
Formal Reasoning About Efficient Data
Structures: A Case Study in ACL2 ?

J.-L. Ruiz-Reina, J.-A. Alonso, M.-J. Hidalgo and F.-J. Mart́ın-Mateos
http://www.cs.us.es/{~jruiz, ~jalonso, ~mjoseh, ~fmartin}

Computational Logic Group
Dept. of Computer Science and Artificial Intelligence, University of Seville

E.T.S.I. Informática, Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain

Abstract. We describe in this paper the formal verification, using the
ACL2 system, of a syntactic unification algorithm where terms are rep-
resented as directed acyclic graphs (dags) and these graphs are stored
in a single-threaded object (stobj). The use of stobjs allows destructive
operations on data (thus improving the performance of the algorithm),
while maintaining the applicative semantics of ACL2. We intend to show
how ACL2 provides an environment where execution of algorithms with
efficient data structures and formal reasoning about them can be carried
out.

1 Introduction

The ACL2 system includes a programming language, a logic for formal reason-
ing about the properties of the functions defined in the language, and a theorem
prover supporting mechanized reasoning in the logic. The ACL2 programming
language is an extension of an applicative subset of Common Lisp and the logic
is a first-order logic with equality, without quantifiers (all the formulas are im-
plicitly universally quantified).

Since the programming language is applicative, logical arguments about the
correctness and termination of algorithms are made as they are in ordinary math-
ematics, without the complications incured by consideration of state. Notwith-
standing, it is possible to declare some objects in the language as single-threaded
objects (in the sequel, stobjs) and perform destructive updates on them. When
an object is declared to be single-threaded, ACL2 enforces certain syntactic re-
strictions on its use, ensuring that in every moment only one copy of the object
is needed. With these restrictions, the destructive updates are consistent with
the applicative semantics of ACL2. Using stobjs we can combine efficient im-
perative implementations with the semantic of functional languages to reason
about these implementations.

In this paper we present a case study where we use ACL2 to implement and
verify a unification algorithm. A standard approach in the implementation of
? This work has been supported by project TIC2000-1368-C03-02 (Ministry of Science

and Technology, Spain) and FEDER funds.

unification is to represent terms as directed acyclic graphs (dags in the following),
allowing some amount of structure sharing; in this way, it is not needed to build
new terms during the unification process, but merely update (destructively) the
graph, thus improving the performance of the algorithm. In our implementation,
the dags will be stored using a stobj.

To achieve the formal proof, we follow the well-known methodology of compo-
sitional reasoning. As a first step, we reason about unification at a very abstract
level, without entering in details related to the control of the algorithm or the
data structures used. By stepwise-refinement, we finally obtain the proof of the
desired properties of our concrete unification algorithm.

Another interesting point in this case study is the use of a new feature in
ACL2 (the mbe feature) that associates an “executable body” with a (possibly
different) “logical body”. This association will be allowed by the system after
proving that on the intended domain of the function, the executable body and
the logical body are equal. We describe this new feature of ACL2, and explain
how it can be used to improve the execution efficiency of the verified unification
algorithm.

Although we will not give an introduction to ACL2, we will comment the
relevant questions in passing, when needed. An excellent introduction to ACL2
is [5]. A detailed description of the system can be found in the manual, available
in [6]. We will assume the reader familiar with Common Lisp. Due to the lack of
space, we will not give here details about the proofs obtained and some function
definitions will be omitted. We urge the interested reader to consult [11], where
the complete development (with a detailed description) is available.

2 Dag unification

We briefly review some basic concepts about (syntactic) unification, a funda-
mental process upon which many methods of automated deduction are based. A
complete description of the theory of unification can be found in [2].

An equation is a pair of first-order terms, denoted as t1 ≈ t2, and a system
of equations is a finite set of equations. A substitution σ is a solution of t1 ≈ t2
if σ(t1) = σ(t2) and it is a solution of a system of equations S if it is a solution
of every equation in S. Given two substitutions σ and δ, we say that σ is more
general than δ if there exists a substitution γ such that δ = γ◦σ, where ◦ denotes
functional composition. We say that a solution of S is a most general solution if
it is more general than any other solution of S. Two terms t1 and t2 are unifiable
if there exists a solution (called unifier) of the system {t1 ≈ t2}. A most general
unifier (mgu in the sequel) of t1 and t2 is a most general solution of that system.
A unification algorithm is an algorithm that decides whether two given terms
are unifiable, and in that case it returns a most general unifier.

Essentially, the unification algorithm we have implemented is based on the
relation⇒u given by the set of transformation rules presented in Figure 1 (known
as the Martelli-Montanari transformation system). This system acts on pairs of
systems of equations of the form S; U . Intuitively, the system S can be seen as a

Delete: {t ≈ t} ∪R; U ⇒u R; U
Occur-check: {x ≈ t} ∪R; U ⇒u ⊥ if x ∈ V(t) and x 6= t
Eliminate: {x ≈ t} ∪R; U ⇒u θ(R); {x ≈ t} ∪ θ(U)

if x ∈ X, x /∈ V(t) and θ = {x 7→ t}
Decompose: {f(s1, ..., sn) ≈ f(t1, ..., tn)} ∪R; U ⇒u {s1 ≈ t1, ..., sn ≈ tn} ∪R; U
Clash: {f(s1, ..., sn) ≈ g(t1, ..., tm)} ∪R; U ⇒u ⊥ if n 6= m or f 6= g
Orient: {t ≈ x} ∪R; U ⇒u {x ≈ t} ∪R; U if x ∈ X, t /∈ X

Fig. 1. Martelli–Montanari transformation system

set of pairs of terms to be unified, and the system U as a (partially) computed
unifier1 (we say that the pair S; U is a unification problem). The symbol ⊥
represents unification failure. Starting with the pair of systems S; ∅, these rules
can be (non-deterministically) applied iteratively, until either a pair of systems of
the form ∅; U or ⊥ is obtained. It can be proved that this process must terminate
and that S has a solution if and only if ⊥ is not derived; in that case U is a most
general solution of S. Thus, a unification algorithm can be designed choosing an
strategy to apply the rules, starting with the pair of systems {t1 ≈ t2}; ∅, where
t1 and t2 are two given input terms.

In [10] we had defined and verified a unification algorithm based on this set
of transformation rules, as part of an ACL2 library with formal proofs of the
lattice-theoretic properties of first-order terms. In that library, terms are repre-
sented in prefix notation, using lists (except variables, which are represented by
atomic objects). For example, the term f(x, g(y), h(x)) is represented by the list
(f x (g y) (h x)). Substitutions are represented as association lists, and sys-
tems of equations as lists of dotted pairs of terms. In the sequel, this represen-
tation of terms and substitutions in prefix form, using lists, will be referred to
as prefix representation or prefix notation.

Using the prefix representation, a unification algorithm may be inefficient
in some situations. Consider, for example, the following standard parameterized
unification problem, which we will call Un:

p(xn, . . . , x2, x1) ≈ p(f(xn−1, xn−1), . . . , f(x1, x1), f(x0, x0))

A mgu of this problem is {x1 7→ f(x0, x0), x2 7→ f(f(x0, x0), f(x0, x0)), . . .},
which maps each variable xi to a complete binary tree of height i. This mgu
can be obtained by repeatedly applying the Eliminate rule of ⇒u. If we use the
prefix representation of terms, it will be necessary to reconstruct the instantiated
system of equations, each time the rule is applied.

The standard approach to deal with this problem is to use term dags where
variables are shared. For example, the following graph represents the equation
1 We will identify a system of equations of the form {x1 ≈ t1, . . . , xn ≈ tn}, where

the xi are variables, with the substitution {x1 7→ t1, . . . , xn 7→ tn}. If none of the xi

appear in any of the tj , we say that the system is in solved form. Note that every
system in solved form is a mgu of itself.

f(h(z), g(h(x), h(u))) ≈ f(x, g(h(u), v)). Nodes are labeled with function and
variable symbols, and outgoing edges connect every node with dags represent-
ing its immediate subterms. We can naturally identify the root node of a term
dag with the whole term. Note also that there is a certain amount of structure
sharing, at least for the repeated variables2:

f

z

f

h g g

hh h v

ux

To implement a unification algorithm with this term representation, the main
idea is never to build new terms but only create pointers. In particular, the
Eliminate rule can be implemented adding a pointer linking the variable with
the term to which this variable is bound; in that way no reconstruction of the
term is required in the application of a substitution. In the graph above, these
pointers are represented by dashed arrows. The binding for a variable can be
determined by following the pointers traversing the graph depth first, from left
to right. In this case, the substitution represented is {x 7→ h(z), u 7→ h(z), v 7→
h(h(z))}, which is a mgu of f(h(z), g(h(x), h(u))) and f(x, g(h(u), v)).

3 An ACL2 implementation

The implementation described here is based on the Pascal implementation given
in section 4.8 of [1]. The main difference is that instead of a record with pointers,
we use a single-threaded object. This stobj is a structure called terms-dag with
only one field: an array called dag (whose size can be modified dynamically).
This array is used to store the unification problem in dag form:

(defstobj terms-dag
(dag :type (array t (0)) :resizable t))

The effect of this ACL2 event is to introduce the stobj terms-dag and its
associated recognizers, creator, accessors, updaters, and length and resize func-
tions of the array field. In particular, given an index i (a natural number) cor-
responding to a cell of the dag array, the expressions (dagi i terms-dag) and
(update-dagi i v terms-dag) access and update (with value v) respectively
the i-th cell of the dag array. These operations are done in constant time and the
update is destructive. Nevertheless, from the logical point of view, the array can
be thought as a list, with an applicative semantic (that is, as if in every update a
2 It should be remarked that this is simply one possible representation in which only

variables are shared; this is not the most compact representation, but the one that
serves as the basis of the verified unification algorithm.

new object were created) . This is possible due to the fact that in ACL2, the use
of stobjs is syntactically restricted, ensuring that in every moment only one copy
of the object is needed. Roughly speaking, these syntactic restrictions enforce
that the only references to the stobj are done via its name (terms-dag, in this
case). See [4, 6] for further information about stobjs in ACL2 and the restrictions
on its use.

Each node in the graph is represented by a cell in the dag array of the stobj.
Thus, a node in the graph can be identified with an array index. Each cell stores
the label and the successors of one node, in the following way:

– If node i represents an unbound variable x, then (dagi i terms-dag) con-
tains a dotted pair of the form (x . t).

– If node i represents a bound variable, then (dagi i terms-dag) contains
an index n pointing to the root node of the term to which the variable is
bound.

– If node i is the root node of a non-variable term f(t1, . . . , tn), then (dagi i
terms-dag) is a dotted pair of the form (f . l), where l is the list of the
indices corresponding to the root nodes of t1, . . . , tn.

In this way, we can store a unification problem using the terms-dag stobj.
For example, if we store the term equ(f(h(z), g(h(x), h(u))), f(x, g(h(u), v))) the
significant cells of the dag array are:

6 8

1

(EQU . (1 9))

0

(F . (2 4))

7

(H . (8))

8

(U . T)

9

(F . (10 11))

32

(H . (3)) (Z . T)

10

4

(G . (5 7)) (X . T)

6

(H . (6))

5

1311

(G . (12 14)) (H . (13))

12

(V . T)

14

We can naturally identify an array index with the term whose root node is
stored in the corresponding array cell. Taking advantage of this idea, we can
define a function (called dag-transform-mm-st, figure 2) that applies one step
of the transformation relation ⇒u to a unification problem stored in terms-dag.

Let us precise about the behavior of dag-transform-mm-st. In addition to
the stobj, this function receives as input a (non-empty) system of equations S
to be unified and a partially computed substitution U. The key point here is
that S and U only contain indices pointing to the terms stored in terms-dag.
In particular, S is a list of pairs of indices, and U is a list of pairs of the form
(x . n) where x is a variable symbol and n is the index of the node for which
the variable is bound (we say that S is an indices system and U an indices
substitution). Depending on the pair of terms pointed to by the first equation
of S3, one of the rules of ⇒u is applied. The function returns a multivalue with
the following components, obtained as a result of the application of one step
of transformation: the resulting indices system of equations to be solved, the
resulting indices substitution, a boolean (if ⊥ is obtained, this value is nil) and

3 Note that the indices of the selected equation are dereferenced using the function
dag-deref-st, which follows a chain of instantiations until it reaches an unbound
variable or non-variable node.

(defun dag-transform-mm-st (S U terms-dag)
(declare (xargs :stobjs terms-dag))
(let* ((ecu (car S))

(t1 (dag-deref-st (car ecu) terms-dag))
(t2 (dag-deref-st (cdr ecu) terms-dag))
(R (cdr S))
(p1 (dagi t1 terms-dag))
(p2 (dagi t2 terms-dag)))

(cond
((= t1 t2) (mv R U t terms-dag))
((dag-variable-p p1)
(if (occur-check-st t t1 t2 terms-dag)

(mv nil nil nil terms-dag)
(let ((terms-dag (update-dagi t1 t2 terms-dag)))
(mv R (cons (cons (dag-symbol p1) t2) U) t terms-dag))))

((dag-variable-p p2)
(mv (cons (cons t2 t1) R) U t terms-dag))

((not (eql (dag-symbol p1)
(dag-symbol p2)))

(mv nil nil nil terms-dag))
(t (mv-let (pair-args bool)

(pair-args (dag-args p1) (dag-args p2))
(if bool

(mv (append pair-args R) U t terms-dag)
(mv nil nil nil terms-dag)))))))

Fig. 2. One step of transformation

the stobj terms-dag. Note that only when Eliminate is applied, the stobj is
updated, causing the corresponding variable to point to the corresponding term.

With dag-transform-mm-st as its main component, we can define the uni-
fication algorithm. In short, this function, called dag-mgu, receives as input two
terms in prefix form; after storing these terms as directed acyclic graphs in the
stobj (previously resizing the dag array properly), it iteratively applies the func-
tion dag-transform-mm-st until either non-unifiability is detected or there are
no more equations to be solved. In this last case, the returned substitution (in
prefix form) is built from the final contents of dag, following the pointers of the
instantiated variables. The following are two examples obtained with dag-mgu.
Note that the function returns two values: the first one is a boolean indicating
whether the terms are unifiable or not, and, in case of unifiability, the second is
the mgu.

ACL2 !>(dag-mgu ’(f (h z) (g (h x) (h u))) ’(f x (g (h u) v)))
(T ((V . (H (H Z))) (U . (H Z)) (X . (H Z))))
ACL2 !>(dag-mgu ’(f y x) ’(f (k x) y))
(NIL NIL)

It is worth pointing out that the syntactic requirements needed to ensure the
single-threadedness of the ACL2 functions that use stobjs are naturally met in
this algorithm. See [11] for the definitions of all the auxiliary functions used. Since
the ACL2 language is a subset of Common Lisp (and we have verified guards4),
the defined algorithm can be compiled and executed in every compliant Common
Lisp, with the appropriate ACL2 files loaded.

4 The formal properties of the unification algorithm

Once defined the function dag-mgu, we use the ACL2 logic and its theorem
prover to formally establish that it computes the most general unifier of two
terms if and only if the terms are unifiable:

(defthm dag-mgu-completeness
(implies (and (term-p t1) (term-p t2)

(equal (instance t1 sigma) (instance t2 sigma)))
(first (dag-mgu t1 t2))))

(defthm dag-mgu-soundness
(implies (and (term-p t1) (term-p t2)

(first (dag-mgu t1 t2)))
(equal (instance t1 (second (dag-mgu t1 t2)))

(instance t2 (second (dag-mgu t1 t2))))))

(defthm dag-mgu-most-general-solution
(implies (and (term-p t1) (term-p t2)

(equal (instance t1 sigma) (instance t2 sigma)))
(subs-subst (second (dag-mgu t1 t2)) sigma)))

The function instance defines the application of a substitution to a term,
and the predicate subs-subst defines the relation “more general than” between
substitutions. The predicate term-p recognizes those ACL2 objects that rep-
resent first-order terms in prefix notation. Note that the basic theory used to
state the properties is built on the terms represented in prefix notation. For a
detailed description of this theory, see [10]. Also the input and the output of the
function dag-mgu are terms and substitutions in prefix notation. But it has to
be emphasized that internally, the main process is carried out on term dags.

4 The notion of guard of a function will be explained in section 6.

The first theorem, dag-mgu-completeness, establishes that the algorithm
returns t (as its first value) if the input terms are unifiable5. The theorem dag-
-mgu-soundness establishes that in that case it returns (as its second value) a
unifier of both terms. Finally, the theorem dag-mgu-most-general-solution
establishes that the returned substitution is more general than any other unifier
of both terms. These three proved theorems constitute a formal proof of the
correctness of the algorithm.

5 Comments about the proof

In this section, we give an overview of the proof process. To emphasize the “com-
positional reasoning” methodology followed, we have structured it in subsections.
First we begin with the subsections describing properties of the algorithm at a
more abstract level. These abstract properties can be gradually concretized to
finally obtain the theorems shown in the previous section.

5.1 Reasoning about the reduction ⇒u

One step of transformation of ⇒u is determined by the rule applied and the
equation selected. To formalize this intuitive idea in ACL2, we define ⇒u by
means of operators. In this context, an operator is a dotted pair of the form
(name . i) where name is one of the rule names in figure 1 and i is a natural
number, corresponding to the i-th equation of the system. Thus, the transfor-
mation ⇒u can be seen as applying one operator to a unification problem. This
operator can be applied whenever the conditions of the particular rule applied
are met. For example, the operator (eliminate . 3) can be applied to a uni-
fication problem if its third equation is of the form x ≈ t and x does not occur
in t. The following two functions formalize this idea in ACL2:

• (unif-legal-pr upl op), checking the conditions needed to apply a given
operator op to a unification problem upl (in prefix notation).

• (unif-reduce-one-step-pr upl op), returning the transformed unifica-
tion problem (in prefix notation) after applying op to upl.

With this operator-based representation we proved in ACL2 the main prop-
erties of ⇒u. That is: a) the set of solutions of a unification problem is preserved
in each step, b) if the second system of a unification problem is in solved form,
then the transformed unification problem has its second system in solved form,
and c) the transformation relation is terminating. These properties are more
naturally proved with terms represented in prefix form, and this allows us to
reuse part of the theory developed in [10] for the verification of the applicative
unification algorithm.

5 Note that the variable sigma, although implicitly universally quantified, can be seen
as existentially quantified, since it only appears in the hypothesis of the theorem.

Having proved the main properties of one-step transformations, we can easily
extend these properties to finite sequences of transformations. In particular we
prove that if {t1 ≈ t2}; ∅ ∗⇒u ∅;σ, then σ is a mgu of t1 and t2, and if {t1 ≈
t2}; ∅ ∗⇒u ⊥, then t1 and t2 are not unifiable. Note that in our formalization, a
sequence of transformation can be identified with a list of (legal) operators.

It is remarkable that these results do not deal with control or data structures
issues: to prove the correctness of a concrete unification algorithm, it suffices to
show that the actions of the algorithm can be simulated by a finite sequence of
transformations w.r.t. ⇒u. That is the main advantage of rule-based specifica-
tions: they allow to prove the essential properties of the procedure without the
burden of technical implementation issues.

5.2 Dags and well-formedness conditions

In order to translate the main properties of ⇒u to our implemented algorithm,
we have to relate the information stored in the terms-dag stobj with the terms
in prefix notation it may represent. In general, not every possible contents of the
dag array represent first-order terms. The main reason is that the graph could
contain cycles, and in that case, no first-order term is represented by the cells
of the array.

This means that we have to define predicates to recognize the properties
needed to ensure that the array contents represent a first-order term; the main
of those properties is acyclicness, ensuring that the graph stored in the dag
array is actually a dag. Some other well-formedness properties are also needed
(for instance the sharing of variables).

Another important reason why these well-formedness conditions are needed
has to do with the restrictions imposed by the ACL2 logic in its principle of
definition: new function definitions are admitted as axioms in the logic only if
there exists a measure in which the arguments of each recursive call decrease
with respect to a well-founded relation, ensuring in this way that the function
terminates on all inputs (and consequently no inconsistencies are introduced by
new function definitions). For example, a function implementing “occur-check”
(looking for the occurrence of a given variable in a term) may not terminate if the
graph stored in the array contains cycles. The same happens with dereferencing
or even with the function that iteratively applies dag-transform-mm-st. Thus,
these functions require an explicit check to verify that the stobj does indeed
represent an acyclic graph, ensuring their termination. We will comment more
about this point in section 6.

For these reasons, we have developed a library of results about directed
acyclic graphs. For example, this library contains the definition of the function
dag-p; this function checks that a given graph (stored following the conventions
described in section 3) does not contain cycles. It is implemented as a standard
depth-first search algorithm, looking for cycles in the graph. The following the-
orems establish that a graph g verifies the dag-p condition if and only if does
not contain cycles:

(defthm dag-p-soundeness
(implies (not (dag-p g))

(cycle-p (one-cyclic-path g) g)))

(defthm dag-p-completeness
(implies (cycle-p p g)

(not (dag-p g))))

Some other general definitions and results about dags are part of this library.
See [11] for details. Having dag-p as its main auxiliary function, we can define a
function checking the well-formedness conditions of a unification problem given
in dag form: (well-formed-upl dag-upl) is true if and only if dag-upl is a
three-element list such that its first element is an indices system, the second
is an indices substitution and the third is an acyclic term graph with shared
variables. In the following, by well-formed dag unification problem we mean an
ACL2 object that satisfies well-formed-upl. Every well-formed dag unification
problem has a unification problem in prefix notation associated.

One technical issue is worth pointing out. The main advantage in the rea-
soning about stobjs is that from the logical point of view, an array field of a
stobj is like a list whose elements are the contents of the array6. For this, we
can reason about dags as if the graph were a list, instead of an array field of a
stobj. For example, the function dag-p above is defined on lists. In addition to
simplifying the formulation of the theorems, this allows to define some proper-
ties about graphs following the usual “car-cdr” recursion style. This style would
not be allowed if the definition were on the stobj, due to the syntactic restric-
tions imposed by ACL2 on stobjs. Of course, those functions that are going to
be executed have to be defined on the stobj; but we define a “list version” for
reasoning and then translate the main properties proved to the “stobj version”
(for example, we define a function dag-p-st on the terms-dag stobj, logically
equivalent to dag-p).

5.3 Compositional reasoning

Since our implemented algorithm acts on terms represented as dags, we must
now define in ACL2 the behavior of the relation ⇒u acting on well-formed dag
unification problems. As in subsection 5.1, we adopt an operator based approach.
That is, we define the following two functions:

• (unif-legal-d dag-upl op), checking the conditions needed to apply a
given operator op to a dag unification problem dag-upl. These conditions
are similar, for each rule, to the conditions checked by the function dag-
-transform-mm-st (figure 2) before applying a transformation.

6 For example, the accessors and updaters are logically equivalent to the list functions
nth and update-nth which, respectively, access and update the contents of a list.

• (unif-reduce-one-step-d dag-upl op), returning the transformed dag
unification problem obtained after applying op to dag-upl. These trans-
formations are similar, for each rule, to the transformations performed by
the function dag-transform-mm-st.

Instead of proving the properties of these transformations reasoning directly
with the definitions of the above functions (which can be difficult due to the more
sophisticated data structures used), we can translate the properties proved for
the transformations on the prefix representation, using compositional reasoning.
More precisely, denoting as UPLp the set of unification problems represented in
prefix form, and as UPLd the set of well-formed dag unification problems, the
key point is to prove that the following diagram commutes:

UPLp
⇒u,p−→ UPLp

↑ ↑
dp | dp || |
UPLd

⇒u,d−→ UPLd

Here dp is a function such that given a well-formed dag unification problem, it
returns the corresponding unification problem in prefix form; ⇒u,p and ⇒u,d de-
note, respectively, the relation⇒u defined on the prefix representation and on the
dag representation. The commutativity of the above diagram is formally estab-
lished in ACL2 by the following theorem (the function upl-as-pair-of-systems
plays the role of the function dp in the diagram):

(defthm conmutativity-of-diagram-prefix-dag
(implies (and (well-formed-upl dag-upl)

(unif-legal-d dag-upl op))
(and (well-formed-upl (unif-reduce-one-step-d dag-upl op))

(unif-legal-pr (upl-as-pair-of-systems dag-upl) op)
(equal (upl-as-pair-of-systems

(unif-reduce-one-step-d dag-upl op))
(unif-reduce-one-step-pr

(upl-as-pair-of-systems dag-upl) op)))))

This theorem establishes that:

• The well-formedness property of dag unification problems is preserved by
the transformation rules.

• If the conditions needed to apply a rule to a well-formed dag unification
problem are met, then the conditions required to apply the same rule to the
corresponding unification problem in prefix form are also met.

• In that case, the transformed unification problem obtained applying the rule
to the prefix representation is the same as the unification problem in prefix
form corresponding to the dag unification problem obtained applying the
same rule to the dag representation.

These properties allow us to easily translate the main properties described
in subsection 5.1 to this more efficient data structure. In particular, it can be
proved that we can obtain a most general unifier of two terms by exhaustively
applying the rules of transformation on its dag representation.

5.4 Final steps

Now that we have all the main pieces needed for the verification of the algorithm,
we proceed as follows:

• First, we define a function that, given two terms in prefix form, returns
the corresponding dag unification problem. We must prove that this dag
unification problem is well-formed. This result turned out to be one of the
hardest part of all the verification process.

• Second, we show that the transformations performed by our unification al-
gorithm can be simulated by a sequence of transformations of ⇒u,d. That
is, we deal with the specific control (or selection strategy) of the algorithm.
In our case, we always select the first equation, but any other strategy could
work. In terms of operators, this means that we have to explicitly give a
sequence of operators that, iteratively applied to the initial dag unification
problem, obtains the same final dag unification problem as the implemented
algorithm. Note that even though operators are used for defining the trans-
formation relation, these are an intermediate concept used for reasoning, but
not used by the unification algorithm.

• Finally, since the above properties are established for the “dag-list version”
of the algorithm, we translate the properties to the executable “dag-stobj
version”, finally proving the formal properties presented in section 4.

5.5 Quantifying the proof effort

The ACL2 theorem prover supports mechanized reasoning in the ACL2 logic,
being particularly well-suited for obtaining automated proofs based on induc-
tion and simplification. The prover is automatic in the sense that once defthm is
invoked, the user can no longer interact with the system. However, in a deeper
sense, the system is interactive: usually, when proving non-trivial theorems, the
user has to guide the prover by adding lemmas and definitions (used in subse-
quent proofs as rewrite rules during the simplification process), or giving some
hints to the defthm command, such as the scheme for a induction proof.

A typical ACL2 proof effort consists of formalizing the problem in the logic
and helping the prover to find a preconceived proof by means of a suitable set of
rewrite rules. These rules can be found by inspecting the failed proofs: when the
proof attempt deviates from the expected proof, usually a lemma is needed to
deal with that part of the proof by simplification. This methodology produces a
collection of lemmas (and definitions) leading the prover to the proof of the main
result. Some of these lemmas are interesting by themselves and can be reused
later in other parts of the development. This way of interacting with the system

is called “The Method” by the authors of the system and it is explained in detail
in [5]. We followed “The Method” in this case study.

The table below shows some quantitative information about the proof effort,
the number of definitions and theorems needed during the different stages of the
verification process (we have not included in the table data of the basic theory
about first-order terms):

Phase Definitions Theorems
Properties on the prefix representation 24 81
Acyclic graphs 37 95
Diagram commutativity 39 66
Storing the initial terms in the graph 34 208
Properties of the implemented algorithm 43 76
Total 177 703

These numbers may give an idea of the complexity of the formalized theories
and the degree of automation of the proofs obtained. We should say that most
of the lemmas needed during the first phase were already proved in [10]. It is
also remarkable (and somewhat surprising) the number of theorems needed to
prove the properties of a function that stores the initial terms as directed acyclic
graphs.

6 Execution of the algorithm

As we have already said, ACL2 is a logic of total functions. That is, a proof of the
termination of the function on all possible inputs is required for the definition
to be accepted by the prover. In some cases, this means that a definition must
include in its body an explicit check on their arguments, ensuring its termination.
This check may seriously affect the execution performance of the function. Until
the current ACL2 version 2.7, this was a weakness of the system that appeared
when dealing with functions that only terminate on their intended domain, but
not for every possible input. In the next ACL2 release, the new mbe feature
(which stands for “must be equal”) overcomes that weakness: it allows to assign
to a function an alternate “executable body” to that provided for the logic.

We use mbe in this work, avoiding (for execution) the expensive well-formed-
ness checks that are needed in the logical definitions of some of the functions of
the dag unification algorithm. We explain this with an example. The following
is the definition of the function dag-solve-upl-st, which iteratively applies
steps of transformation to a given unification problem, until either there are no
equations to be solved or unsolvability is detected:

(defun dag-solve-upl-st (S U bool terms-dag)
(declare
(xargs :stobjs terms-dag

:guard (well-formed-upl-st S U terms-dag)

...)
(MBE
:logic
(if (well-formed-upl-st S U terms-dag)

(if (or (not bool) (endp S))
(mv S U bool terms-dag)

(mv-let (S1 U1 bool1 terms-dag)
(dag-transform-mm-st S U terms-dag)
(dag-solve-upl-st S1 U1 bool1 terms-dag)))

(mv nil nil nil terms-dag))
:exec
(if (or (not bool) (endp S))

(mv S U bool terms-dag)
(mv-let (S1 U1 bool1 terms-dag)

(dag-transform-mm-st S U terms-dag)
(dag-solve-upl-st S1 U1 bool1 terms-dag)))))

This defun defines the function in the logic using the body given by the
:logic key argument, but when the function is evaluated on arguments of its
intended domain (this intended domain is given by the :guard key) then the
body given by the :exec key argument is used. The logical body needs an explicit
check performed by the function well-formed-upl-st7, in order to ensure its
termination (which it is not trivial to prove). This condition is expensive, since
acyclicness is checked; moreover, if we use this logic body for execution, this
expensive check would be evaluated in every recursive call, making execution of
the function impractical.

From the logical point of view (mbe :logic logicbody :exec execbody) is
equal to logicbody, so execbody is ignored for reasoning. But when the function is
evaluated on its intended domain, the underlying Common Lisp uses the (hope-
fully) more efficient execbody. The “intended domain” is specified in ACL2 by its
guard, and the proof obligations generated by the guard verification mechanism
ensure the soundness of using the executable body instead of the logic body.

Guards in ACL2 are used to specify the intended domain of a function.
Although this specification is actually ignored by the logic, the guard verifica-
tion mechanism allows to evaluate the function directly in Common Lisp. If the
guards of a function are verified, then it is ensured that when the function is
evaluated on arguments satisfying its guard, then all subsequent function calls
during that evaluation will be on arguments satisfying the guard of the called
function. The proof obligations generated by the guard verification mechanism
ensure this property. Since the primitive Common Lisp functions of ACL2 has
guards consistent with the Common Lisp specification, an ACL2 function with
its guards verified is Common Lisp compliant and can be evaluated, on argu-
ments satisfying its guard, directly in the underlying Common Lisp.

7 This function is the “dag-stobj version” of the function well-formed-upl described
in subsection 5.2.

The guard of the function mbe specifies that its two arguments are equal.
Thus, when a function that uses mbe has its guard verified, then it is sound to
use the executable body for execution, whenever the input arguments are in the
intended domain specified by the guard.

In addition to the above function, some of the auxiliary functions used by
the implemented algorithm dag-mgu are defined in a similar way, using mbe (for
example, occur checking or dereferencing). Since we have verified the guards of
dag-mgu (and therefore the guards of all the functions used by the algorithm),
all the expensive well-formedness checks are ignored when calling the function
dag-mgu on two ACL2 objects representing terms in prefix form (the guard of
dag-mgu). Note that the guard of the main top level function is very simple, and
since guards are verified, it is not needed to evaluate the more expensive guards
of its auxiliary functions in subsequent calls.

We have tested the verified unification algorithm using the parameterized
unification problem Un (presented in section 2). We compare its performance
with the applicative algorithm defined in [10]. The problem Un is particularly
well suited for the dag unification algorithm, since it is already in dag solved
form. For that reason we also test the algorithm on the problem U−1

n , where the
equations of Un are processed in reverse order. The following table summarizes
the results obtained8:

Pref. Un Dag Un Pref. U−1
n Dag U−1

n Quadratic U−1
n

n Time Space Time Space Time Space Time Space Time Space
20 19 376839 ε 3 7 49160 4 10 ε 20
22 78 1638409 ε 4 21 196654 18 11 ε 22
24 – – ε 5 90 786444 72 12 ε 26

1000 – – 0.2 151 – – – – 15 195
5000 – – 2 781 – – – – 61 945

It can be observed that the space complexity is much better in the dag
implementation than in the applicative implementation in all cases. The time
performance it is also much better with Un, and about 25% faster with U−1

n .
Note that the definition of the algorithm using mbe is essential for obtaining this
time performance, since, as we have said, the logical definition of the algorithm
is impractical for execution.

The column labeled Dag U−1
n reveals that the implemented algorithm has still

exponential time complexity. The problem is that some operations, like the occur
check, may traverse terms exponential in size. Nevertheless, the implemented al-
gorithm is the most often used in practice, since that exponential behavior is not
usual. Anyway, we have implemented a quadratic version of the dag unification
algorithm, introducing a few technical modifications to the verified algorithm.
We also include in the table the tests for this improved version, which it is much

8 Tested on an AMD c© 2200XP processor, with 512Mb RAM. The data are obtained
with the function time of Clisp. The dash denotes that either an output is not
obtained in reasonable time, or that a stack overflow occurs. ε stands for a quantity
less than 0.01. Numbers bigger than 1 are rounded to the nearest integer.

faster, being able to solve U−1
n for n = 5000. For the moment, this quadratic

implementation is not formally verified.

7 Conclusions

We have presented a case study in ACL2, where we verify a unification algorithm
acting on term dags, implemented using ACL2 single-threaded objects. We urge
the interested reader to consult the complete development in [11]. The main
features of this case study are:

• The formal verification of an executable algorithm that uses efficient data
structures.

• The methodology used: from a rule-based specification of the algorithm, we
prove its more abstract properties. The final properties of the algorithm can
be seen as an optimization process, using compositional reasoning.

• The use of the new mbe feature of ACL2, that permits to associate to a func-
tion some “executable body” that can be different from its “logical body”.

The intuitive idea that algorithms employing more complex data structures
or more sophisticated control structures require more effort in verification is
supported by the table of subsection 5.5. These data contrast with the effort
needed in the verification of the same algorithm using a prefix representation
of terms [10]. In that work, we needed 19 definitions and 129 theorems, and in
this case we needed 177 definitions and 703 theorems. Anyway, this additional
verification effort has resulted in the development of a number of ACL2 files that
could be used in other formalizations (for example, the theory about directed
acyclic graphs).

As for related works, unification algorithms have been the center of several
formalizations. In particular, formal proofs of the correctness of a unification
algorithm have been given in LCF [8], Coq [9] and ALF [3]. Although these
works are related to ours, the logic used is quite different and, more important,
their main concern is not efficiency or the data structures used.

Other related work is done by Mehta and Nipkow [7], who have recently de-
veloped in Isabelle/HOL a general framework for reasoning about programs that
use pointers. As a non-trivial case study, they present a proof of the correctness
of the Schorr–Waite graph marking algorithm. This work is more general than
ours, since all the reasoning about pointers that we do is especifically devoted
to the results needed by the algorithm. Moreover, the logics used are different:
in [7], a Hoare logic for pointer programs is embedded in Isabelle/HOL, whereas
we are using the ACL2 logic for reasoning about ACL2 functions that can be
directly executed in any compliant Common Lisp. Nevertheless, some of the
techniques used in [7] are similar to ours: for example, what they call abstrac-
tion (mapping low level structures in the heap to higher level concepts) is similar
to what we do when we first reason about the main properties of the algorithm
using the prefix representation of terms (a higher level representation) and then
we translate them to the algorithm that uses dags (a lower level representation).

As for further work, we already pointed out at the end of subsection 6 that
we can introduce some technical improvements in order to make the verified
algorithm run in quadratic time. We also plan to verify this improved algorithm.

Finally, note that although our main concern is an efficient and formally ver-
ified algorithm, we do not prove theorems about the efficiency of the algorithm.
Although reasoning about complexity of algorithms in the ACL2 logic is (in
principle) possible, we think that it could be much more difficult than reasoning
about the correctness of the algorithm, mainly due to the need of formalizing
the “big-O notation” (and its asymptotic character) in the ACL2 logic.

Acknowledgments

Part of this work was done during a visit of the first author to the Computer
Science Department of the University of Texas at Austin. We would like to thank
the ACL2 group in Austin, especially to J Moore and Matt Kaufmann, for their
support, and for introducing mbe in ACL2.

References

1. Baader, F. and Nipkow, T. Term Rewriting and All That. Cambridge University
Press, 1998.

2. Baader, F. and Snyder, W. Unification theory. Handbook of Automated Rea-
soning, Elsevier Science Publishers, 2001.

3. Bove, A. Programming in Martin-Lf Type Theory: Unification - A non-trivial Ex-
ample. Licentiate Thesis, Department of Computer Science, Chalmers University
of Technology, 1999.

4. Boyer R.S. and Moore J S. Single-threaded objects in ACL2. In Practical
Aspects of Declarative Languages, LNCS 2257, pages 9–27, Springer–Verlag, 2002.

5. Kaufmann, M., Manolios, P. and Moore, J S. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

6. Kaufmann, M. and Moore, J S. ACL2 Version 2.7, 2002.
Homepage: http://www.cs.utexas.edu/users/moore/acl2/

7. Mehta, F. and Nipkow, T. Proving Pointer Programs in Higher-Order Logic .
to be presented at CADE-19, 2003.

8. Paulson, L. Verifying the unification algorithm in LCF. Science of Computer
Programming, 5, 1985.

9. Rouyer, J. Dveloppement de l’algorithme d’unification dans le calcul des con-
structions avec types inductifs. Tech. Rep. 1795, INRIA Lorraine, 1992 (in french).

10. Ruiz–Reina, J.L., Alonso, J.A., Hidalgo, M.J. and Mart́ın, F.J. A theory
about first–order terms in ACL2 In Third ACL2 Workshop, Grenoble, 2002.

11. Ruiz–Reina, J.L., Alonso, J.A., Hidalgo, M.J. and Mart́ın, F.J. A verified
dag unification algorithm in ACL2, 2002.
Available at http://www.cs.us.es/~jruiz/unificacion-dag

