990.

3. R. S. Boyer and J S. Moore. A Computational Logic. Academic Press, 1979.
4. J. Caldwell. Decidability Extracted: Synthesizing “Correct-by-Construction” Deci-

sion Procedures from Constuctive Proofs. PhD thesis, Cornell University, 1998
5. N. Dershowitz and Z. Manna. Proving Termination with Multiset Orderings. In

Proceedings of the Sixth International Colloquium on Automata, Languages and
Programming, LNCS 71, pages 188–202. Springer–Verlag, 1979.

6. M.C. Fitting. First–Order Logic and Automated Theorem Proving. Springer–
Verlag, New York, 1990.

7. J.H. Gallier. Logic for Computer Science, Foundations of Automatic Theorem
Proving. Harper and Row Publishers, 1986.

8. M. Kaufmann, P. Manolios, and J S. Moore. Computer–Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

9. F.J. Martin–Mateos, J.A. Alonso, M.J. Hidalgo, and J.L. Ruiz–Reina. A Generic
Instantiation Tool and a Case Study: A Generic Multiset Theory, 2002.

10. F.J. Martin–Mateos. Teoria computacional (en ACL2) sobre calculos proposi-
cionales. PhD thesis, University of Seville, 2002.

11. J.L. Ruiz–Reina. Una teoria computacional acerca de la logica ecuacional. PhD
thesis, University of Seville, 2001.



198 F.J. Mart́ın–Mateos et al.

12. J.L. Ruiz–Reina, J.A. Alonso, M.J. Hidalgo, and F.J. Martin. Multiset Relations:
a Tool for Proving Termination. In Second ACL2 Workshop, Technical Report
TR-00-29, Computer Science Departament, University of Texas, 2000.

13. J.L. Ruiz–Reina, J.A. Alonso, M.J. Hidalgo, and F.J. Martin. Mechanical verifi-
cation of a rule-based unification algorithm in the Boyer-Moore theorem prover.
In Proceedings AGP’99, Joint Conference on Declarative Programming, L’Aquila
(Italia), 1999.

14. R.M. Smullyan. First–Order Logic. Springer–Verlag: Heidelberg, Germany, 1968.
15. H. Zhang and M.E. Stickel. Implementing the Davis–Putnam method Journal of

Automated Reasoning, 24(1–2):277–296, 2000.


	1 Introduction
	2 A Generic Framework to Develop Propositional SAT–Provers
	2.1 Semantic Tableaux
	2.2 Sequents and the Gentzen System
	2.3 Davis–Putnam Method

	3 Formalizing the Generic SAT–Prover in ACL2
	3.1 Definition of the Generic Algorithm
	3.2 Termination

	4 Instantiating the Generic Framework
	4.1 A Tableaux Based SAT–Prover
	4.2 Sequent and Davis–Putnam Based SAT–Provers
	4.3 Execution Examples

	5 Conclusions and Further Work
	References

